JPS6184869A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS6184869A
JPS6184869A JP59206220A JP20622084A JPS6184869A JP S6184869 A JPS6184869 A JP S6184869A JP 59206220 A JP59206220 A JP 59206220A JP 20622084 A JP20622084 A JP 20622084A JP S6184869 A JPS6184869 A JP S6184869A
Authority
JP
Japan
Prior art keywords
layer
type
semiconductor
buried
semiconductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59206220A
Other languages
Japanese (ja)
Other versions
JPH0793428B2 (en
Inventor
Toshiyuki Usagawa
利幸 宇佐川
Yasuhiro Shiraki
靖寛 白木
Yuichi Ono
小野 佑一
Susumu Takahashi
進 高橋
Tetsukazu Hashimoto
哲一 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59206220A priority Critical patent/JPH0793428B2/en
Priority to US06/783,086 priority patent/US4805005A/en
Publication of JPS6184869A publication Critical patent/JPS6184869A/en
Publication of JPH0793428B2 publication Critical patent/JPH0793428B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • H01L29/7787Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT with wide bandgap charge-carrier supplying layer, e.g. direct single heterostructure MODFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/8252Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using III-V technology
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/107Substrate region of field-effect devices
    • H01L29/1075Substrate region of field-effect devices of field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/812Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a Schottky gate
    • H01L29/8122Vertical transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To form excellent gate electrodes of which threshold voltage can be controlled by the external electrodes, by a method wherein the first semiconductor layer is doped n type, second one very weak p type or n type, and third one p type; then, the third, second, and first semiconductor layers are formed and immediately coated continuously with metals to be exposed to the air. CONSTITUTION:A p type GaAs layer 20 is formed by burial in a semi-insulation GaAs substrate 10 at the part immediately under the gate electrode of an element to serve as the E-FET in the future; successively, an undoped GaAs layer 11 is formed, and an n type AlxGa1-xAs layer is grown by growing undoped AlxGa1-xAs. At this time, the buried p-layer 20 is kept floating or is provided with a control electrode so as to impress voltage thereon from outside. In such a construction of E-FET, many FETs having the buried p-layer under the gate by connecting only the necessary part of the p type buried layer in the substrate 10 with a p type GaAs layer can be controlled in threshold value by impressing external potentials.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はヘテロ接合を用いた電界効果トランジスタの製
造方法に係り、特に閾値制御技術とゲート電極形成に好
適なトランジスタ製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method of manufacturing a field effect transistor using a heterojunction, and particularly to a method of manufacturing a transistor suitable for threshold control technology and gate electrode formation.

〔発明の背景〕[Background of the invention]

従来の選択ドープヘテロ接合型FETの断面構造図を第
1図に示す、こうした例はたとえば特開昭57−180
86号に示されている。基本構造は、半絶縁性GaAs
基板10上に、アンドープGaAs11を1um程度、
アンドープAQ、Ga1−.As(x = 0 、3 
)層12を60人、n型AQ、Ga、、、As(x−0
,3)層13を400人、n型G a A s層14を
200人程度、MBE(Molaeulas Beam
 Epitaxy)又はOM−VPE法(Organi
c 1Letal Vapour Phose Dep
ositton)で結晶成長後ゲート電極15、ソース
・ドレイン電極16.16’ を形成する。エンハンス
メント型FET (E−FET)とデプレション型FE
T(D−FET)の作り分けは、最上層部のn型G a
 A s層14をドライエツチングで選択的にエッチし
、AQ、Ga□−、As層にゲート金属15′を蒸着す
る方法がとられていた。
A cross-sectional structural diagram of a conventional selectively doped heterojunction FET is shown in FIG.
No. 86. The basic structure is semi-insulating GaAs
On the substrate 10, undoped GaAs 11 is deposited to a thickness of about 1 um.
Undoped AQ, Ga1-. As(x = 0, 3
) layer 12 with 60 people, n-type AQ, Ga, , As (x-0
, 3) layer 13 by 400 people, n-type GaAs layer 14 by about 200 people, MBE (Molaeulas Beam)
Epitaxy) or OM-VPE method (Organi
c 1Letal Vapor Pose Dep
After crystal growth, a gate electrode 15 and source/drain electrodes 16 and 16' are formed. Enhancement type FET (E-FET) and depletion type FE
The T (D-FET) is made with n-type Ga in the top layer.
A method has been used in which the As layer 14 is selectively etched by dry etching and the gate metal 15' is deposited on the AQ, Ga□-, and As layers.

ところが、この様なE/D  FETの作成法は、ドラ
イ損傷に伴うAID、GaL−、As層の劣化が生じ、
良好なゲート電極形成ができないという問題が生じてい
た。
However, this method of manufacturing E/D FETs causes deterioration of the AID, GaL-, and As layers due to dry damage.
A problem has arisen in that a good gate electrode cannot be formed.

又、GaAs+ AuwGa□−、Asは表面が非常に
活性で、不純物、酸化等で大気にさらすと直ちに汚染さ
れゲート電極形成の不良発生の原因となっていた。
In addition, GaAs+AuwGa□- and As have very active surfaces and are immediately contaminated with impurities, oxidation, etc. when exposed to the atmosphere, causing defects in gate electrode formation.

一方このFETの閾値電圧V t hは、アンドープG
 a A s層より生じる項を無視すると、とあられさ
れる、(但し、E−FET)φ1.はゲート電極部のシ
ョットキーバリア高さ。
On the other hand, the threshold voltage V th of this FET is the undoped G
If we ignore the term generated from the a A s layer, we get (however, E-FET) φ1. is the Schottky barrier height at the gate electrode.

dE、はヘテロ接合部分の伝導帯のエネルギー不連続量
、q:単位電荷、t:誘電率、N、ニドナート−ピング
濃度、d:n型A Q G a A s層の膜厚。
dE is the amount of energy discontinuity in the conduction band of the heterojunction, q: unit charge, t: dielectric constant, N: concentration of Ni donor toping, d: thickness of n-type AQGaAs layer.

ところで、このFETは集積回路(IC)に用いる場合
E−FETの閾値制御が最大の問題となる。MBE、又
はOM−VPE法を適用する場合、ロット間の膜厚のバ
ラツキが生じ、集積回路歩留りが著しく低下していた。
By the way, when this FET is used in an integrated circuit (IC), threshold control of the E-FET becomes the biggest problem. When applying the MBE or OM-VPE method, variations in film thickness occur between lots, resulting in a significant reduction in integrated circuit yield.

即ちICに適用する場合式(1)かられかる様に厚みd
は面内で±5人の制御性が必要となる。
In other words, when applied to an IC, the thickness d is calculated from equation (1).
requires controllability of ±5 people within the plane.

以上まとめるとこのFETの最大の問題点は、(1)結
晶成長時点でvfkの値が決ってしまっていること。
To summarize the above, the biggest problems with this FET are (1) the value of vfk is determined at the time of crystal growth;

(2)結晶成長技術気にさらした後ゲート電極を形成す
るため、ゲート電極不良を起こしやすいこと の2点であると言える。
(2) Since the gate electrode is formed after exposure to crystal growth techniques, gate electrode defects are likely to occur.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、閾値電圧V T hを外部電極により
制御でき、良好なゲート電極形成ができる選択ドープヘ
テロ接合型FETの製造方法を提供することにある。
An object of the present invention is to provide a method for manufacturing a selectively doped heterojunction FET in which the threshold voltage V Th can be controlled by an external electrode and a gate electrode can be formed favorably.

〔発明の概要〕[Summary of the invention]

結晶成長後間値電圧V y bを外部から調整できる構
部にしておくと、結晶成長技術におよぼしている強い制
限、即ちロット間で膜厚を1%の精度で制御する必要性
をなくすことができる。MBE法○M−VPE法は各々
の結晶成長の原理からつ工−ハ面内の均一性は極めて優
れている。
Having a structure that allows the voltage V y b to be adjusted externally after crystal growth eliminates the strong limitation on crystal growth technology, that is, the need to control the film thickness with an accuracy of 1% from lot to lot. I can do it. MBE method The M-VPE method has extremely excellent in-plane uniformity due to the principle of crystal growth.

一方、ゲート電極形成は、結晶成長時に、 MBE法で
はGa、As、AQを飛ばしているGaAs。
On the other hand, the gate electrode is formed using GaAs, in which Ga, As, and AQ are removed during crystal growth using the MBE method.

AQ、Ga、−mAs成長室とは別に、超高真空内でウ
ェーハをトランスファできる別の超高真空室を設けてお
きそこで、ゲート電極金属、たとえばTi、Mo、AQ
、WS i、等を10−1otorr程度の超高真空内
で蒸着させる。
Apart from the AQ, Ga, -mAs growth chamber, another ultra-high vacuum chamber is provided in which the wafer can be transferred in an ultra-high vacuum, and gate electrode metals such as Ti, Mo, AQ, etc.
, WS i, etc. are deposited in an ultra-high vacuum of about 10 −1 torr.

一方、OM−VPE法では、結晶成長後金属カルボニル
鉗体、即ちW(Go)6やMo(Go)、などや、これ
らの誘導体等の有機金属の熱分解法を用いて大気にさら
すことなくゲート1!極金属をウェーハ全面に成長させ
ることができる。
On the other hand, in the OM-VPE method, after crystal growth, metal carbonyl forceps, such as W(Go)6, Mo(Go), etc., and organic metals such as their derivatives are thermally decomposed without being exposed to the atmosphere. Gate 1! Extreme metals can be grown all over the wafer.

ところで、大気にさらすことなくゲート1!極を形成す
る上記の方法で間通どなるのはE −F E TとD−
FETをいかに作り分けるかということである。
By the way, Gate 1 without exposing it to the atmosphere! In the above method of forming poles, E -F E T and D-
The problem is how to make different FETs.

本発明の特徴は、結晶成長時にE−FETとD−FET
を作り分けることができ、かつ大気にさらすことなくゲ
ート電極金属を形成する半導体装置の制御方法を提供す
ることにある。
The feature of the present invention is that E-FET and D-FET are
An object of the present invention is to provide a method for controlling a semiconductor device in which gate electrode metal can be formed separately, and gate electrode metal can be formed without exposing it to the atmosphere.

以下本発明の半導体装置の製造方法を第2図を用いて説
明する。
The method for manufacturing a semiconductor device according to the present invention will be explained below with reference to FIG.

半8縁性のGaAs基板10中に将来E −FETにな
る素子のゲート電極を直下にあたる部分にp型GaAs
層20を埋込み形成しておく、続いて、MBE法又はO
M−VPE法を用いてアンドープG a A s層11
を形成し、60人前後のアンドープAQ、Ga、、As
 、(x〜0.3〜0.37)を成長させn型AQ、G
a、−、As (x〜0.3〜0.37)を100人か
ら700人の範囲で成長させる。
A p-type GaAs substrate is placed directly below the gate electrode of an element that will become an E-FET in the future in the semi-octagonal GaAs substrate 10.
The layer 20 is buried, and then MBE or O
Undoped GaAs layer 11 using M-VPE method
and around 60 undoped AQ, Ga,,As
, (x~0.3~0.37) to grow n-type AQ, G
Let a,−,As (x~0.3~0.37) grow in the range of 100 to 700 people.

この時に埋込み型2層20はフローティングにしておく
か外部から電位を印加できる様に制御電極を形成する。
At this time, the buried type 2 layer 20 is left floating, or a control electrode is formed so that a potential can be applied from the outside.

通常はp層を逆バイアスにして、関連する部分のFET
はE−FETにすることができる。この様にしてE−F
ETを構成すると、半絶縁性GaAs基板10中の埋込
みp型層の必要部分のみをp型埋込みG a A s層
でつなげることにより埋込み2層をゲート下にもつ多数
のFETをE−FETに閾値を外部電位を加えることで
制御できる。ウェーハ内で同一の閾値Vア、をもだせた
いFETはp型埋込み層を相互にp層でつなぎ合うこと
で同−V y bに外部電位をp層に加え調整できる。
Normally, the p-layer is reverse biased, and the related FET
can be an E-FET. In this way E-F
When configuring an ET, by connecting only the necessary parts of the buried p-type layer in the semi-insulating GaAs substrate 10 with the p-type buried GaAs layer, a large number of FETs having two buried layers under the gate can be converted into an E-FET. The threshold value can be controlled by applying an external potential. FETs that are desired to have the same threshold value V a within a wafer can be adjusted by connecting p-type buried layers with each other through p layers and applying an external potential to the p layer to -V y b.

この様にして、n型A Q G a A s層13に加
わる膜厚の制御性を著しく緩くすることができる。
In this way, the controllability of the film thickness applied to the n-type AQGaAs layer 13 can be made considerably looser.

即ち、この様にすると、閾値制御はD−FETに対する
ものだけになる。
That is, in this case, the threshold value control is only for the D-FET.

本発明ではn型A Q G a A s Ml 13を
成長後ただちに大気にさらすことなく、ゲート金g15
を形成する。本発明のプロセスの特徴は、MBE法を用
いる場合には、エピタキシャル成長層形成後超高真空内
で通常試料を別のチャンバに移動し、ゲート金属を超高
真空中で蒸着する。一方、○M−VPE法がエピタキシ
ャル層を成長した場合には、金属カルポル、即ち、w(
co)sやMo(’Go)sの有機、熱分解法を用いて
ゲート金属を形成する。
In the present invention, gate gold g15 is grown without exposing n-type A Q Ga As Ml 13 to the atmosphere immediately after growth.
form. A feature of the process of the present invention is that when the MBE method is used, the sample is usually moved to another chamber in an ultra-high vacuum after the epitaxial growth layer is formed, and a gate metal is deposited in an ultra-high vacuum. On the other hand, when the epitaxial layer is grown using the ○M-VPE method, metal carpol, that is, w(
The gate metal is formed using an organic or thermal decomposition method of co)s or Mo('Go)s.

ゲート電極形成法は通常のフォトリングラフィを用いて
ゲート領域を形成する(第2図b)。
The method for forming the gate electrode is to form the gate region using normal photolithography (FIG. 2b).

次に、ソース・ドレイン電極16を形成し、埋込みp型
Mhoに接続する電極を形成する。
Next, source/drain electrodes 16 are formed, and electrodes connected to the buried p-type Mho are formed.

埋込みp型層はD−FETの閾値電圧をV T kの調
整に用いることもできる。
The buried p-type layer can also be used to adjust the threshold voltage of the D-FET, VTk.

本発明のp層は、半絶縁性G a A s基板の性質を
最大限に生かしたものである。つまり、半絶縁性基板中
にp層を埋込むことにより、関連する埋込みpFfiF
は全て同電位にすることができる。この様にしてp層を
半絶縁性基板中での埋込み配線として使うことができる
The p-layer of the present invention takes full advantage of the properties of the semi-insulating GaAs substrate. That is, by embedding the p-layer in a semi-insulating substrate, the associated buried pFfiF
can all be at the same potential. In this way, the p-layer can be used as a buried wiring in a semi-insulating substrate.

大気にさらすことなく、ゲート金属を蒸着するプロセス
では、AQ、GaニーAs上に金属を形成するだけでな
くn型G a A s上に金属を蒸着することもできる
In the process of depositing gate metal without exposure to the atmosphere, metal can be deposited not only on AQ, Ga and As, but also on n-type GaAs.

p型層に逆バイアスをかけた場合わずかのリーク電流が
生じ、ウェーハ内のp型層に電位差が生じてしまうが、
この場合には、ウェーハ内の複数個の場所に同電位に保
つための外部III御端子端子定すればよい。
When a reverse bias is applied to the p-type layer, a small amount of leakage current occurs, creating a potential difference in the p-type layer within the wafer.
In this case, external III control terminals may be provided at multiple locations within the wafer to maintain the same potential.

〔発明の実施例〕[Embodiments of the invention]

以下本発明を実施例を通して更に詳しく説明する。 The present invention will be explained in more detail below through Examples.

実施例I MBE法を用いた場合の実施例を第3図で示す半絶縁性
G a A s基板10上にCVD法によりSiO□ 
17を3000人波着させる。次に、1.5μmのホト
レジストを塗布し、E型FETのゲート領域下に対応す
る部分を第3図(a)の如く取り去り、Mgイオン20
を200hの加速電圧でIX 10”dのドーズ量でイ
オン注入した。ホトレジスト除去後、5in2 を20
00人波着しH2雰囲気中で900℃20分間のアニー
ルを行なった。
Example I An example using the MBE method is shown in FIG.
3,000 people arrive at the 17th. Next, a 1.5 μm photoresist was applied, and the portion corresponding to the bottom of the gate region of the E-type FET was removed as shown in FIG. 3(a).
was ion-implanted at a dose of IX 10"d at an acceleration voltage of 200h. After removing the photoresist, 5in2 was implanted at a dose of 20"
00 people and annealing was performed at 900° C. for 20 minutes in an H2 atmosphere.

この時p型G a A s層20は10”cn−’のド
ーピング濃度であった。次にフッ酸とフッ化アンモニウ
ムの混合液でSin、を除去した。
At this time, the p-type GaAs layer 20 had a doping concentration of 10''cn-'.Next, Sin was removed using a mixed solution of hydrofluoric acid and ammonium fluoride.

次に基板温度580℃で10−11torrの超高真空
内のMBE装置を用いてアンドープG a A s層(
不純物を故意には含んでいないGaAs層)11を1μ
m程度成長させた。続いて、アンドープA Q −G 
a 1− A s層12’ (x−Q、3)を60人程
度成長し、Siを2X I Q”cm−’ドープしたn
型AQwGa、、As(x〜0.3)を300人成長さ
せた。通常、n型A Q w G a 1− A s層
の膜厚は100人〜500人の範囲でえらび、膜厚は7
X 1017an−3〜2 X 10”a++−’のド
ーピング量の範囲で用いている。Al1.GaニーAs
のAQ混晶比Xは0.2から0.37の範囲で選んでい
る。続いてエピタキシャル成長室から材料を10−”t
orrの超高真空に保ったままトランスファマニプユレ
ータを用いて別室10”torrの部屋に移した。
Next, an undoped GaAs layer (
GaAs layer (which does not intentionally contain impurities) 11 is 1μ
It grew to about m. Next, undoped A Q-G
A 1-A s layer 12' (x-Q, 3) was grown by about 60 people, and an n layer doped with 2X IQ"cm-' of Si was grown.
300 people of the type AQwGa,,As(x~0.3) were grown. Normally, the thickness of the n-type A Qw Ga 1-A s layer is selected in the range of 100 to 500 layers, and the thickness is 7
It is used in the doping amount range of X 1017an-3 to 2
The AQ mixed crystal ratio X is selected in the range of 0.2 to 0.37. Subsequently, 10-”t of material was deposited from the epitaxial growth chamber.
The tube was transferred to a separate room at 10" torr using a transfer manipulator while maintaining an ultra-high vacuum of 10" torr.

続いてMoを1500人全面に蒸着した。このゲート金
属としてはMoの他にTi、WSi、(タングステンシ
リサイド)、WAQ(タングステンアルミニウム)等も
蒸着することができる。
Next, Mo was deposited on the entire surface of 1,500 people. As this gate metal, in addition to Mo, Ti, WSi, (tungsten silicide), WAQ (tungsten aluminum), etc. can also be deposited.

次に、ホトレジスタ19.19’マスクとして、ゲート
電極15’ 、15’をドライエツチングで形成した。
Next, gate electrodes 15' and 15' were formed by dry etching as masks for photoresistors 19 and 19'.

このとき、A Q、G al−、A s層13との選択
化を大きくし、表面損傷を小さくするためにNF、とN
2 の混合ガスによる反応性イオンエツチングを行なっ
た。
At this time, NF and N
Reactive ion etching was performed using a mixed gas of 2.

次にCVO@により保護膜としてのSin。Next, use CVO@ to coat Sin as a protective film.

21を3000人形成し、ホトリソグラフィーによりゲ
ート電極部上の5in2 と、ソース・ドレイン電極領
域のSio2 をエツチングで除去した。
21 was formed, and 5 in 2 on the gate electrode portion and Sio 2 on the source/drain electrode region were removed by photolithography and etching.

次にホトレジスト用いて、リフトオフ法によりソース・
ドレイン電極16を形成した。第3図(d)金属として
はA u G e / N i / A uを用いた。
Next, using photoresist, the source is
A drain electrode 16 was formed. FIG. 3(d) A u G e /N i /A u was used as the metal.

ここで、p型埋込み層20をもつFETはE−FETに
、もたないFETはD−FETになる。
Here, the FET with the p-type buried layer 20 becomes an E-FET, and the FET without it becomes a D-FET.

次にFET形成後、p型領域20に接続する外部電極に
形成のためのコント穴24形成をSio。
Next, after forming the FET, a control hole 24 for forming an external electrode connected to the p-type region 20 is formed.

21、A<1.Gat−、As 13,12、G a 
A、 S11をエツチングすることで行なった(第3図
(e)図)。なお、第3図(a)〜(d)は断面図、お
よび第3図(e)はゲート部を中心とした部分の平面図
である。コント穴24を通してp型G a A s層2
0にオーミック接触する電極26と12を用いた。第3
図(e)では25は素子分離のためのメサエッチング領
域である。
21, A<1. Gat-, As 13,12, Ga
This was done by etching A, S11 (Figure 3(e)). Note that FIGS. 3(a) to 3(d) are cross-sectional views, and FIG. 3(e) is a plan view of a portion centered on the gate portion. P type Ga As layer 2 through control hole 24
Electrodes 26 and 12 in ohmic contact with 0 were used. Third
In the figure (e), 25 is a mesa etching region for element isolation.

この様に埋込みp型層に逆バイアスを印加して閾値を変
化させるには、9層20とアンドープ層11との間の耐
圧が充分大きくなければならない。
In order to change the threshold value by applying a reverse bias to the buried p-type layer in this manner, the breakdown voltage between the 9th layer 20 and the undoped layer 11 must be sufficiently large.

そのためにはp型層のキャリア濃度はなるだけ低い方が
望ましい。
For this purpose, it is desirable that the carrier concentration in the p-type layer be as low as possible.

即ち、IQ”am−’程度のp型ドーパント濃度で用い
るのが良い。 (但し、外部電圧でV T hを制御す
るときには濃度に強い制限はない)。
That is, it is preferable to use a p-type dopant concentration of about IQ"am-" (However, when controlling V Th with an external voltage, there is no strong restriction on the concentration).

p型頭域の不純物濃度が大きすぎるとエピタキシャル成
長時に不純物が拡散してアンドープG a A s層を
汚すことがある。p型ドーパントとしては他にBe、Z
n、Ge等である。
If the impurity concentration in the p-type head region is too high, the impurity may diffuse during epitaxial growth and contaminate the undoped GaAs layer. Other p-type dopants include Be and Z.
n, Ge, etc.

実施例2 0M−VPE法を用いるときには第2図のエビfill
、12.13をOM−VPEで作成することを除いてゲ
ート金属15を形成する方法が異なる。即ち、OM−V
PE法により実施例1と同様に基板温度650℃でアン
ドープG a A sを1μm、アンドープA Q w
 G a 1− m A s層(x=、0.3)を60
人−1n型AR,Ga、−、As(x=0.3.n−1
X 10”CIl+−3)を300人各々成長した後、
H,+AsH□雰囲気で約2分間反応管内をパージング
する。次いでMo(C○)Gを反応管にN2をキャリア
として導入、エピタキシャル成長温度と同一温度の65
0℃にて熱分解反応させ、約1500人のMo薄膜を既
、 n−A℃、Gaニー、+As成長層上に被着する。
Example 2 When using the 0M-VPE method, fill the shrimp in Figure 2.
, 12.13 are different in the method of forming the gate metal 15 except that they are formed by OM-VPE. That is, OM-V
As in Example 1, the undoped Ga As was 1 μm thick and the undoped A Q w was formed using the PE method at a substrate temperature of 650°C, as in Example 1.
G a 1- m A s layer (x = 0.3) at 60
Human-1n type AR, Ga, -, As (x=0.3.n-1
After growing 300 people each
The inside of the reaction tube is purged in an atmosphere of H, +AsH□ for about 2 minutes. Next, Mo(C○)G was introduced into the reaction tube with N2 as a carrier, and the temperature was 65°C, which was the same as the epitaxial growth temperature.
A pyrolysis reaction is carried out at 0°C, and about 1500 Mo thin films are deposited on the Ga + As growth layer at n-A°C.

このゲート金属として、Moの他にW、WS i、、W
AI2等も同様に被着することができる。
As this gate metal, in addition to Mo, W, WS i, , W
AI2 etc. can also be deposited in a similar manner.

次に、ゲート電極、ソース・ドレイン電極を作る工程は
実施例1と同様である。
Next, the steps for forming the gate electrode and source/drain electrodes are the same as in the first embodiment.

p型埋込み層をもちいて必要なトランジスタを複数個つ
なぎ、コンタクトホールで外部制御端子とつなぐことに
より必要なFETの閾値電圧v5をほとんど同一の値に
設定できる様になった。このため従来、NBE、○M−
VPE法で問題になっていたV T IIのロット間バ
ラツキ(主にロット間の膜厚、ドーピングレベルのバラ
ツキが生じる)をきわめて小さくすることができた。本
実施例の場合ロット間のv7.バラツキはσv、、=1
0mvであった。
By connecting a plurality of necessary transistors using a p-type buried layer and connecting them to an external control terminal through a contact hole, it has become possible to set the necessary threshold voltage v5 of the FET to almost the same value. For this reason, conventionally, NBE, ○M-
The lot-to-lot variation in V T II (mainly caused by lot-to-lot variation in film thickness and doping level), which had been a problem with the VPE method, could be extremely reduced. In this example, v7 between lots. The variation is σv,,=1
It was 0 mv.

本発明の半導体装置とその製造方法は他の化合物半導体
、InP−InGaAsP、InP−InGaAs、 
 InAs−InAsSb、GaAs−A Q GaA
sP、A El、Ga、−、As−A Q、Ga1−、
As等でFETは作成する場合でも有効であることはも
ちろんである。
The semiconductor device and its manufacturing method of the present invention can be applied to other compound semiconductors, InP-InGaAsP, InP-InGaAs,
InAs-InAsSb, GaAs-A Q GaA
sP, A El, Ga, -, As-A Q, Ga1-,
Of course, it is effective even when FETs are made using As or the like.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、p型埋込層を形成したのち選択ドーパ
ヘテロ接合構造を形成し大気にさらすことなくゲート金
属を蒸着したので、 (1)閾値電圧は結晶成長後に外部電圧を加えることが
、調整することができる。このことのために閾値電圧の
制御性を飛路的に増加させることができた。
According to the present invention, after forming a p-type buried layer, a selective doper heterojunction structure is formed and a gate metal is deposited without exposing it to the atmosphere. (1) The threshold voltage can be determined by applying an external voltage after crystal growth. Can be adjusted. This made it possible to significantly increase the controllability of the threshold voltage.

(2)大気にさらすことなくゲート電極を形成できる様
になったので、ゲート電極の閾値に対する安定性が非常
に向上した。
(2) Since the gate electrode can now be formed without being exposed to the atmosphere, the stability of the gate electrode with respect to the threshold value has been greatly improved.

(3)p型埋込み層を用いて集積回路の必要なFETを
つなぐことにより、MBE、○M−VPE法の膜厚の面
内均一性が非常にすぐれている特徴を最大限ひきだせる
様になった。即ち、エンハンスメント型FETの閾値電
圧VTkを所望の値に外部より制御できロット間の分散
もσ■7.=10mVまでになった。
(3) By connecting the necessary FETs of an integrated circuit using a p-type buried layer, the characteristics of the extremely excellent in-plane film thickness uniformity of MBE and ○M-VPE methods can be maximized. became. That is, the threshold voltage VTk of the enhancement type FET can be externally controlled to a desired value, and the variance between lots can be reduced. =10mV.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の選択ドープヘテロの接合型FETの断面
図、第2図は本発明の選択ドープヘテロ接合型FETの
作成プロセスを示す工程図、第3図は本発明の実施例を
示す工程図である。 10・・・半絶縁性G a A s基板、11・・・ア
ンドープG a A s層、12−・・アンドープA 
Q 、Ga1−、As層、13−n型A Q、G a、
−、A s層、14− n型G a A s層、16.
16’ ・・・ソース・ドレイン電極、15・・・ゲー
ト金属、15′・・・P型埋込み層のないFETのゲー
ト電極、15′・・・P型埋込み層をもつFETのゲー
ト電極、20・・・p型埋込み層、21・・・絶縁物、
26・・・P型埋込み層とオーミックに接続する外部制
御電極、24・・・コンタクトホール、25・・・メサ
エッチングによる素子間分離領域6′fI 1 目 ′A 2 口
Fig. 1 is a cross-sectional view of a conventional selectively doped heterojunction FET, Fig. 2 is a process diagram showing the manufacturing process of the selectively doped heterojunction FET of the present invention, and Fig. 3 is a process diagram showing an embodiment of the present invention. be. DESCRIPTION OF SYMBOLS 10... Semi-insulating GaAs substrate, 11... Undoped GaAs layer, 12-... Undoped A
Q, Ga1-, As layer, 13-n type A Q, Ga,
-, As layer, 14- n-type Ga As layer, 16.
16'... Source/drain electrode, 15... Gate metal, 15'... Gate electrode of FET without P-type buried layer, 15'... Gate electrode of FET with P-type buried layer, 20 ... p-type buried layer, 21 ... insulator,
26... External control electrode ohmically connected to the P-type buried layer, 24... Contact hole, 25... Inter-element isolation region 6'fI 1 'A 2 mouth by mesa etching

Claims (1)

【特許請求の範囲】 1、第1の半導体層と第2の半導体層とがヘテロ接合を
形成して配され、第2の半導体層と第3の半導体層が形
成して配され、第1の半導体層の電子親和力は第2の半
導体層のそれより小さくなつており、第1の半導体層と
電子的に接続された少なくとも一対の電極と、前記ヘテ
ロ接合近傍に生じるキャリアの制御手段とを少なくとも
有する半導体装置において、第1の半導体層はN型にド
ープされ、第2の半導体は非常に弱いp型あるいは非常
に弱いn型になつており(故意に不純物をドープしない
かわずかにドープする)第3の半導体層はp型にドープ
され、第3、第2、第1の半導体層を形成後ただちに大
気にさらすことなく、ヘテロ接合界面のキャリアを制御
するための金属を連続的に被着させることを特徴とする
半導体装置。 2、特許請求の範囲第1項記載の半導体装置において、
第3の半導体層につながり、ヘテロ界面付傍のキャリア
を制御できる外形電極を持つことを特徴とする半導体装
置。 3、特許請求の範囲第1項記載の半導体装置において、
基板に選択的にドープされた、前記第3の半導体層の領
域(埋込み層)を形成し、ゲート電極下に埋込み層のな
い電界効果トランジスタと埋込み層をもつ電界効果トラ
ンジスタを同一基板に形成したことを特徴とする半導体
装置。 4、特許請求の範囲第1項記載の半導体装置において、
基板内でp型埋込み層(第3層)を用いた複数個の半導
体装置を相互に配線することを特徴とする半導体装置。
[Claims] 1. A first semiconductor layer and a second semiconductor layer are arranged to form a heterojunction; a second semiconductor layer and a third semiconductor layer are arranged to form a heterojunction; The electron affinity of the semiconductor layer is smaller than that of the second semiconductor layer, and at least one pair of electrodes electronically connected to the first semiconductor layer and means for controlling carriers generated near the heterojunction In at least one semiconductor device, the first semiconductor layer is N-type doped, and the second semiconductor layer is very weak P-type or very weak N-type (intentionally not doped with impurities or slightly doped). ) The third semiconductor layer is p-doped and is continuously coated with a metal for controlling carriers at the heterojunction interface without exposing it to the atmosphere immediately after forming the third, second, and first semiconductor layers. 1. A semiconductor device characterized in that the semiconductor device is made of 2. In the semiconductor device according to claim 1,
A semiconductor device characterized by having an external electrode connected to a third semiconductor layer and capable of controlling carriers near a hetero interface. 3. In the semiconductor device according to claim 1,
A region (buried layer) of the third semiconductor layer selectively doped in the substrate is formed, and a field effect transistor without a buried layer and a field effect transistor with a buried layer are formed on the same substrate under the gate electrode. A semiconductor device characterized by: 4. In the semiconductor device according to claim 1,
A semiconductor device characterized in that a plurality of semiconductor devices using a p-type buried layer (third layer) are interconnected within a substrate.
JP59206220A 1984-10-03 1984-10-03 Semiconductor device and manufacturing method thereof Expired - Lifetime JPH0793428B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP59206220A JPH0793428B2 (en) 1984-10-03 1984-10-03 Semiconductor device and manufacturing method thereof
US06/783,086 US4805005A (en) 1984-10-03 1985-10-02 Semiconductor device and manufacturing method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59206220A JPH0793428B2 (en) 1984-10-03 1984-10-03 Semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPS6184869A true JPS6184869A (en) 1986-04-30
JPH0793428B2 JPH0793428B2 (en) 1995-10-09

Family

ID=16519751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59206220A Expired - Lifetime JPH0793428B2 (en) 1984-10-03 1984-10-03 Semiconductor device and manufacturing method thereof

Country Status (2)

Country Link
US (1) US4805005A (en)
JP (1) JPH0793428B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0201329A2 (en) * 1985-05-08 1986-11-12 International Business Machines Corporation A field effect transistor
WO1994018705A1 (en) * 1993-02-08 1994-08-18 Marcus Besson Semiconductor element, in particular field-effect transistor with an embedded gate
US8883581B2 (en) 2012-03-30 2014-11-11 Transphorm Japan, Inc. Compound semiconductor device and method for manufacturing the same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63276267A (en) * 1987-05-08 1988-11-14 Fujitsu Ltd Manufacture of semiconductor device
US5231056A (en) 1992-01-15 1993-07-27 Micron Technology, Inc. Tungsten silicide (WSix) deposition process for semiconductor manufacture
US5461244A (en) * 1994-01-03 1995-10-24 Honeywell Inc. FET having minimized parasitic gate capacitance
US9098958B2 (en) 1998-09-15 2015-08-04 U-Paid Systems, Ltd. Convergent communications platform and method for mobile and electronic commerce in a heterogeneous network environment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58130560A (en) * 1982-01-29 1983-08-04 Hitachi Ltd Semiconductor memory integrated circuit
JPS58143572A (en) * 1982-02-22 1983-08-26 Nippon Telegr & Teleph Corp <Ntt> Field-effect transistor
JPS58148466A (en) * 1982-02-26 1983-09-03 Mitsubishi Electric Corp Semiconductor device
JPS5954271A (en) * 1982-09-21 1984-03-29 Agency Of Ind Science & Technol Semiconductor integrated circuit device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS577165A (en) * 1980-06-17 1982-01-14 Fujitsu Ltd Semiconductor device
JPS57118676A (en) * 1980-12-29 1982-07-23 Fujitsu Ltd Semiconductor device
JPS57193067A (en) * 1981-05-22 1982-11-27 Fujitsu Ltd Semiconductor device
JPS58147167A (en) * 1982-02-26 1983-09-01 Fujitsu Ltd High mobility complementary semiconductor device
JPS5963770A (en) * 1982-10-05 1984-04-11 Agency Of Ind Science & Technol Semiconductor device
JPS59207667A (en) * 1983-05-11 1984-11-24 Hitachi Ltd Semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58130560A (en) * 1982-01-29 1983-08-04 Hitachi Ltd Semiconductor memory integrated circuit
JPS58143572A (en) * 1982-02-22 1983-08-26 Nippon Telegr & Teleph Corp <Ntt> Field-effect transistor
JPS58148466A (en) * 1982-02-26 1983-09-03 Mitsubishi Electric Corp Semiconductor device
JPS5954271A (en) * 1982-09-21 1984-03-29 Agency Of Ind Science & Technol Semiconductor integrated circuit device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0201329A2 (en) * 1985-05-08 1986-11-12 International Business Machines Corporation A field effect transistor
WO1994018705A1 (en) * 1993-02-08 1994-08-18 Marcus Besson Semiconductor element, in particular field-effect transistor with an embedded gate
US8883581B2 (en) 2012-03-30 2014-11-11 Transphorm Japan, Inc. Compound semiconductor device and method for manufacturing the same

Also Published As

Publication number Publication date
JPH0793428B2 (en) 1995-10-09
US4805005A (en) 1989-02-14

Similar Documents

Publication Publication Date Title
JPH03774B2 (en)
JPS6184869A (en) Semiconductor device
JP3368449B2 (en) Semiconductor device and manufacturing method thereof
JP4050128B2 (en) Heterojunction field effect transistor and manufacturing method thereof
JPH0770695B2 (en) Method for manufacturing silicon carbide semiconductor device
JP2611342B2 (en) Method for manufacturing semiconductor device
JPS60165764A (en) Manufacture of compound semiconductor device
JPH02111073A (en) Insulated gate fet and integrated circuit device thereof
JP3102947B2 (en) Device isolation method for heterojunction field effect transistor
JPS62204578A (en) Manufacture of field-effect transistor
JPS59222966A (en) Semiconductor device
JPS6318348B2 (en)
JPH0249012B2 (en) HANDOTAISOCHINOSEIZOHOHO
JPS60136264A (en) Manufacture of semiconductor device
JP2819673B2 (en) Field effect transistor
JP2616032B2 (en) Method for manufacturing field effect transistor
JPS6394688A (en) Manufacture of field-effect transistor
JPS6122872B2 (en)
JPS61123175A (en) Manufacture of hetero-junction bipolar transistor
JPH0322526A (en) Manufacture of silicon carbide semiconductor device
JP2707436B2 (en) Method for manufacturing field effect transistor
JPS59197176A (en) Manufacture of junction gate field-effect transistor
JPS63283126A (en) Manufacture of semiconductor device
JPS63219176A (en) Manufacture of field-effect transistor
JPH02199843A (en) Compound semiconductor device and manufacture thereof