JPS62156876A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS62156876A
JPS62156876A JP29358685A JP29358685A JPS62156876A JP S62156876 A JPS62156876 A JP S62156876A JP 29358685 A JP29358685 A JP 29358685A JP 29358685 A JP29358685 A JP 29358685A JP S62156876 A JPS62156876 A JP S62156876A
Authority
JP
Japan
Prior art keywords
gate
gate metal
metal
resistance
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29358685A
Other languages
Japanese (ja)
Inventor
Kunihiko Kanazawa
邦彦 金澤
Masaru Kazumura
数村 勝
Masahiro Hagio
萩尾 正博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP29358685A priority Critical patent/JPS62156876A/en
Publication of JPS62156876A publication Critical patent/JPS62156876A/en
Pending legal-status Critical Current

Links

Landscapes

  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To reduce the space between a gate and source and lower the resistance between the source and the gate by a method wherein the gate metal of an FET or the Schottky metal of a diode is buried in a trench formed in a semiconductor surface with insulating films between and the upper part of the gate metal or the Schottky metal is made to be thicker than the lower part buried in the trench. CONSTITUTION:Gain and noise characteristics are influenced by a gate metal length, a resistance between a source and a gate, the type of the gate metal and the gate metal resistance. The gate metal length (l) is controlled easily by the thickness (t) of insulating films 5 and the width of a trench and, for instance, if (t) and the width of the trench are predetermined to be 0.4mum and 1.0mum respectively, the gate metal length (l) becomes 0.2mum so that the very short gate metal length can be predetermined. As the space between the source and the gate is also significantly shortened by the thickness (t) of the insulating film, the resistance between the source and the gate can be lowered substantially. Moreover, if the upper part of the gate metal is made to be thicker, the gate metal resistance also can be reduced below a half of the resistance of the conventional gate metal.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、半導体装置に関するものである。[Detailed description of the invention] (Industrial application field) The present invention relates to a semiconductor device.

(従来の技術) 近年、半導体装置の金属膜の幅を充分狭く形成すること
が必要となっている。特に衛星放送の開始などに伴い、
10GHz以上の高周波を制御する装置として注目され
ているGaAsFETを低雑音、高利得とするためには
、ゲート金属長を、0.3μm以下に短く形成すること
が必須条件である。
(Prior Art) In recent years, it has become necessary to form a metal film of a semiconductor device with a sufficiently narrow width. Especially with the start of satellite broadcasting,
In order to make a GaAsFET, which is attracting attention as a device for controlling high frequencies of 10 GHz or more, low noise and high gain, it is essential to form the gate metal length as short as 0.3 μm or less.

以下1図面を参照しながら、上述したような従来の半導
体装置について説明する。
A conventional semiconductor device as described above will be described below with reference to one drawing.

第2図は、従来の半導体装置の第1の例としてMES 
FETの断面を示したものである。1は半導体基板の活
性層、2は半導体基板の低抵抗層、3は半導体基板の高
抵抗層、4はゲート金属、5は絶縁膜、6はソースまた
はドレイン金属である。
Figure 2 shows an MES as a first example of a conventional semiconductor device.
It shows a cross section of an FET. 1 is an active layer of the semiconductor substrate, 2 is a low resistance layer of the semiconductor substrate, 3 is a high resistance layer of the semiconductor substrate, 4 is a gate metal, 5 is an insulating film, and 6 is a source or drain metal.

第3図は、従来の半導体装置の第2の例としてのMES
 FETの断面を示したものである。第2図と同一符号
のものは同一のものを表わしている。
FIG. 3 shows an MES as a second example of a conventional semiconductor device.
It shows a cross section of an FET. Components with the same reference numerals as in FIG. 2 represent the same components.

(発明が解決しようとする問題点) しかしながら、上記のような従来構成では、FETの特
性を左右するゲート金属長Qを0.3μm以下に短くす
ることはきわめてむずかしく、従って、高利得化するこ
とはきわめて困難であった。また。
(Problems to be Solved by the Invention) However, in the conventional configuration as described above, it is extremely difficult to shorten the gate metal length Q, which influences the characteristics of the FET, to 0.3 μm or less, and therefore it is difficult to increase the gain. was extremely difficult. Also.

第2図の例では、ゲートとソース、ドレインとの間隔を
、製造上の問題から1μm以下にすることはきわめて困
雉であり、第3図のものでは、半導体基板の低抵抗層2
を形成するために、イオン注入のアニール温度800°
Cにも耐える窩耐熱性金属しか、ゲート金属に使えない
という欠点を有していた。
In the example shown in FIG. 2, it is extremely difficult to reduce the distance between the gate, source, and drain to 1 μm or less due to manufacturing problems, and in the example shown in FIG.
To form the ion implantation annealing temperature of 800°
The drawback is that only heat-resistant metals that can withstand C can be used as gate metals.

本発明は上記欠点に鑑み、FETのゲート金属長を短く
するとともにソース・ゲート間抵抗を下げ、またゲート
に使用する金属を自由に選択できるようにして、より高
利得、低雑音の半導体装置を提供するものである。
In view of the above drawbacks, the present invention shortens the gate metal length of the FET, lowers the resistance between the source and gate, and allows the metal used for the gate to be freely selected, thereby creating a semiconductor device with higher gain and lower noise. This is what we provide.

(問題点を解決するための手段) 上記問題点を解決するために1本発明の半導体装置は、
 FETのゲート金属、またはダイオードのショットキ
ー金属が半導体表面に形成した溝に、絶縁膜を介して埋
めこまれ、かつゲート金属またはショットキー金属の上
部が、埋めこまれた下部より太い構造となっている。
(Means for Solving the Problems) In order to solve the above problems, a semiconductor device of the present invention includes:
The gate metal of an FET or the Schottky metal of a diode is embedded in a groove formed on the semiconductor surface via an insulating film, and the upper part of the gate metal or Schottky metal is thicker than the buried lower part. ing.

(作 用) 上記構成によれば、ゲートとソース間の間隔が。(for production) According to the above configuration, the distance between the gate and the source is.

溝の側壁とゲート間に挟まれた絶縁膜の厚さtと等しく
なるため、非常に短くでき、ソース・ゲート間抵抗を下
げることができる。またゲート長は溝の幅と絶縁膜の厚
さによって制御でき、非常に短く形成することが可能と
なり、 FETが低雑音、高利得になる。
Since the thickness is equal to the thickness t of the insulating film sandwiched between the side wall of the trench and the gate, it can be made very short and the resistance between the source and gate can be lowered. Furthermore, the gate length can be controlled by the width of the groove and the thickness of the insulating film, making it possible to form it very short, resulting in FETs with low noise and high gain.

(実施例) 以下、実施例について、図面を参照しながら説明する。(Example) Examples will be described below with reference to the drawings.

第1図は1本発明の一実施例における半導体装置のME
S FETの断面を示したものである。第1図において
、1は半導体基板の活性層、2は半導体基板の低抵抗層
、3は半導体基板の高抵抗層、4はゲート金属、5は絶
縁膜、6はソースまたはドレイン金属、eはゲート金属
長、tは溝の側壁とゲート金属4間に介在させた絶縁膜
5の膜厚である。
FIG. 1 shows ME of a semiconductor device in one embodiment of the present invention.
It shows a cross section of S FET. In FIG. 1, 1 is the active layer of the semiconductor substrate, 2 is the low resistance layer of the semiconductor substrate, 3 is the high resistance layer of the semiconductor substrate, 4 is the gate metal, 5 is the insulating film, 6 is the source or drain metal, and e is the The gate metal length t is the thickness of the insulating film 5 interposed between the side wall of the trench and the gate metal 4.

以上のように構成された本実施例について、以下その動
作を説明する。
The operation of this embodiment configured as above will be described below.

通常、FIETはゲートから信号が入力され、ドレイン
から出力される6利得及び雑音特性は、ゲート金属長、
ソース・ゲート間抵抗、ゲート金属の種類、グー1〜金
属抵抗に左右される。本実施例では、ゲート金属長αは
、絶縁膜5の厚さtと溝の幅によって容易に制御され1
例えばtlo、4μm。
Normally, in a FIET, a signal is input from the gate and output from the drain.6 Gain and noise characteristics are determined by the gate metal length,
It depends on the source-gate resistance, the type of gate metal, and the metal resistance. In this embodiment, the gate metal length α is easily controlled by the thickness t of the insulating film 5 and the width of the trench.
For example, tlo, 4 μm.

溝の幅を1 、0pmに設定すると、ゲート金属長Qは
0.2μmとなり、きわめて短く設定することができる
。ソース・ゲート間隔もこの絶縁膜の厚さtによってき
わめて短くすることができ、1μm以下にすることが容
易である。つまり、ソース・ゲート間抵抗を著しく下げ
ることができる。また、半導体基板の低抵抗層2もFE
T作製前に予め形成しておけば良く、ゲート金属に耐熱
性金属を使用しなくて済み、ゲート金属を自由に選択す
ることが可能となる。さらに、ゲート金属の上部を太く
することができるので、グー1〜金属抵抗も従来のもの
に比べて172以下におさえることが可能である。
If the groove width is set to 1.0 pm, the gate metal length Q will be 0.2 μm, which can be set extremely short. The source-gate interval can also be made extremely short by the thickness t of this insulating film, and can easily be made 1 μm or less. In other words, the source-gate resistance can be significantly reduced. Furthermore, the low resistance layer 2 of the semiconductor substrate is also made of FE.
It is sufficient to form the gate metal in advance before manufacturing the T, and there is no need to use a heat-resistant metal for the gate metal, making it possible to freely select the gate metal. Furthermore, since the upper part of the gate metal can be made thicker, it is possible to suppress the metal resistance to 172 or less compared to the conventional one.

以上のように、本実施例によれば、著しく高利得、低雑
音のFETを有する半導体装置を実現することができる
As described above, according to this embodiment, a semiconductor device having an FET with extremely high gain and low noise can be realized.

なお、実施例では、シングル・ゲートFETについて説
明したが、デュアル・ゲートFET、あるいはダイオー
ドでもよい。
In the embodiment, a single gate FET has been described, but a dual gate FET or a diode may be used.

(発明の効果) 以上のように、本発明は、FETのゲート金属またはダ
イオードのショットキー金属が半導体表面に形成された
溝に、絶縁体を介して埋めこまれ、ゲート金属またはシ
ョク1へキー金属の上部が、埋めこまれた下部より太く
構成されることにより、ゲート金属長を0.3μm以下
に、ソース・ゲート間抵抗を従来の273以下に、ゲー
ト金属抵抗を1/2以下に下げることが可能になる。ま
た、ゲート金属の種類を自由に選択することが可能で、
著しく高利得、低雑音の半導体装置を実現することがで
き。
(Effects of the Invention) As described above, in the present invention, the gate metal of the FET or the Schottky metal of the diode is buried in a groove formed on the semiconductor surface via an insulator, and the gate metal or the Schottky metal of the diode is By making the upper part of the metal thicker than the buried lower part, the gate metal length is reduced to 0.3 μm or less, the source-gate resistance is reduced to 273 or less, and the gate metal resistance is reduced to less than half of the conventional value. becomes possible. In addition, it is possible to freely select the type of gate metal,
It is possible to realize semiconductor devices with extremely high gain and low noise.

その実用的効果は大なるものがある。Its practical effects are significant.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例における半導体装置のME
S FETの断面図、第2図は、第1の従来例の半導体
装置のMES FETの断面図、第3図は、第2の従来
例の半導体装置のMES FETの断面図である。 1 ・・・半導体基板の活性層、 2・・・半導体基板
の低抵抗層、 3 ・・・半導体基板の高抵抗層、4 
・・・ゲート金属、 5 ・・・絶縁膜、 6 ・・・
ソースまたはドレイン金属、e・・・ゲート金属長、 
t ・・・絶縁膜厚。 特許出願人 松下電子工業株式会社 f−1 第1図 2°°°平華棒庵反I)代底水麿 3゛°゛子#俸(模の南芯犠盲 4・・・ プ゛−トε為 5・・・蛇ル縁 6・・・ ソー基 化はビレ4ン、金鳥L・・・胞オ伶
袂落 l・・ ソ゛−ト心&徒
FIG. 1 shows ME of a semiconductor device in one embodiment of the present invention.
FIG. 2 is a cross-sectional view of the MES FET of the semiconductor device of the first conventional example, and FIG. 3 is a cross-sectional view of the MES FET of the semiconductor device of the second conventional example. 1... Active layer of semiconductor substrate, 2... Low resistance layer of semiconductor substrate, 3... High resistance layer of semiconductor substrate, 4
... Gate metal, 5 ... Insulating film, 6 ...
Source or drain metal, e...gate metal length,
t...Insulating film thickness. Patent applicant Matsushita Electronics Co., Ltd. To ε 5...Snake edge 6...Saw base is fin 4, Kintori L...Ball fall down l... Soto mind & soul

Claims (4)

【特許請求の範囲】[Claims] (1)半導体の表面に溝が形成され、前記溝内に電極が
形成されるとともに、前記電極と前記溝の側壁との間に
絶縁物が介在されていることを特徴とする半導体装置。
(1) A semiconductor device characterized in that a groove is formed in the surface of a semiconductor, an electrode is formed in the groove, and an insulator is interposed between the electrode and a side wall of the groove.
(2)電極が電界効果トランジスタのゲート電極である
ことを特徴とする特許請求の範囲第(1)項記載の半導
体装置。
(2) The semiconductor device according to claim (1), wherein the electrode is a gate electrode of a field effect transistor.
(3)電極がショットキー障壁型ダイオードの一方の電
極のショットキー障壁電極であることを特徴とする特許
請求の範囲第(1)項記載の半導体装置。
(3) The semiconductor device according to claim (1), wherein the electrode is a Schottky barrier electrode of one electrode of a Schottky barrier diode.
(4)電極の頂部が下部よりも大きく形成されているこ
とを特徴とする特許請求の範囲第(1)項、第(2)項
または第(3)項記載の半導体装置。
(4) The semiconductor device according to claim (1), (2), or (3), wherein the top of the electrode is formed larger than the bottom.
JP29358685A 1985-12-28 1985-12-28 Semiconductor device Pending JPS62156876A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29358685A JPS62156876A (en) 1985-12-28 1985-12-28 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29358685A JPS62156876A (en) 1985-12-28 1985-12-28 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS62156876A true JPS62156876A (en) 1987-07-11

Family

ID=17796643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29358685A Pending JPS62156876A (en) 1985-12-28 1985-12-28 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS62156876A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5220186A (en) * 1990-12-26 1993-06-15 Mitsubishi Denki Kabushiki Kaisha Semiconductor device with a mushroom-shaped gate electrode
US5252843A (en) * 1989-09-01 1993-10-12 Fujitsu Limited Semiconductor device having overlapping conductor layers
US5409849A (en) * 1990-01-24 1995-04-25 Kabushiki Kaisha Toshiba Method of manufacturing a compound semiconductor device having gate electrode self-aligned to source and drain electrodes
US5470767A (en) * 1992-08-06 1995-11-28 Mitsubishi Denki Kabushiki Kaisha Method of making field effect transistor
US6002148A (en) * 1995-06-30 1999-12-14 Motorola, Inc. Silicon carbide transistor and method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5772384A (en) * 1980-10-24 1982-05-06 Nippon Telegr & Teleph Corp <Ntt> Manufacture of field-effect transistor
JPS57103363A (en) * 1980-12-18 1982-06-26 Nippon Telegr & Teleph Corp <Ntt> Manufacture of field effect transistor
JPS59205765A (en) * 1983-05-09 1984-11-21 Nec Corp Manufacture of semiconductor device
JPS59222965A (en) * 1983-06-02 1984-12-14 Nec Corp Manufacture of schottky barrier gate type field-effect transistor
JPS60779A (en) * 1983-06-17 1985-01-05 Nec Corp Manufacture of semiconductor device
JPS6046074A (en) * 1983-08-24 1985-03-12 Toshiba Corp Semiconductor device and manufacture thereof
JPS60165764A (en) * 1984-02-08 1985-08-28 Nec Corp Manufacture of compound semiconductor device
JPS6181673A (en) * 1984-09-28 1986-04-25 Sony Corp Semiconductor device
JPS6240776A (en) * 1985-08-15 1987-02-21 Matsushita Electric Ind Co Ltd Manufacture of semiconductor device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5772384A (en) * 1980-10-24 1982-05-06 Nippon Telegr & Teleph Corp <Ntt> Manufacture of field-effect transistor
JPS57103363A (en) * 1980-12-18 1982-06-26 Nippon Telegr & Teleph Corp <Ntt> Manufacture of field effect transistor
JPS59205765A (en) * 1983-05-09 1984-11-21 Nec Corp Manufacture of semiconductor device
JPS59222965A (en) * 1983-06-02 1984-12-14 Nec Corp Manufacture of schottky barrier gate type field-effect transistor
JPS60779A (en) * 1983-06-17 1985-01-05 Nec Corp Manufacture of semiconductor device
JPS6046074A (en) * 1983-08-24 1985-03-12 Toshiba Corp Semiconductor device and manufacture thereof
JPS60165764A (en) * 1984-02-08 1985-08-28 Nec Corp Manufacture of compound semiconductor device
JPS6181673A (en) * 1984-09-28 1986-04-25 Sony Corp Semiconductor device
JPS6240776A (en) * 1985-08-15 1987-02-21 Matsushita Electric Ind Co Ltd Manufacture of semiconductor device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5252843A (en) * 1989-09-01 1993-10-12 Fujitsu Limited Semiconductor device having overlapping conductor layers
US5409849A (en) * 1990-01-24 1995-04-25 Kabushiki Kaisha Toshiba Method of manufacturing a compound semiconductor device having gate electrode self-aligned to source and drain electrodes
US5220186A (en) * 1990-12-26 1993-06-15 Mitsubishi Denki Kabushiki Kaisha Semiconductor device with a mushroom-shaped gate electrode
US5288654A (en) * 1990-12-26 1994-02-22 Mitsubishi Denki Kabushiki Kaisha Method of making a mushroom-shaped gate electrode of semiconductor device
US5470767A (en) * 1992-08-06 1995-11-28 Mitsubishi Denki Kabushiki Kaisha Method of making field effect transistor
US6002148A (en) * 1995-06-30 1999-12-14 Motorola, Inc. Silicon carbide transistor and method

Similar Documents

Publication Publication Date Title
US4729966A (en) Process for manufacturing a Schottky FET device using metal sidewalls as gates
US3936857A (en) Insulated gate field effect transistor having high transconductance
US4178605A (en) Complementary MOS inverter structure
US3946424A (en) High frequency field-effect transistors and method of making same
US4737469A (en) Controlled mode field effect transistors and method therefore
JPS62156876A (en) Semiconductor device
US4268847A (en) Semiconductor device having an insulated gate type field effect transistor and method for producing the same
JPH10209174A (en) Junction field-effect transistor
JP2519284B2 (en) Method of manufacturing embedded gate type MOSFET
JPH06151738A (en) Semiconductor device and manufacture thereof
EP0076006A2 (en) Semiconductor device comprising a field effect transistor
US5115287A (en) Step-cut insulated gate static induction transistors and method of manufacturing the same
JPS6334619B2 (en)
JPS6122873B2 (en)
JPS59204280A (en) Vertical type metal oxide semiconductor transistor
JPH0728043B2 (en) Semiconductor device
JP3017838B2 (en) Semiconductor device and manufacturing method thereof
JPS6237543B2 (en)
JPH027475A (en) Field-effect transistor
JPS63131584A (en) Manufacture of cut type insulated-gate electrostatic induction transistor
JPS626670B2 (en)
JPS6054791B2 (en) Composite field effect transistor
JPS61172371A (en) Semiconductor device
JPS61187273A (en) Semiconductor device
JPS6224954B2 (en)