JPS60165764A - Manufacture of compound semiconductor device - Google Patents

Manufacture of compound semiconductor device

Info

Publication number
JPS60165764A
JPS60165764A JP2109984A JP2109984A JPS60165764A JP S60165764 A JPS60165764 A JP S60165764A JP 2109984 A JP2109984 A JP 2109984A JP 2109984 A JP2109984 A JP 2109984A JP S60165764 A JPS60165764 A JP S60165764A
Authority
JP
Japan
Prior art keywords
film
compound semiconductor
layer
gate electrode
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2109984A
Other languages
Japanese (ja)
Inventor
Kazutaka Kamitake
一孝 上武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP2109984A priority Critical patent/JPS60165764A/en
Publication of JPS60165764A publication Critical patent/JPS60165764A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Drying Of Semiconductors (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To suppress the occurrence of a short channel effect and to reduce the parasitic resistance by providing a gate electrode on a Schottky junction type semiconductor layer, coating an insulating film only on the side walls, and providing a semiconductor layer of high impurity density on both sides. CONSTITUTION:Undoped GaAs layer 2 and N type Ga1-xAlxAs layer 3 are laminated and grown on a semi-insulating GaAs substrate 1, and a gate electrode 4 of refractory metal made of Ta is provided at the center on the surface. Then a Si3N4 film 5 is bonded only to the side walls of the electrode 4, an N<+> type GaAs layer 6 which is higher than the electrode 4 is accumulated on the overall surface which includes the film 5, and the entire surface is coated with a thick photoresist film 7. Thereafter, the thickness of the film 7 is reduced by reactive dry etching, to expose the surface of the electrode 4, the film 7 is removed, an AuGe/Ni ohmic electrode 8 is contacted on the layer 6, and an SiO2 film 9 is provided on the electrode 4 therebetween. Then, a TiPtAu layer 10 for source and drain electrodes is coated on the electrode 8 around the film 9.

Description

【発明の詳細な説明】 (技術分野) 本発明は、化合物半導体からなるヘテロ接合を用いるシ
ョットキー接合型の化合物半導体装置の製造方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a method for manufacturing a Schottky junction type compound semiconductor device using a heterojunction made of a compound semiconductor.

(従来技術) 最近、化合物半導体装置、特にGaASシmツ)キー型
電界効果トランジスタ(GaAs MB2 FET又は
GaAs SB FET)やGaA IAs等のへテロ
接合を用いるショットキー接合型の化合物半導体装置(
以下、GaAs FETという。)が、その高速性のた
めにシリコンデバイスに代るものとして熱心に検討され
ている。このためにはデバイスのチャネル長はサブミク
ロンの領域まで短くする必要があシ、この短チヤネル化
に伴ないそのしきい値電圧が低下を来すといういわゆる
短チヤネル効果の発生並びに寄生抵抗の増大という問題
がある。
(Prior Art) Recently, compound semiconductor devices, especially GaAS semiconductors, Schottky junction type compound semiconductor devices using heterojunctions such as key field effect transistors (GaAs MB2 FETs or GaAs SB FETs) and GaA IAs (GaAs IAs) have recently been developed.
Hereinafter, it will be referred to as GaAs FET. ) are being actively considered as an alternative to silicon devices due to their high speed. To achieve this, it is necessary to shorten the channel length of the device to the submicron range, and as the channel length becomes shorter, the threshold voltage decreases, which is the so-called short channel effect, and parasitic resistance increases. There is a problem.

一方、これらの微細化によシ製造工程における目合せ露
光技術が厳しくなりなかなか要求を満足しきれないとい
う問題がある。
On the other hand, due to the miniaturization of these devices, alignment exposure technology in the manufacturing process has become stricter, and there is a problem in that it is difficult to satisfy the requirements.

(発明の目的) 本発明の目的は、上記問題点を解消することにより、短
チヤネル兼効果の発生を抑制しかつ寄生抵抗を減少させ
た化合物半導体装置を厳しい目合せ露光技術によらずに
セルファライン法で製造できるところの化合物半導体装
置の製造方法を提供することにある。
(Objective of the Invention) An object of the present invention is to solve the above-mentioned problems, thereby producing a compound semiconductor device that suppresses the occurrence of the short channel effect and reduces parasitic resistance without using strict alignment exposure technology. An object of the present invention is to provide a method for manufacturing a compound semiconductor device that can be manufactured by a line method.

(発明の構成) 本発明の化合物半導体装置の製造方法は、化合さ/ 初生導体からなるヘテロ接合を用いるシロットキ接合型
の化合物半導体装置の製造方法において、半絶縁性基板
上に形成された化合物半導体からなるヘテロ接合基板上
にリフラクトリ金属又はそれらのシリサイド金属からな
るゲート電極を形成する工程と、引続き化学蒸着法等に
よりシリコン化金物からなる絶縁膜を被着し異方性エツ
チング法により前記絶縁膜を前記ゲート電極の側壁部分
のみを残して除去する工程と、引続き有機金属気相成長
法によシー導電型の高濃度化合物半導体層を所定の厚さ
に形成する工程と、引続きホトレジスト膜を前記ゲート
電極の厚さと前記高濃度化合物半導体層の厚さの和以上
の厚に塗布し所定の温度でベーキングを施す工程と、引
続き反応性ドライエツチング法等により前記ゲート電極
上の前記ホトレジスト膜及び前記高濃度化合物半導体層
を除去する工程とを含むことから構成される。
(Structure of the Invention) A method for manufacturing a compound semiconductor device of the present invention is a method for manufacturing a compound semiconductor device of a Sirotki junction type using a heterojunction made of a compound/primary conductor. A step of forming a gate electrode made of a refractory metal or its silicide metal on a heterojunction substrate consisting of a step of removing the gate electrode leaving only the side wall portion thereof; a step of forming a high concentration compound semiconductor layer of the conductivity type to a predetermined thickness by metal organic vapor phase epitaxy; The photoresist film on the gate electrode and the photoresist film on the gate electrode are coated to a thickness greater than or equal to the sum of the thickness of the gate electrode and the thickness of the high concentration compound semiconductor layer and baked at a predetermined temperature, followed by a reactive dry etching method or the like. and removing the high concentration compound semiconductor layer.

(実施例) 以下、本発明の実施例について図面を参照して説明する
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings.

第1図(a)〜(g)は、本発明を説明するための工程
順におけるGaAs FETの断面図である。
FIGS. 1(a) to 1(g) are cross-sectional views of a GaAs FET in order of steps for explaining the present invention.

(1)第1図(a)に示す様に、半絶縁性GaAs基板
1上に形成された、アンドープGaAs層2とN型Ga
1−)(AlxAs層3からなるヘテロ接合基板上に、
従来一般に用いられているり7トオフ法又は反応性イオ
ンエツチング法等によシタンタル、タングステン又はそ
れらのシリサイド金属等のいわゆる高耐熱性のりフラク
トリ金属な被着加工してGaAs FETのゲート電極
4を形成する。
(1) As shown in FIG. 1(a), an undoped GaAs layer 2 and an N-type GaAs layer 2 are formed on a semi-insulating GaAs substrate 1.
1-) (On a heterojunction substrate consisting of an AlxAs layer 3,
The gate electrode 4 of the GaAs FET is formed by depositing a so-called high heat-resistant glue-fractory metal such as tantalum, tungsten, or their silicide metals by the commonly used glue-off method or reactive ion etching method. .

(2)引続き、第1図(b)に示すように、プラズマ化
学蒸着法等によシリコン化金物 、?。
(2) Subsequently, as shown in FIG. 1(b), siliconized metal is formed by plasma chemical vapor deposition or the like. .

高濃度N型GaAs層6からゲート電極4端距離を所定
間隔とするために、所定の厚さくほぼ、シリコン窒化膜
厚と、ゲート電極4端一高濃度N型GaAs層6間の距
離は同じである。)成長し、次いで方向性をもたせたフ
レオン系の反応性イオンエツチング例えば(CF4+H
2)混合ガスにより異方性エツチングを施し、ゲート電
極4側壁にのみシリコン窒化膜5を、成長時の膜厚分を
高精度に残し他は除去する。これにより後に続く高濃度
N型GaAs層6とゲート電極4端の間隔を精度良く、
シかも電気的に絶縁して保つことができる。
In order to maintain a predetermined distance from the high concentration N-type GaAs layer 6 to the gate electrode 4 end, the thickness of the silicon nitride film and the distance between the gate electrode 4 end and the high concentration N-type GaAs layer 6 are approximately the same. It is. ) growth and then directional Freon-based reactive ion etching, e.g. (CF4+H
2) Anisotropic etching is performed using a mixed gas to leave the silicon nitride film 5 only on the side walls of the gate electrode 4 in the same film thickness as it was grown with high precision, and remove the rest. As a result, the distance between the subsequent high-concentration N-type GaAs layer 6 and the end of the gate electrode 4 can be adjusted with high precision.
Both can be kept electrically insulated.

(3)引続き、第1図(e)K示すように、トリメチル
ガリウムとアルシン系、又は塩化アルキルガリウム−ア
ルシン系等を用いる有機金属気相成長法に5− より、N型不純物としてはシリコン、セレン等の不純物
を添加した高濃度(キャリア濃度として5×10171
/Cm3〜)N型GaAs層6をゲート電極4の厚さ以
下に成長する。
(3) Subsequently, as shown in FIG. 1(e)K, the N-type impurity is silicon, High concentration with impurities such as selenium added (5×10171 as carrier concentration)
/Cm3~) N-type GaAs layer 6 is grown to a thickness equal to or less than that of gate electrode 4.

(4)引続き、第1図(d)に示すように、ホトレジス
トを、ゲート電極4の厚さをA、高濃度N W GaA
s層6の厚さをBとしたとき、(A十B)の厚さ以上ス
ピンナー等によシ塗布しホトレジスト膜7を形成し、ホ
トレジストの軟化点温度(約150〜250°C)程度
の不活性雰囲気のオーブン中にてベーキングを施す。か
くして、第1図(d)に示す如く、ゲート電極4上のレ
ジストは薄くゲート電極4より離れた領域では厚くレジ
ストがダした状態のホトレジスト膜7が出来上がる。
(4) Subsequently, as shown in FIG. 1(d), a photoresist is applied to the gate electrode 4 with a thickness of A and a high concentration of N W GaA.
When the thickness of the s-layer 6 is B, the photoresist film 7 is formed by coating with a spinner or the like to a thickness of (A + B) or more, and the photoresist film 7 is formed at a softening point temperature of the photoresist (approximately 150 to 250°C). Bake in an oven with an inert atmosphere. In this way, as shown in FIG. 1(d), a photoresist film 7 is completed in which the resist on the gate electrode 4 is thin and the resist is thick in areas distant from the gate electrode 4.

(5)引続き、第1図(e)に示すように、この状態で
フレオンに酸素を5〜lO%混合した反応性ドライエツ
チング法又は斜め照射によるイオンミリング法によりゲ
ート電極4上の薄くなったホトレジスト膜7のみを選択
的にエツチングして、ゲート電極4上の高濃度GaAs
層・6が露出した時点で、さ6一 らに4塩化炭素又はジクロルジフルオロカーボン等の反
応性ドライエツチング法により、ゲート電極4上の不要
な高濃度GaAs層6をゲート電極4側壁に形成したシ
リコン窒化膜5表面が露出するまでエツチングを行なう
(5) Subsequently, as shown in FIG. 1(e), in this state, the thickness of the gate electrode 4 was thinned by a reactive dry etching method using Freon mixed with 5 to 10% oxygen or an ion milling method using oblique irradiation. Only the photoresist film 7 is selectively etched to remove the high concentration GaAs on the gate electrode 4.
Once the layer 6 was exposed, an unnecessary high concentration GaAs layer 6 on the gate electrode 4 was formed on the side wall of the gate electrode 4 by a reactive dry etching method using carbon tetrachloride or dichlorodifluorocarbon. Etching is performed until the surface of silicon nitride film 5 is exposed.

(6)引続き、第1図(f)に示すように、ゲート電極
4上の不要な高濃度GaAs層6の除去に用いたホトレ
ジストを有機溶剤により除去してから、一般のGaAs
 FET製造工程で用いられているリフトオフ法等によ
シ所定領域にAuGe /N i等のオーミック電極8
をソース及びドレインに被着後、約400〜450℃で
熱処理を施してオーミックコンタクト層を膜層9を所定
の厚さ成長してゲート電極4等の表面保護を行なってか
らフォトリソグラフィーによりソース、ドレイン領域の
窓明けを非酸素エツチング液等により行なってから通常
半導体製造工程で用いられる蒸着法により所定厚のTi
P辷Au層10を被着して、ソース及びドレイン電極を
形成する。
(6) Subsequently, as shown in FIG. 1(f), after removing the photoresist used to remove the unnecessary high concentration GaAs layer 6 on the gate electrode 4 with an organic solvent,
Ohmic electrodes 8 such as AuGe/Ni are formed in predetermined areas by the lift-off method used in the FET manufacturing process.
After depositing on the source and drain, heat treatment is performed at about 400 to 450°C to grow an ohmic contact layer 9 to a predetermined thickness to protect the surface of the gate electrode 4, etc., and then photolithography is performed to coat the source and drain. After opening a window in the drain region using a non-oxygen etching solution or the like, a predetermined thickness of Ti is deposited using a vapor deposition method commonly used in semiconductor manufacturing processes.
A P-thick Au layer 10 is deposited to form source and drain electrodes.

本実施例によれば、ソース及びドレイン電極は、ゲート
電極4に密接して形成された高濃度GaAs層を介して
取出されているので、GaAs FETの寄生抵抗を最
大限に小さく、しかもGaAs FETのゲの悪影響を
抑えて性能を向上させることができる。
According to this embodiment, the source and drain electrodes are taken out through the high concentration GaAs layer formed in close contact with the gate electrode 4, so that the parasitic resistance of the GaAs FET can be minimized and the GaAs FET can be It is possible to improve performance by suppressing the negative effects of overgrowth.

また、製造工程においては、厳しい目合せ露光技術を駆
使することなしにセルファライン法により製造できるた
め製造工程が簡略になり、製品が高歩留りで生産できる
ことになる。
In addition, in the manufacturing process, the manufacturing process can be simplified because it can be manufactured by the self-line method without using strict alignment exposure technology, and the product can be produced with a high yield.

(発明の効果) 以上、詳細説明したとおり、本発明によれば、上記の構
成により、短チヤネル効果の発生を抑制し、かつ寄生抵
抗を減少させた化合物半導体装置を、厳しい目合せ露光
技術によ・らずにセルファライン法で製造できる化合物
半導体装置の製造方法が得られる。
(Effects of the Invention) As described in detail above, according to the present invention, the above structure allows a compound semiconductor device that suppresses the occurrence of short channel effects and reduces parasitic resistance to be suitable for strict alignment exposure technology. A method for manufacturing a compound semiconductor device that can be manufactured by the self-line method without any modification is obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(g)は本発明の一実施例を説明するた
めの工程順におけるGaAs FETの断面図である。 1・・・・・・半絶縁性GaAs基板、2・・・・・ア
ンドープGaAs層、3・・・・・N型Ga1−xAl
xAs層、4・・・・・・ゲート電極、5・・・・・・
シリコン窒化膜、6・・・・・・高濃度N’fJ Ga
As層、7・・・・・・ホトレジスト膜、8・・・・・
AuGe/Ni層、9・・・・・・シリコン酸化膜層、
10・・・・・・TiPtAu層。 9− (7)
FIGS. 1(a) to 1(g) are cross-sectional views of a GaAs FET in order of steps for explaining an embodiment of the present invention. 1...Semi-insulating GaAs substrate, 2...Undoped GaAs layer, 3...N-type Ga1-xAl
xAs layer, 4...gate electrode, 5...
Silicon nitride film, 6... High concentration N'fJ Ga
As layer, 7... Photoresist film, 8...
AuGe/Ni layer, 9... silicon oxide film layer,
10...TiPtAu layer. 9- (7)

Claims (1)

【特許請求の範囲】[Claims] 化合物半導体からなるヘテロ接合を用いるショットキー
接合型の化合物半導体装置の製造方法において、半絶縁
性基板上に形成された化合物半導体からなるヘテロ接合
基板上にリフラクトリ金属又はそれらのシリサイド金属
からなるゲート電極を形成する工程と、引続き化学蒸着
法等によシシリコン化合物からなる絶縁膜を被着し異方
性エツチング法により前記絶縁膜を前記ゲート電極の側
壁部分のみを残して除去する工程と、引続き有機金属気
相成長法により一導電型の高濃度化合物半導体層を所定
の厚さに形成する工程と、引続きホトレジスト膜を前記
ゲート電極の厚さと前記高濃度化合物半導体層の厚さの
和以上の厚に塗布し所定の温度でベーキングを施す工程
と、引続き反応性ドライエツチング法等によシ前記ゲー
ト電極上の前記ホトレジスト膜及び前記高濃度化合物半
導体層を除去する工程とを含むことを特徴とする化合物
半導体装置の製造方法。
In a method for manufacturing a Schottky junction type compound semiconductor device using a heterojunction made of a compound semiconductor, a gate electrode made of a refractory metal or a silicide metal thereof is placed on a heterojunction substrate made of a compound semiconductor formed on a semi-insulating substrate. followed by a step of depositing an insulating film made of a silicon compound by chemical vapor deposition or the like and removing the insulating film by anisotropic etching leaving only the side wall portion of the gate electrode; A step of forming a high concentration compound semiconductor layer of one conductivity type to a predetermined thickness by metal vapor phase epitaxy, and subsequently forming a photoresist film to a thickness greater than or equal to the sum of the thickness of the gate electrode and the thickness of the high concentration compound semiconductor layer. and baking at a predetermined temperature, followed by a step of removing the photoresist film and the high concentration compound semiconductor layer on the gate electrode by a reactive dry etching method or the like. A method for manufacturing a compound semiconductor device.
JP2109984A 1984-02-08 1984-02-08 Manufacture of compound semiconductor device Pending JPS60165764A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2109984A JPS60165764A (en) 1984-02-08 1984-02-08 Manufacture of compound semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2109984A JPS60165764A (en) 1984-02-08 1984-02-08 Manufacture of compound semiconductor device

Publications (1)

Publication Number Publication Date
JPS60165764A true JPS60165764A (en) 1985-08-28

Family

ID=12045420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2109984A Pending JPS60165764A (en) 1984-02-08 1984-02-08 Manufacture of compound semiconductor device

Country Status (1)

Country Link
JP (1) JPS60165764A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62156876A (en) * 1985-12-28 1987-07-11 Matsushita Electronics Corp Semiconductor device
JPS62177974A (en) * 1986-01-31 1987-08-04 Nec Corp Manufacture of semiconductor device
JPS62200771A (en) * 1986-02-28 1987-09-04 Hitachi Ltd Semiconductor device and manufacture thereof
JPS63281473A (en) * 1987-05-13 1988-11-17 Nec Corp Field-effect semiconductor device and manufacture thereof
JPS642370A (en) * 1987-06-24 1989-01-06 Nec Corp Field-effect type semiconductor device and manufacture thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62156876A (en) * 1985-12-28 1987-07-11 Matsushita Electronics Corp Semiconductor device
JPS62177974A (en) * 1986-01-31 1987-08-04 Nec Corp Manufacture of semiconductor device
JPS62200771A (en) * 1986-02-28 1987-09-04 Hitachi Ltd Semiconductor device and manufacture thereof
JPS63281473A (en) * 1987-05-13 1988-11-17 Nec Corp Field-effect semiconductor device and manufacture thereof
JPS642370A (en) * 1987-06-24 1989-01-06 Nec Corp Field-effect type semiconductor device and manufacture thereof

Similar Documents

Publication Publication Date Title
US4711858A (en) Method of fabricating a self-aligned metal-semiconductor FET having an insulator spacer
JPS5950567A (en) Manufacture of field effect transistor
JPH022142A (en) Field effect transistor and its manufacture
JPS60165764A (en) Manufacture of compound semiconductor device
JPH0260222B2 (en)
JPH0329302B2 (en)
CN113517348B (en) Direct band gap GeSn enhanced nMOS device and preparation method thereof
JPH0212927A (en) Manufacture of mesfet
JPH02192172A (en) Superconducting transistor
JPH0523497B2 (en)
JPH0758717B2 (en) Method for manufacturing field effect transistor
JPH01251668A (en) Manufacture of field effect transistor
JPS6260268A (en) Manufacture of field effect transistor
JPS6037173A (en) Manufacture of field effect transistor
JPH01251667A (en) Manufacture of field effect transistor
JPH10270466A (en) Semiconductor device manufacturing method and the semiconductor device
JPH0574814A (en) Manufacture of schottky-gate type field-effect transistor
KR100266560B1 (en) Fabrication method of thin-film transistor
JPS6190470A (en) Manufacture of compound semiconductor device
JPH04212428A (en) Manufacture of semiconductor device
JPS59193063A (en) Manufacture of field effect transistor
JPS59229875A (en) Manufacture of schottky gate type field effect transistor
JPH0543292B2 (en)
JPS6378575A (en) Manufacture of semiconductor device
JPS59193070A (en) Manufacture of schottky gate field effect transistor