JPH03280552A - Manufacture of field effect transistor - Google Patents

Manufacture of field effect transistor

Info

Publication number
JPH03280552A
JPH03280552A JP8253290A JP8253290A JPH03280552A JP H03280552 A JPH03280552 A JP H03280552A JP 8253290 A JP8253290 A JP 8253290A JP 8253290 A JP8253290 A JP 8253290A JP H03280552 A JPH03280552 A JP H03280552A
Authority
JP
Japan
Prior art keywords
resist
conductivity type
film
ions
implanted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8253290A
Other languages
Japanese (ja)
Inventor
Shigeharu Matsushita
重治 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP8253290A priority Critical patent/JPH03280552A/en
Publication of JPH03280552A publication Critical patent/JPH03280552A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the inverse breakdown voltage of a GaAs MES FET, and prevent the decrease of FET characteristics of HEMT, by ion-implanting a dopant of a second conductivity type in the vicinity of the surface of a semiconductor layer of a first conductivity type, activating implanted ions by heat treatment, and decreasing the concentration of first conductivity type carrier. CONSTITUTION:By using resist 2 as a mask, Si<+> ions are implanted in a semiinsulative GaAs substrate 1, thereby forming a thin ion-implanted layer 3 of high concentration. After the resist 2 is eliminated and an SiN film 4 is formed on the whole wafer surface, resist 5 is formed. After an SiO2 film 7 is deposited on the whole wafer surface, the resist 5 is eliminated, thereby forming a gate aperture 7' at the position corresponding with the part position 5' of the SiO2 film 7. The SiO2 film 7 used as a mask, and the SiN film 4 is etched by using RIE, thereby forming a gate aperture 4' at the position corresponding with the part position 5' of the SiN film 4. By using the SiO2 film 7 as a mask Zn<+> ions are implanted, thereby decreasing the carrier concentration in the vicinity of the surface of a channel region 8. After that, the channel region 8 and regions 6a, 6b are activated by short time heat treatment.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明jシミ界効果トランジスタの製造方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION (a) Industrial Application Field The present invention relates to a method for manufacturing a spot field effect transistor.

(ロ)従来の技術 GaAsをはじめとする化合物半導体デバイスは高速動
作、低消費電力の点などにおいて優れた特°性を有する
ものが多く、超高速、超高川波集積回路への研究が様々
な形で行なわれている。
(b) Conventional technology Many compound semiconductor devices, including GaAs, have excellent characteristics such as high-speed operation and low power consumption, and a variety of research into ultra-high speed and ultra-high wave integrated circuits is underway. It is done in the form of

GaAs集積回路の場合、その高性能化のためには該集
積回路を構成するMESFETの高性能が不可欠となる
。GaAs  MESFETを高性能化する有力な手段
のひとつに動作層の高濃度薄層化があり、これにより相
互コンダクタンス(g、)の向−Eや短チャンネル効果
の抑制が期待できる。
In the case of a GaAs integrated circuit, in order to improve its performance, it is essential that the MESFETs that constitute the integrated circuit have high performance. One of the effective means of improving the performance of GaAs MESFETs is to make the active layer thinner and highly doped, and this can be expected to suppress the transconductance (g) in the direction of -E and the short channel effect.

また、動作層の形成はコスト、制御性及び均一性などの
点を考慮してイオン注入法が広く用いられており、近年
、低エネルギー高ドーズ注入により動作層の高濃度化を
実現し、g、=630mS/′蕪という極めて高性能な
M E S F E Tが得られたことが報告されてい
る<K、0noderaet  al、IEEE Tr
an、E]ectronDevices  Lette
rs  vol、9No、8 1988  P、417
−P、418参照)。
In addition, ion implantation is widely used to form the active layer in consideration of cost, controllability, and uniformity.In recent years, high concentration of the active layer has been realized by low-energy, high-dose implantation, It has been reported that an extremely high performance M E S F E T of , = 630 mS/' turn was obtained.
an, E]ectronDevices Lette
rs vol, 9 No. 8 1988 P, 417
-P, 418).

また、近年、MBE法等を駆使して作製される高電子移
動度トランジスタ(HEMT)はソース電極及びドレイ
ン電極とのコンタクト抵抗、あるいはソース・ゲート間
抵抗を低減するために、該HE M Tの最上部に高濃
度n型GaAsキャップ層が設けられる。しかしながら
、ゲート電極を設ける部位の前記キャップ畳に関νては
ゲート耐圧を考慮すると、直接ゲート電極を前記キャッ
プ層上に設けることはできないので、リセスエッチング
を行ない、良好な耐圧特性が得られるGaAsキャップ
層下のAZGaAs層上にゲート電極を設けている。
In addition, in recent years, high electron mobility transistors (HEMTs) manufactured using the MBE method, etc., have been developed to reduce the contact resistance between the source electrode and the drain electrode, or the resistance between the source and gate. A heavily doped n-type GaAs cap layer is provided on top. However, regarding the cap layer where the gate electrode is provided, considering the gate breakdown voltage, it is not possible to directly provide the gate electrode on the cap layer, so recess etching is performed to obtain good breakdown voltage characteristics. A gate electrode is provided on the AZGaAs layer under the cap layer.

(ハ)課題が解決しようとする課題 上述の低エネルギー高ドーズ注入により形成される高濃
度薄層化された動作層のキャリアプロファイルはガラス
分布に近い形となる。従って、動作層表面近傍のキャリ
ア濃度が大きくなり、逆耐圧電圧が低いという問題があ
る。
(c) Problems to be Solved The carrier profile of the highly concentrated thin active layer formed by the above-mentioned low-energy, high-dose implantation has a shape close to that of glass distribution. Therefore, there is a problem that the carrier concentration near the surface of the active layer increases and the reverse breakdown voltage becomes low.

また、上述のリセスエッチングを必要とするHEMTで
は、リセスエッチングで発生するA1GaAs層表面の
面内バラツキにより、該HEMTのFET特性が低下す
るという間組がある。
Furthermore, in HEMTs that require the above-mentioned recess etching, there is a problem that the FET characteristics of the HEMT are degraded due to in-plane variations in the surface of the A1GaAs layer that occur during the recess etching.

(ニ)課題を解決するための手段 本発明は、第1導電型の半導体層の表面近傍に第2導電
型のドーパントをイオン注入する工程と、熱処理して注
入イオンを活性化させ前記表面近傍の第1導電型キャリ
ア濃度を減少させる工程と、前記半導体層上にゲート電
極を形成する工程と、を含むことを特徴とする電界効果
トランジスタの製造方法である。
(d) Means for Solving the Problems The present invention comprises a step of ion-implanting a second conductivity type dopant into the vicinity of the surface of a first conductivity type semiconductor layer, and a heat treatment to activate the implanted ions to the vicinity of the surface. A method for manufacturing a field effect transistor, comprising the steps of: reducing a first conductivity type carrier concentration of the semiconductor layer; and forming a gate electrode on the semiconductor layer.

(ホ)作 用 n型のドーパン)t゛sj)をイオン注入することによ
り、第1導電型の半導体層を形成し、この半導体層の表
面近傍にp型のドーバン) (ZnJをイオン注入した
場合のキャリアプロファイルを第2図に示す。尚、この
キャリアプロファイルはLSS曲線として仮定したとき
のものであり、Si、Znは100%活性化するととも
にZnキャ+77jJ全で81キャリアを補償している
ものとした。また、Slの注入条件は加速エネルギー2
3keV、ドーズ量8X I Q ”am−’、Znの
注入条件は加速エネルギー15 k eV、ドーズ量9
×IQ”cm−2とした。
(e) Function A semiconductor layer of the first conductivity type is formed by ion-implanting n-type dopane) (ZnJ), and p-type dopane) (ZnJ) is ion-implanted near the surface of this semiconductor layer. The carrier profile in this case is shown in Figure 2.This carrier profile is assumed to be an LSS curve, and Si and Zn are 100% activated, and Zn +77jJ compensates for a total of 81 carriers. In addition, the conditions for implanting Sl are acceleration energy 2
3 keV, dose 8X IQ "am-", Zn implantation conditions are acceleration energy 15 keV, dose 9
×IQ”cm−2.

図からも理解できるように、p型のドーパントをイオン
注入することにより、表面近傍のn型のキャリア濃度が
低下する。
As can be understood from the figure, by ion-implanting a p-type dopant, the n-type carrier concentration near the surface is reduced.

第1導電型をp型とし、第2導電型をn型とした場合も
上述と同様に、n型のドーパントをイオン注入すること
により、表面近傍のp型のキャリア濃度が低下する。
Even when the first conductivity type is p type and the second conductivity type is n type, the p type carrier concentration near the surface is reduced by ion-implanting the n type dopant, as described above.

(へ)実施例 本発明方法をG a A s M E S F E T
に適用した場合について第1図(a)乃至(h)を用い
て説明する。
(f) Examples of the method of the present invention
The case where the present invention is applied will be explained using FIGS. 1(a) to (h).

まず、半絶縁性GaAs基板(1)にレジスト(2)を
マスクとして、Sl′″イオンを25keV、8 X 
I Q ”crn−”で注入しく注入A)、 高濃度薄
層化されたイオンま大要(3)を形成する(第1図(a
))、。
First, using a resist (2) as a mask on a semi-insulating GaAs substrate (1), Sl''' ions were heated at 25 keV and 8
IQ "crn-" is implanted (A) to form a thin layer of highly concentrated ions (3) (see Figure 1 (a)).
)),.

レジスト(2)を除去しECRプラズマCV D法でウ
ェハ全面にSiN膜(4)を300人形成した後、レジ
スト(5)を形成する。この時、ゲート電極形成予定部
位(5゛)の幅は0.6μmとした。
After removing the resist (2) and forming 300 SiN films (4) on the entire surface of the wafer using the ECR plasma CVD method, a resist (5) is formed. At this time, the width of the portion (5°) where the gate electrode was to be formed was 0.6 μm.

このレジスト(5)をマスクとして、Si3イオンを8
0keV、3 X 10 ”cm−’で注入しく注入B
)、ソース領域(6b)及びドレイン領域(6b)を形
成する(同図(b))。この時、(8)の部分がチャン
ネル領域(動作層)となる。
Using this resist (5) as a mask, Si3 ions were
Implant B at 0 keV, 3 x 10 “cm”
), a source region (6b) and a drain region (6b) are formed (FIG. 6(b)). At this time, the portion (8) becomes the channel region (active layer).

ECRプラズマC〜ID法でウェハ全面にSiO2膜(
7)を300人堆積した後、レジスト(5)を除去する
ことによりSin、膜(7)の前記部位(5゛)に対応
する位1にゲート開孔部(7°)を形成する。5iO=
ll葵(7)をマスクとしてSiN膜(4)をRIEを
用いてエツチングし、SiN膜(4)の前記部位(5゛
)に対応する位置にゲート開化部(4°)を形成する。
SiO2 film (
After depositing 300 layers of 7), the resist (5) is removed to form a gate opening (7°) at a position 1 corresponding to the portion (5°) of the Sin film (7). 5iO=
Using RIE as a mask, the SiN film (4) is etched to form a gate opening (4°) at a position corresponding to the portion (5°) of the SiN film (4).

そして、Sin、膜(7)をマスクとして、Zn−イオ
ンを15 K e V、9X10Cm−’でイオン注入
し、チャンネル領域(8)表面近傍のキャリア濃度を低
くするわ しかる後、880℃、5秒のハロゲンランプ
による短時間アニル(熱処理)でチャンネル領域(8)
及び領域(6a)(6b)を活性化する(同図(d))
Then, using the Sin film (7) as a mask, Zn- ions were implanted at 15 K e V and 9X10 Cm-' to lower the carrier concentration near the surface of the channel region (8). Channel area (8) with a short annealing (heat treatment) by a halogen lamp for seconds
and activate regions (6a) and (6b) ((d) in the same figure)
.

ウェハ全面にWSi膜(9)をスハノタまで蒸着し、該
WS1膜(9)上にレジスト(lO)を形成する(同図
(d))。
A WSi film (9) is deposited on the entire surface of the wafer up to the depth, and a resist (1O) is formed on the WS1 film (9) (FIG. 4(d)).

ウェハ全面にAu膜(11)を蒸着し、レジスト(10
)を除去し、その後、Au膜(11)をマスクとしてW
Si膜(9)をエツチングして基板表面を露出させる(
同図(f))。
An Au film (11) is deposited on the entire surface of the wafer, and a resist (10) is deposited on the entire surface of the wafer.
) is removed, and then W is removed using the Au film (11) as a mask.
Etch the Si film (9) to expose the substrate surface (
Figure (f)).

レジスト(12)を形成し、このレジスト(12)とA
u膜(11)をマスクとしてSiN膜(4)及び5i0
2膜(7)をエツチングする(同図(g))。
A resist (12) is formed, and this resist (12) and A
SiN film (4) and 5i0 using u film (11) as a mask
2 film (7) is etched (FIG. 2(g)).

全面にA u 、/ T i 、/ P d膜(13)
を蒸着し、レジスト(12)を除去することでゲート電
極(14)が完成し、さらに、水素中で450℃、2分
30秒のオーミックアロイを施すことで、ソース電極(
15)及びドレイン電極(16)が完成する(同図(h
))。
A u , / T i , / P d film on the entire surface (13)
The gate electrode (14) is completed by vapor-depositing and removing the resist (12), and the source electrode (
15) and drain electrode (16) are completed (see figure (h)
)).

上述の如く完成したGaAsMESFETのソース・ド
レイン電極間のシート抵抗Rsは、Zn”イオンを注入
しない以外は上述と同一の製造工程で作製したGaAs
MESFET(従来装置)のそれと同等である。
The sheet resistance Rs between the source and drain electrodes of the GaAs MESFET completed as described above is the same as that of the GaAs MESFET manufactured using the same manufacturing process as described above except that Zn'' ions are not implanted.
It is equivalent to that of MESFET (conventional device).

また、上述の如く完成したG a A s M E S
 F ETの相互コンダクタンスの最大値gゎ□、は4
00m5/mm、逆耐圧電圧は8.8vとなり、−方、
従来装置のg*maxは410m5/mm、逆耐圧電圧
は3.8Vとなる。つまり、Zn゛イオンを注入するこ
とによりRs及びg++tsatを変化させることなく
逆耐圧電圧を大幅に向上させることができる。
In addition, as mentioned above, the completed G a As M E S
The maximum value of mutual conductance gゎ□ of FET is 4
00m5/mm, reverse withstand voltage is 8.8v, - direction,
The g*max of the conventional device is 410 m5/mm, and the reverse breakdown voltage is 3.8V. In other words, by implanting Zn ions, the reverse breakdown voltage can be significantly improved without changing Rs and g++tsat.

尚、上述の実施例では、A注入、B注大の後にZn”イ
オン注入を行なったが、A注入の前、A注入とB注入の
間に行なってもよい。
In the above embodiment, Zn'' ion implantation was performed after A implantation and B implantation, but it may be performed before A implantation or between A implantation and B implantation.

次に、本発明方法はをHEMTに適用した場合について
第2図を用いて説明する。
Next, the case where the method of the present invention is applied to HEMT will be explained using FIG. 2.

まず、半絶縁性GaAs基板(21)上に、分子線エピ
タキシ(MBE)技術または、有機金属エピタキシ(M
OC〜’D)技術により、ノンドープGaAs層(22
)を1μmの厚さまで成長させ、該ノンドープGaAs
層(22)上に、ノンドープA l 、G a ニー、
As層(23)を0〜60人の厚さまで成長させ、次に
該ノンドープA l 、G a 1−、A s層(23
)上にSiドープA l 、G a 、、A s層(S
i濃度:0.5−2 、 OX 10 ”c m−”)
 (24ンを250−450人の厚さまで成長させ、さ
らに該SiドープAIl。
First, a molecular beam epitaxy (MBE) technique or an organometallic epitaxy (M
Non-doped GaAs layer (22
) was grown to a thickness of 1 μm, and the non-doped GaAs
On the layer (22), non-doped A l , G a knee,
The As layer (23) is grown to a thickness of 0 to 60 nm, and then the non-doped A l , Ga 1-, As layer (23
) on the Si-doped A l , Ga , , As layers (S
i concentration: 0.5-2, OX 10 "cm-")
(24 nm was grown to a thickness of 250-450 nm, and the Si-doped AIl.

G a 、、A S層(24)上にSiドープGaAs
層(高濃度n型GaAsキャップ層)(Sl濃度:2.
5 X 10 ”cm−、”)(25)を600人の厚
さまで成長させる。ここで、AlGaAs層の組成Xは
、略0.3である。その後、このようにして形成された
ヘテロエピタキシャル基板上にAu・Ge、”Ni等か
らなるオーミック金属を蒸着し、リフトオフ法によりソ
ース電極形成部、及びドレイン電極形成部に該金属を残
し、合金化を行い、オーミック領域をSiドープGaA
s層(25)、S1ドープA ’ ++ G a + 
−* A 8層(24)、ノンドープA 12 、G 
a 、−、A s層(23)、及びノンドープGa、A
 s層(22)内に貫通させてソース電極(26)、ド
レイン電極(27)を形成する。
Ga,,Si-doped GaAs on the A S layer (24)
layer (high concentration n-type GaAs cap layer) (Sl concentration: 2.
Grow 5 x 10 "cm-,") (25) to a thickness of 600 cm. Here, the composition X of the AlGaAs layer is approximately 0.3. Thereafter, an ohmic metal made of Au, Ge, Ni, etc. is vapor-deposited on the heteroepitaxial substrate thus formed, and the metal is left in the source electrode formation part and the drain electrode formation part by a lift-off method, and alloyed. The ohmic region is made of Si-doped GaA.
s layer (25), S1 doped A' ++ G a +
-*A 8 layers (24), non-doped A 12 , G
a, -, As layer (23), and non-doped Ga, A
A source electrode (26) and a drain electrode (27) are formed by penetrating the s-layer (22).

前記ソース電極(26)とドレイン電極(27)間に開
化を有するレジストを形成し、このレジストをマスクと
してZn”イオンを25 K e V、2.8XIQ”
cm−”で注入し、S】ドープG a 、A s層(2
5)の表面近傍の濃度を低くする。しかるのち、7゜0
℃、5秒のハロゲンランプによる短時間アニールで注入
層を活性化する。そして、レジスト除去後、Siドープ
GaAs層(25)上tニゲート電極(28)を形成す
る。このゲート電極(28)はT i / P t/’
、Auをソース電極(26)とドレイン電極(27)の
間にリフトオフ法により、選択的に被着することにより
形成される。
A resist having an aperture is formed between the source electrode (26) and the drain electrode (27), and using this resist as a mask, Zn" ions are applied at 25 K e V and 2.8XIQ".
cm-” doped Ga, As layer (2
5) Lower the concentration near the surface. After that, 7゜0
The injection layer is activated by short-time annealing using a halogen lamp at 50°C for 5 seconds. After removing the resist, a t-gate electrode (28) is formed on the Si-doped GaAs layer (25). This gate electrode (28) is T i /P t/'
, Au is selectively deposited between the source electrode (26) and the drain electrode (27) by a lift-off method.

上述の如く完成したHEMTの逆耐圧電圧は5.2vと
なり、一方、Zn”イオンを注入しない以外は上述と同
一の製造工程で作製したHEMTの逆耐圧電圧は0,2
vとなる。つまり、SiドアGaAs層(25)のりセ
スエンチングを行なうことなく)IEMTを作製するこ
とができ、リセスエッチングによる面内バラツキは発生
しない。
The reverse breakdown voltage of the HEMT completed as described above is 5.2V, while the reverse breakdown voltage of the HEMT manufactured using the same manufacturing process as above except that Zn'' ions are not implanted is 0.2V.
It becomes v. In other words, the IEMT can be fabricated without performing recess etching of the Si door GaAs layer (25), and in-plane variations due to recess etching do not occur.

尚、上述の各実施例ではGaAs基析を用いたが、In
P基板等を用いてもよいし、注入イオンもSi゛イオン
、Zn“イオン以外のものを用いてもよい。さらに、p
型の動作層を用いる電界効果トランジスタの場合には、
n型のドーパントをイオン;主入すればよい。
In addition, although GaAs base was used in each of the above-mentioned examples, In
A P substrate or the like may be used, and implanted ions other than Si' ions and Zn' ions may be used.
In the case of a field effect transistor using an active layer of type
An n-type dopant may be mainly added as ions.

(ト)発明の効果 本発明は以上の説明から明らかな如く、第2導電型のド
ーパントをイオン注入することにより、表面近傍の第1
導電型キャリア濃度を低減することができるので、Ga
As〜fEsFETにおいては逆耐圧電圧が向上し、ま
た、HEMTにおいてはリセスエッチングに起因する面
内バラツキがなくなり、該HEMTのFET特性の低下
を防止することができる。
(g) Effects of the Invention As is clear from the above description, the present invention provides a method for ion-implanting a dopant of the second conductivity type to
Since the conductivity type carrier concentration can be reduced, Ga
The reverse withstand voltage is improved in the As-fEs FET, and in-plane variations due to recess etching are eliminated in the HEMT, making it possible to prevent the FET characteristics of the HEMT from deteriorating.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)乃至(h)は本発明方法を説明するための
工程説明図、第2図は注入プロファイルを示す図、第3
図はHE M Tの模式的断面図である。 (1)−=−半絶縁性GaAs基板、(2)(5)(1
0)(22)・・・レジスト、(3)・・・イオン注入
層、(4)・・・SiN膜、(7)・・・5iO=膜、
(8)・・・チャンネル領域、(9)−−−WS i 
M、 (11)=A u膜、(13)” A u /’
Ti/′Pd膜、(14)・・・ゲート電極、(15)
・・・ソース電極、(16)・・・ドレイン電極、(2
1)・・・半絶縁性GaAs基板、(25)・S iド
ープGaAs1、(2B)・・・ゲートを極。
Figures 1 (a) to (h) are process explanatory diagrams for explaining the method of the present invention, Figure 2 is a diagram showing the injection profile, and Figure 3 is a diagram showing the injection profile.
The figure is a schematic cross-sectional view of HEMT. (1) -=- semi-insulating GaAs substrate, (2) (5) (1
0) (22)...Resist, (3)...Ion implantation layer, (4)...SiN film, (7)...5iO=film,
(8)...Channel area, (9)---WS i
M, (11) = A u film, (13)” A u /'
Ti/′Pd film, (14)...gate electrode, (15)
... Source electrode, (16) ... Drain electrode, (2
1) Semi-insulating GaAs substrate, (25) Si-doped GaAs1, (2B) Gate as a pole.

Claims (1)

【特許請求の範囲】[Claims] 1、第1導電型の半導体層の表面近傍に第2導電型のド
ーパントをイオン注入する工程と、熱処理して注入イオ
ンを活性化させ前記表面近傍の第1導電型キャリア濃度
を減少させる工程と、前記半導体層上にゲート電極を形
成する工程と、を含むことを特徴とする電界効果トラン
ジスタの製造方法。
1. A step of ion-implanting a second conductivity type dopant near the surface of the first conductivity type semiconductor layer, and a step of activating the implanted ions by heat treatment to reduce the first conductivity type carrier concentration near the surface. A method for manufacturing a field effect transistor, comprising the steps of: forming a gate electrode on the semiconductor layer.
JP8253290A 1990-03-29 1990-03-29 Manufacture of field effect transistor Pending JPH03280552A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8253290A JPH03280552A (en) 1990-03-29 1990-03-29 Manufacture of field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8253290A JPH03280552A (en) 1990-03-29 1990-03-29 Manufacture of field effect transistor

Publications (1)

Publication Number Publication Date
JPH03280552A true JPH03280552A (en) 1991-12-11

Family

ID=13777117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8253290A Pending JPH03280552A (en) 1990-03-29 1990-03-29 Manufacture of field effect transistor

Country Status (1)

Country Link
JP (1) JPH03280552A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6278144B1 (en) 1998-02-12 2001-08-21 Nec Corporation Field-effect transistor and method for manufacturing the field effect transistor
US6916720B2 (en) 1999-11-10 2005-07-12 Hughes Electronics Corporation Thin film devices and method for fabricating thin film devices
JP2010098194A (en) * 2008-10-17 2010-04-30 Meijo Univ Phosphor, light-emitting element, light-emitting device, and method for producing phosphor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6278144B1 (en) 1998-02-12 2001-08-21 Nec Corporation Field-effect transistor and method for manufacturing the field effect transistor
US6916720B2 (en) 1999-11-10 2005-07-12 Hughes Electronics Corporation Thin film devices and method for fabricating thin film devices
JP2010098194A (en) * 2008-10-17 2010-04-30 Meijo Univ Phosphor, light-emitting element, light-emitting device, and method for producing phosphor

Similar Documents

Publication Publication Date Title
JPS61256675A (en) Manufacture of schottky gate field effect transistor
JPH0324782B2 (en)
JPH04260337A (en) Field effect transistor and its manufacture
JPS5932173A (en) Manufacture of field effect transistor
JPH03280552A (en) Manufacture of field effect transistor
JP4050128B2 (en) Heterojunction field effect transistor and manufacturing method thereof
JP3034546B2 (en) Method for manufacturing field effect transistor
JP3653652B2 (en) Semiconductor device
JPH0685286A (en) Field effect transistor and its manufacture
JPH02134828A (en) Manufacture of schottky barrier junction gate type field effect transistor
JPH04282841A (en) Manufacture of semiconductor device
JPS6143443A (en) Manufacture of semiconductor device
JP2616032B2 (en) Method for manufacturing field effect transistor
JPH0810701B2 (en) Method for manufacturing junction field effect transistor
JP3024172B2 (en) Semiconductor device and manufacturing method thereof
JP3210533B2 (en) Method for manufacturing field effect transistor
JPS62145779A (en) Field effect transistor
JPS6158274A (en) Manufacture of semiconductor device
JPS61276270A (en) Manufacture of mes fet
JP2000307100A (en) Field effect semiconductor device
JPH07153779A (en) Field effect transistor and manufacture thereof
JPH06232168A (en) Field effect transistor and its manufacture
JPS63226967A (en) Compound semiconductor junction type field-effect transistor and its manufacture
JPH01189960A (en) Manufacture of compound semiconductor device
JPS63283126A (en) Manufacture of semiconductor device