JPS6143443A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS6143443A
JPS6143443A JP16495384A JP16495384A JPS6143443A JP S6143443 A JPS6143443 A JP S6143443A JP 16495384 A JP16495384 A JP 16495384A JP 16495384 A JP16495384 A JP 16495384A JP S6143443 A JPS6143443 A JP S6143443A
Authority
JP
Japan
Prior art keywords
layer
semiconductor layer
type
gaas
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16495384A
Other languages
Japanese (ja)
Inventor
Motonori Kawaji
河路 幹規
Munetoshi Fukui
宗利 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP16495384A priority Critical patent/JPS6143443A/en
Publication of JPS6143443A publication Critical patent/JPS6143443A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02395Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02546Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02625Liquid deposition using melted materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Element Separation (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To improve the wiring yield and the density of integration by a method wherein the first semiconductor layer is formed on a substrate and then a part corresponding to separated region is implanted with ion while the lowest level is raised higher than Fermi level. CONSTITUTION:An undoped GaAs layer 2 is grown on a semiinsulating substrate 1 comprising GaAs by means of liquid epitaxial process etc. Next a photoresist film 3 is deposited on the layer 2 and then the layer 2 is implanted with beryllium ion utilizing the layer 3 as a mask to be changed into a P type GaAs layer 4. Later the film 3 is removed and then an SiO2 film is formed on overall surface before performing specified capannealing. Then the SiO2 film is removed to form an N type AlGaAs layer 5 on overall surface by means of molecular beam epitaxial process and then an N type GaAs layer 6 is successively grown on the layer 5. Later ohmic metals as source.drain e.g. an alloy of AuGe/ Ni/Au are evaporated and etched to form source.drain electrodes 7, 8. At this time, elements may be separated by means of increasing the concentration of layer 4 to raise the lowest level higher than Fermi level.

Description

【発明の詳細な説明】 −[技術分野] 本発明はヘテロ接合を有する半導体装置、とくに電界効
果トランジスタの素子間分離に適用して有効な技術に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION - [Technical Field] The present invention relates to a technique that is effective when applied to isolation between elements of a semiconductor device having a heterojunction, particularly a field effect transistor.

[背景技術] 化合物半導体、たとえばヒ化ガリウム(G a A s
 )を用いたショットキ・バリアゲートFETは、半絶
縁性G a A sを基板に用いることができ、かつ、
電子移動度が大きいという点より種々開発されている。
[Background Art] Compound semiconductors, such as gallium arsenide (GaAs
) can use semi-insulating GaAs as a substrate, and
Various materials have been developed because of their high electron mobility.

この電子移動度をさらに大きくするために、ペテロ接合
を利用したHEMT C高電子移動度トランジスタ)が
特開昭56−94780号公報あるいは同町57−11
8676号公報に開示されている。
In order to further increase this electron mobility, a HEMT C (high electron mobility transistor) using a Peter junction was disclosed in Japanese Patent Laid-Open No. 56-94780 or No. 57-11 of the same town.
It is disclosed in Japanese Patent No. 8676.

このHEMT素子は、たとえば、アンドープG a A
 s層上にN型AI)、GaAs層を形成し、これらの
界面に形成されるヘテロ接合部に発生する2次元電子ガ
スをN型AuGaAs層の金属電極で制御するFETで
ある。ところで、これらHEMT素子の素子間分離は、
メサエッチングによって行なわれるのが一般である。こ
のため、ヘテロ接合部が表面に露出し、集積回路の信頼
度が悪化するという問題を有していた。また、メサエッ
チングのため、ウェハに段差が形成され配線が困難とな
り配線歩留まりの低下という問題があった。さらに、前
述した特開昭57−118676号公報には、たとえば
、N型AuGaAs層に注入されるアクセプタあるいは
ドナーによって素子分離を行うことが提案されている。
This HEMT element is, for example, an undoped G a A
This is an FET in which an N-type AuGaAs layer is formed on an s layer, and a two-dimensional electron gas generated at a heterojunction formed at the interface between these layers is controlled by a metal electrode of the N-type AuGaAs layer. By the way, the isolation between these HEMT elements is
This is generally done by mesa etching. For this reason, there was a problem in that the heterojunction was exposed on the surface and the reliability of the integrated circuit deteriorated. Furthermore, due to mesa etching, steps are formed on the wafer, making wiring difficult and reducing wiring yield. Furthermore, the above-mentioned Japanese Patent Application Laid-Open No. 57-118676 proposes, for example, performing device isolation by using acceptors or donors implanted into the N-type AuGaAs layer.

しかしながら、N型Al2GaAs層へのイオン注入に
よる素子分離はその制御性に難点があった。
However, element isolation by ion implantation into the N-type Al2GaAs layer has a drawback in controllability.

[発明の目的] 本発明の目的は、メサエッチングを導入することなく素
子分離を行って信頼度、配線歩留まりを向上させるとと
もに、高集積化を可能とし、さらに素子分離の制御が容
易な半導体装置の製造方法を提供するものである。
[Objective of the Invention] An object of the present invention is to provide a semiconductor device that improves reliability and wiring yield by performing element isolation without introducing mesa etching, enables high integration, and allows easy control of element isolation. The present invention provides a method for manufacturing.

本発明の前記ならびにそのほかの目的と新規な特徴は1
本明細書の記述および添付図面がらあきらかになるであ
ろう。
The above and other objects and novel features of the present invention are as follows:
The description herein and the accompanying drawings will become clear.

[発明の概要] 本願において開示される発明のうち代表的なものの概要
を簡単に説明すれば、下記のとおりである。
[Summary of the Invention] A brief overview of typical inventions disclosed in this application is as follows.

半絶縁性基板上の第1の半導体層と第2の半導体層との
界面にヘテロ接合部を形成する半導体装置において、ま
ず、第1の半導体層を形成した後に素子分離領域に対し
て選択的にイオン打込みを行う。アニールの後全面に第
2の半導体層を形成している。第1の半導体層の不純物
濃度を変えることによって、ヘテロ接合部の空乏層幅を
調整できる。このため、ポテンシャル溝の幅を狭くして
キャリヤ蓄積層の最低位レベルをフェルミレベルより高
くすることは容易でありその制御性も長幼である。この
ように、メサエッチングを用いることなく素子分離を行
えるので、信頼度や配線歩留まりの向上、さらに制御性
の良い半導体装置の製造方法を達成するものである。
In a semiconductor device in which a heterojunction is formed at the interface between a first semiconductor layer and a second semiconductor layer on a semi-insulating substrate, first, after forming the first semiconductor layer, a selective layer is applied to the element isolation region. Perform ion implantation. After annealing, a second semiconductor layer is formed on the entire surface. By changing the impurity concentration of the first semiconductor layer, the width of the depletion layer of the heterojunction can be adjusted. Therefore, it is easy to make the lowest level of the carrier accumulation layer higher than the Fermi level by narrowing the width of the potential groove, and its controllability is also long. In this way, since element isolation can be performed without using mesa etching, reliability and wiring yield can be improved, and a method of manufacturing a semiconductor device with good controllability can be achieved.

[実施例] 以下本発明の半導体装置の製造方法の一実施例を第1図
から第5図を参照して説明する。第1図から第3図は製
造プロセスを示す断面図であり。
[Example] An example of the method for manufacturing a semiconductor device of the present invention will be described below with reference to FIGS. 1 to 5. 1 to 3 are cross-sectional views showing the manufacturing process.

第4図および第5図はヘテロ接合部のエネルギバンドを
示す図である。
FIGS. 4 and 5 are diagrams showing energy bands of a heterojunction.

第1図において、半絶縁性基板1上に液相エピタキシャ
ル法あるいは分子線エピタキシャル法に    □よっ
てアンドープG a A s層2(第1の半導体層)を
成長させる。半絶縁性基板1に−はG a A sを用
いている。
In FIG. 1, an undoped GaAs layer 2 (first semiconductor layer) is grown on a semi-insulating substrate 1 by liquid phase epitaxial method or molecular beam epitaxial method. GaAs is used for the semi-insulating substrate 1.

つぎに、第2図において素子領域を形成する部分のアン
ドープGaAs層2にホトレジスト膜3を堆積し、この
ホトレジスト膜3をマスクとしてベリリウムのイオン打
込みを行う。ベリリウムが打込まれた分離領域のアンド
ープGaAsW2はP型G a A s層4となる。ホ
トレジスト膜3をマスクとしたが、SiC2膜をマスク
として利用できることは言うまでもない。この後、ホト
レジスト膜3を除去して、全面にSiO□膜を形成し所
要のキャップアニールを施す。
Next, in FIG. 2, a photoresist film 3 is deposited on the undoped GaAs layer 2 in a portion where the element region is to be formed, and beryllium ions are implanted using the photoresist film 3 as a mask. The undoped GaAsW2 in the isolation region implanted with beryllium becomes a P-type GaAs layer 4. Although the photoresist film 3 was used as a mask, it goes without saying that the SiC2 film can also be used as a mask. Thereafter, the photoresist film 3 is removed, a SiO□ film is formed on the entire surface, and required cap annealing is performed.

アニールの後に5i02膜を除去する。全面に分子線エ
ピタキシャル法によるN型AQGaAs層5(第2の半
導体層)を形成し、さらにその上層にN型G a A 
s層6を連続成長させる(第3図)。
After annealing, the 5i02 film is removed. An N-type AQGaAs layer 5 (second semiconductor layer) is formed on the entire surface by molecular beam epitaxial method, and an N-type GaAs layer 5 (second semiconductor layer) is formed on the upper layer.
The s-layer 6 is grown continuously (FIG. 3).

このあと、ソース・ドレインのオーミック金属。After this, the ohmic metal of the source and drain.

たとえば、AuGe/Ni/Auの合金を蒸着後エツチ
ングしてソース・ドレイン電極7,8を形成する。また
、ゲート電極9はたとえばタングステンシリサイドある
いはチタンタングステンによって形成されている。
For example, the source/drain electrodes 7 and 8 are formed by depositing an AuGe/Ni/Au alloy and then etching it. Further, the gate electrode 9 is formed of, for example, tungsten silicide or titanium tungsten.

このようなHEMTI子において、ヘテロ接合部のエネ
ルギバンド図は第4図および第5図のようにあられすこ
とができる。すなわち、P型GaAs層4とN型AQG
aAs層5との界面に形成される分離領域のエネルギバ
ンド図は第4図の符号Aで示すように空乏層の伸びが小
さい、またアンドープGaAsJ’ii2とN型AQG
aAs層5との界面に形成される素子領域のエネルギバ
ンド図は第5図の符号Bで示すように空乏層が広がって
いる。・図において一点鎖線はフェルミレベルを示し9
点線はポテンシャル溝内に存在し得る最低位レベルを示
す。
In such a HEMTI device, the energy band diagram of the heterojunction can appear as shown in FIGS. 4 and 5. That is, the P-type GaAs layer 4 and the N-type AQG
The energy band diagram of the isolation region formed at the interface with the aAs layer 5 shows that the extension of the depletion layer is small, as shown by the symbol A in FIG.
In the energy band diagram of the element region formed at the interface with the aAs layer 5, the depletion layer is widened as indicated by the symbol B in FIG.・In the figure, the dashed line indicates the Fermi level9
The dotted line indicates the lowest level that can exist within the potential groove.

第4図かられかるように、P型AQGaAs層4とN型
AQGaAs層5とが形成する分離領域のヘテロ接合近
傍ではバンドの曲がりが急になりポテンシャル溝の幅が
狭くなる。そのため1点線で示す最低位レベルが上昇す
る。P型GaAsJfj4の濃度を十分濃くすることに
より、最低位レベルをフェルミレベルより高エネルギレ
ベルにすることば極めて容易である。このため、分離領
域には2次元電子ガスが存在しなくなり高抵抗となり、
素子間分離を達成するものである。
As can be seen from FIG. 4, near the heterojunction of the isolation region formed by the P-type AQGaAs layer 4 and the N-type AQGaAs layer 5, the band bends sharply and the width of the potential groove becomes narrow. Therefore, the lowest level indicated by the one-dot line increases. By making the concentration of P-type GaAsJfj4 sufficiently high, it is extremely easy to make the lowest level a higher energy level than the Fermi level. Therefore, there is no two-dimensional electron gas in the separation region, resulting in high resistance.
This achieves isolation between elements.

また、素子領域のアンドープG a A s層2とN型
AQGaAs層5とが形成するヘテロ接合近傍では、第
5図かられかるように最低位レベルがフェルミレベルよ
り低いレベルに存在することができる。
Furthermore, in the vicinity of the heterojunction formed by the undoped GaAs layer 2 and the N-type AQGaAs layer 5 in the element region, the lowest level can exist at a level lower than the Fermi level, as shown in FIG. .

このため、キャリヤである電子の蓄積層が形成され導電
に寄与する。
Therefore, an accumulation layer of electrons, which are carriers, is formed and contributes to electrical conduction.

[効果] 以上説明したように、半絶縁性基板上に第1の半導体層
を形成し、分離領域に対応する部分にはイオン打込みを
行っている。このため、第1の半導体層の上に形成され
る第2の半導体層と第1の半導体層とのヘテロ接合部の
ポテンシャル溝の幅が変化し、最低位レベルをフェルミ
レベル以上にすることができる。したがって、従来のよ
うなメサエッチングによる素子分離を必要とせず、信頼
性、配線歩留まりおよび集積度の向上という効果が得ら
れる。
[Effects] As explained above, the first semiconductor layer is formed on the semi-insulating substrate, and ions are implanted into the portion corresponding to the isolation region. Therefore, the width of the potential groove at the heterojunction between the second semiconductor layer and the first semiconductor layer formed on the first semiconductor layer changes, and the lowest level cannot be made higher than the Fermi level. can. Therefore, element isolation by mesa etching as in the conventional method is not required, and the effects of improved reliability, wiring yield, and degree of integration can be obtained.

以上本発明者によってなされた発明を実施例にもとづき
具体的に説明したが、本発明は上記実施例に限定される
ものではなく、その要旨を逸脱しない範囲で種々変更可
能であることはいうまでもない。たとえば、第1の半導
体層と第2の半導体層とを、各々、アンドープとN型の
組合わせとしたが、N−型とN4″型、アンドープとP
型、P−型とP型の組合わせとすることも可能である。
Although the invention made by the present inventor has been specifically explained above based on Examples, it goes without saying that the present invention is not limited to the above Examples and can be modified in various ways without departing from the gist thereof. Nor. For example, the first semiconductor layer and the second semiconductor layer are each a combination of undoped and N type, but the combination of N- type and N4'' type, undoped and P
A combination of P-type and P-type is also possible.

[利用分野] 本発明は、ヘテロ接合を有するFET、特にGaAsM
 E S F E Tを用いた集積回路に適用できる。
[Field of Application] The present invention is directed to FETs having heterojunctions, particularly GaAsM
It can be applied to integrated circuits using ESFET.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図から第3図は本発明の半導体装置の製造方法の一
実施例を示すプロセス断面図。 第4図および第5図は、各々1分l!1liV4域と素
子領域のヘテロ接合部近傍のエネルギバンドを説明する
ためのバンド図である。 1・・・半絶縁性基板(GaAs)、2・・・第1の半
導体層(アンドープGaAs層)、4−−−P型G a
 A s層、5・・・第2の半導体層(N型AQGaA
s層)。 6・・・N型AQGaAs層、7・・・ソース電極、8
・・・ドレイン電極、9・・・ゲート電極、第  3 
 図
1 to 3 are process cross-sectional views showing one embodiment of the method for manufacturing a semiconductor device of the present invention. Figures 4 and 5 are each for 1 minute! FIG. 3 is a band diagram for explaining an energy band near a heterojunction between a 1liV4 region and an element region. DESCRIPTION OF SYMBOLS 1... Semi-insulating substrate (GaAs), 2... First semiconductor layer (undoped GaAs layer), 4---P type Ga
As layer, 5... second semiconductor layer (N-type AQGaA
s layer). 6... N-type AQGaAs layer, 7... Source electrode, 8
...Drain electrode, 9...Gate electrode, third
figure

Claims (1)

【特許請求の範囲】[Claims] 1、半絶縁性基板上に第1の半導体層を形成し、つぎに
素子領域以外の分離領域に対応する前記第1の半導体層
に選択的にイオン打込みを行った後アニールし、その後
前記第1の半導体層とヘテロ接合を形成する第2の半導
体層を全面に形成し、もって、素子領域以外の分離領域
において、前記第1の半導体層と第2の半導体層のヘテ
ロ接合のキャリア蓄積層の形成を阻止することを特徴と
する半導体装置の製造方法。
1. A first semiconductor layer is formed on a semi-insulating substrate, and then ions are selectively implanted into the first semiconductor layer corresponding to the isolation region other than the element region, followed by annealing. A second semiconductor layer forming a heterojunction with the first semiconductor layer is formed on the entire surface, so that a carrier accumulation layer of the heterojunction between the first semiconductor layer and the second semiconductor layer is formed in the isolation region other than the element region. 1. A method for manufacturing a semiconductor device, characterized by preventing the formation of.
JP16495384A 1984-08-08 1984-08-08 Manufacture of semiconductor device Pending JPS6143443A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16495384A JPS6143443A (en) 1984-08-08 1984-08-08 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16495384A JPS6143443A (en) 1984-08-08 1984-08-08 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS6143443A true JPS6143443A (en) 1986-03-03

Family

ID=15802998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16495384A Pending JPS6143443A (en) 1984-08-08 1984-08-08 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS6143443A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63167127U (en) * 1987-04-22 1988-10-31
WO2011040107A1 (en) 2009-09-29 2011-04-07 Ykk株式会社 Button and upper die for attaching button

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63167127U (en) * 1987-04-22 1988-10-31
JPH042979Y2 (en) * 1987-04-22 1992-01-31
WO2011040107A1 (en) 2009-09-29 2011-04-07 Ykk株式会社 Button and upper die for attaching button
US8850666B2 (en) 2009-09-29 2014-10-07 Ykk Corporation Button
US9414647B2 (en) 2009-09-29 2016-08-16 Ykk Corporation Upper die for button attachment

Similar Documents

Publication Publication Date Title
US4711858A (en) Method of fabricating a self-aligned metal-semiconductor FET having an insulator spacer
EP0725432B1 (en) Refractory gate heterostructure field effect transistor and method
KR920003799B1 (en) Semiconductor device
JPH0324782B2 (en)
EP0130774B1 (en) Process for fabricating bipolar transistor
KR100548047B1 (en) Field Effect Transistor
JPS6143443A (en) Manufacture of semiconductor device
JPH02111073A (en) Insulated gate fet and integrated circuit device thereof
JPH0212927A (en) Manufacture of mesfet
JPH0831846A (en) Manufacture of high breakdown voltage fet
JPH09172163A (en) Manufacture of semiconductor device
GB2168847A (en) Semiconductor devices
JPH03280552A (en) Manufacture of field effect transistor
JPH05275464A (en) Manufacture of compound semiconductor integrated circuit device
JP2728427B2 (en) Field effect transistor and its manufacturing method
US5177026A (en) Method for producing a compound semiconductor MIS FET
JPH0810701B2 (en) Method for manufacturing junction field effect transistor
JPH0429225B2 (en)
KR100554967B1 (en) pseudomorphic high electron mobility transistor for suppressing negative differential resistance and method for producing the same
JPH06232168A (en) Field effect transistor and its manufacture
JPH07106525A (en) Field-effect transistor and compound semiconductor integrated circuit
JPH02105425A (en) Manufacture of semiconductor device
JPH05217937A (en) Manufacture of semiconductor device
JPH04122033A (en) Manufacture of field effect transistor
JPH03108325A (en) Manufacture of ohmic electrode