JPS59205765A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS59205765A
JPS59205765A JP8036983A JP8036983A JPS59205765A JP S59205765 A JPS59205765 A JP S59205765A JP 8036983 A JP8036983 A JP 8036983A JP 8036983 A JP8036983 A JP 8036983A JP S59205765 A JPS59205765 A JP S59205765A
Authority
JP
Japan
Prior art keywords
opening
insulating film
film
initial opening
side wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8036983A
Other languages
Japanese (ja)
Other versions
JPH065682B2 (en
Inventor
Kazutaka Kamitake
一孝 上武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP58080369A priority Critical patent/JPH065682B2/en
Publication of JPS59205765A publication Critical patent/JPS59205765A/en
Publication of JPH065682B2 publication Critical patent/JPH065682B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Drying Of Semiconductors (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To reduce the input capacitance of a FET by forming an initial opening for forming a Schottky junction to an insulating film shaped on a GaAs substrate, depositing an insulating film in approximately half thickness of the insulating film on the whole surface while being buried into the opening, leaving the thin insulating film only to the side wall of the opening through reactive plasma etching and digging a groove in predetermined depth on the bottom of a formed opening. CONSTITUTION:An N type active layer 2 is diffused and formed to the surface layer section of a semi-conductor GaAs substrate 1, the whole surface containing the active layer 2 is coated with a SiO2 film 3, and an initial opening 5 is bored to the film 3 through etching while using a photo-resist film 4 with an opening as a mask. A Si3N4 film 6 in approximately half thickness of the thickness of the SiO2 film 3 is applied on the whole surface while being attached on the bottom and side wall of the initial opening, and the film 6 adhering on the bottom is removed. Consequently, the width of the opening 5 to which a gate electrode 8 is formed in narrowed, a dug groove 7 in desired depth is bored in the exposed layer 2, and the gate electrode 8 is shaped in the groove 7. Accordingly, the gate electrode with width larger than one formed through photoetching technique is obtained.

Description

【発明の詳細な説明】 本発明は、半導体装置、特にガリウム砒素などの化合物
半導体にショットキ接合を形成してできるショットキ接
合型電界効果トランジスタの性能向上に役立つ製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a manufacturing method useful for improving the performance of a semiconductor device, particularly a Schottky junction field effect transistor formed by forming a Schottky junction in a compound semiconductor such as gallium arsenide.

一般に、ショットキ接合型電界効果トランジスタ(以下
ME8 FETという)の性能向上のためには、入力容
量および配線の対地容量ならびに配線間容量などの寄生
容量を低減し、かつ、相互コンダクタンスを上げること
が要求される。そのために、ゲート長の短縮、FET構
造の改善、半導体基板材料の改善など種々の観点から性
能向上策が図られている。
Generally, in order to improve the performance of a Schottky junction field effect transistor (hereinafter referred to as ME8 FET), it is required to reduce parasitic capacitance such as input capacitance, wiring ground capacitance, and inter-wiring capacitance, and increase mutual conductance. be done. To this end, measures are being taken to improve performance from various viewpoints, such as shortening gate length, improving FET structure, and improving semiconductor substrate materials.

現在、一般的に使用されている光学露光装置では、1μ
mまたはそれ以下の微細なパターンを形成することは難
しいとされているが、それに対して、特にゲート長短縮
化の為の加工技術の進展は著しく、リソグラフィ技術と
しては電子ビーム露光やX線露光までが次期製造技術と
して使われようとしている。また、微細でかつ高精度な
パターンを正確にデバイスに転写する為の加工技術とし
ても、ガスプラズマやイオンビームを駆使したドライ加
工装置の開発が進み、素子製造の基幹技術として定着し
つつある。
Currently, the optical exposure equipment commonly used has a
Although it is said to be difficult to form patterns as fine as 100 m or less, there has been remarkable progress in processing technology, especially for shortening gate lengths, and lithography techniques include electron beam exposure and X-ray exposure. is about to be used as the next generation manufacturing technology. Additionally, dry processing equipment that makes full use of gas plasma and ion beams is being developed as a processing technology for accurately transferring fine and highly accurate patterns onto devices, and is becoming established as a core technology for device manufacturing.

しかしながら、上記微細パターン形成の為のEB露光装
置やX線露光装置では、現在のところ余りにも高価であ
シ、かつ、製造能力面から見ても現在通常に行なわれて
いるリングラフィ装置と比べて劣ると考えられる。しか
も、これらの装置には個有の問題点、例えば、電子線損
傷、エツジ効果、X線損傷等々の問題もある。
However, the EB exposure equipment and X-ray exposure equipment for forming the above-mentioned fine patterns are currently too expensive, and in terms of manufacturing capacity, they are not comparable to the currently commonly used phosphorography equipment. It is considered to be inferior. Moreover, these devices have their own problems, such as electron beam damage, edge effects, and X-ray damage.

本発明の目的は、現在通常に使われている光学露光装置
を用いて1μm又はそれ以下の微細パターンを精度よく
形成すること、及び、GaAsMES FET等の耐圧
向上及び寄生抵抗低減を計り、しかも安価に製造出来る
方法を提供することにある 本発明方法は、ガリウム砒素などの化合物半導体基板上
の絶縁膜にショットキ接合形成用の初期開口を設け、つ
ぎに気相成長法またはプラズマエンハンスメント気相成
長法などにより前記初期開口部のり法から所望短縮分の
寸法の約1/2の厚さに絶縁膜を堆積し、つぎに7レオ
ンガス(CF4)に水素(H2)を5〜50%の比率で
混合したガスプラズマによる反応性プラズマエツチング
により前記初期開口部の側壁に堆積している絶縁膜を残
してそのA巳の部分の絶縁膜を除去し、つぎに前記側壁
の絶縁膜を侵さずに前記半導体基板をエツチングするエ
ツチング液により前記開口部の底に所望深さの溝を堀る
ことを含む構成を有する。
The purpose of the present invention is to form fine patterns of 1 μm or smaller with high precision using optical exposure equipment commonly used at present, and to improve breakdown voltage and reduce parasitic resistance of GaAsMES FETs, etc., and to reduce parasitic resistance at low cost. The purpose of the present invention is to provide a method that can be manufactured by forming an initial opening for forming a Schottky junction in an insulating film on a compound semiconductor substrate such as gallium arsenide, and then using vapor phase epitaxy or plasma enhancement vapor phase epitaxy. An insulating film is deposited to a thickness of about 1/2 of the desired shortened dimension from the initial opening gluing method, and then hydrogen (H2) is mixed with 7 Leon gas (CF4) at a ratio of 5 to 50%. The insulating film deposited on the side wall of the initial opening is removed by reactive plasma etching using gas plasma, and the insulating film is removed from the A-shaped portion, leaving the insulating film deposited on the side wall of the initial opening. The structure includes digging a groove of a desired depth in the bottom of the opening using an etching solution for etching the substrate.

つぎに本発明を実施例によシ説明する。Next, the present invention will be explained using examples.

第1図ないし第7図は本発明の一実施例を説明するため
の工程途中の半導体基板の工程順の断面図である。まず
、第1図のように、イオン注入法や気層成長法などによ
りN型能動層2が設けられた半絶縁性ガリウム砒素基板
1の上に、化学蒸着法などによシ、シリコン酸化膜3を
所望の厚さに堆積する。つぎに第2図のように、通常の
半導体装置製造工程で使用されている写真蝕刻法による
フォトレジスト膜4をマスクとして酸化膜3を所定寸法
Lμmにわたり蝕刻除去することによシ初期開口5をあ
け、つぎに7オトレジスト膜4を除去した後に、第3図
のように、気相成長法またはプラズマエンハンスメント
の気相成長法などによシ、初期開口部5の寸法(Lμm
)から所望短縮分の半分(1μm)厚さに酸化膜または
シリコン窒化膜などの絶縁膜6を堆積させる。続いて、
シリコン窒化膜やシリコン酸化膜のプラズマエツチング
装置として通常用いられているダイオード型几Fスパッ
タエツチング装置を用いてフレオンガス(CF4)に水
素(H2)を5〜50%の比率で混合したガスプラズマ
として異方性エツチングを行なうことにより、第4図の
ように、初期開口部5の側壁部のみにシリコン窒化膜6
を残して他領域は全てエッチオフする。
1 to 7 are cross-sectional views of a semiconductor substrate in the middle of a process in order to explain an embodiment of the present invention. First, as shown in FIG. 1, a silicon oxide film is deposited by chemical vapor deposition on a semi-insulating gallium arsenide substrate 1 on which an N-type active layer 2 is provided by ion implantation, vapor deposition, etc. 3 to the desired thickness. Next, as shown in FIG. 2, an initial opening 5 is formed by etching away the oxide film 3 over a predetermined dimension L μm using a photoresist film 4 formed by photolithography, which is used in a normal semiconductor device manufacturing process, as a mask. After removing the photoresist film 4, as shown in FIG. 3, the size of the initial opening 5 (L μm) is
), an insulating film 6 such as an oxide film or a silicon nitride film is deposited to a thickness of half the desired shortening (1 μm). continue,
A diode type F sputter etching system, which is commonly used as a plasma etching system for silicon nitride films and silicon oxide films, is used to generate a gas plasma in which Freon gas (CF4) and hydrogen (H2) are mixed at a ratio of 5 to 50%. By performing directional etching, the silicon nitride film 6 is formed only on the side wall of the initial opening 5, as shown in FIG.
All other areas are etched off except for.

以上の工程によシ、最終的に、ゲート電極を設ける開口
部5の寸法は、初期に開口された寸法りから21分減少
して、(L−21)のゲート長とすることができる。例
えば、初期1.5μmの開口を行ない、側壁部に0.4
μmの窒化膜を堆積して上記ドライエッチを行なうとす
れば、仕上がりのゲート長は0.7μmとすることがで
きる。
Through the above steps, the dimension of the opening 5 in which the gate electrode is provided can finally be reduced by 21 minutes from the initially opened dimension, resulting in a gate length of (L-21). For example, an initial opening of 1.5 μm is made, and a 0.4 μm opening is made on the side wall.
If a μm thick nitride film is deposited and the above dry etching is performed, the finished gate length can be 0.7 μm.

このように、本発明によれば、初期開口寸法を通常の写
真蝕刻技術によシ比較的容易に形成しておいても、上述
した方法によシ、通常写真蝕刻技術では形成困難な短い
寸法まで容易に形成することが可能となる。
As described above, according to the present invention, even if the initial opening size is relatively easily formed by ordinary photolithography, short dimensions that are difficult to form by ordinary photolithography can be formed by the above-mentioned method. It is possible to easily form up to

つぎに、MB2 FETにおける耐圧向上及び寄生抵抗
低減等の観点から、開口部5を順テーパリセス構造、又
は逆テーバリセス構造とする為に、第5図のように、該
ガリウム砒素基板lをリン酸−過酸化水素−水素及び水
酸化ナトリウム−過酸化水素−水素のガリウム砒素エッ
チャントによシ、シリコン酸化膜やシリコン窒化膜6は
侵さずに該基板のみを所望のエツチングすることにより
溝7を堀り込み、電界効果トランジスタの能動層厚さを
制御して所望のピンチオフ電圧や飽和電流等を調整する
。つぎに、第6図のように、通常ガリウム砒素MES 
FET製造工程で行なわれる様にゲート電極8を真空蒸
着法と通常写真蝕刻法によシ形成する。続いて、第7図
のように、電界効果トランジスタのソース電極とドレイ
ン電極9,9を同時に、通常写真蝕刻法によシリコン窒
化膜を開口後、真空蒸着法等により、例えば、オーミッ
ク電極としてはAuGe/Ni又はAu Qe / P
 を等を蒸着後に、400℃水素雰囲気等でアロイして
後、Ti/Pt/Au等を通常写真蝕刻法による所謂リ
フトオフ技術等を駆使して形成する。
Next, from the viewpoint of improving the withstand voltage and reducing the parasitic resistance in the MB2 FET, in order to form the opening 5 into a forward tapered recess structure or a reverse tapered recess structure, the gallium arsenide substrate 1 is heated with phosphoric acid as shown in FIG. Grooves 7 are excavated by etching only the substrate as desired using hydrogen peroxide-hydrogen and sodium hydroxide-hydrogen peroxide-hydrogen gallium arsenide etchants without attacking the silicon oxide film or silicon nitride film 6. In addition, the thickness of the active layer of the field effect transistor is controlled to adjust the desired pinch-off voltage, saturation current, etc. Next, as shown in Figure 6, the usual gallium arsenide MES
The gate electrode 8 is formed by vacuum evaporation and ordinary photolithography, as is done in the FET manufacturing process. Next, as shown in FIG. 7, the source and drain electrodes 9, 9 of the field effect transistor are formed at the same time, after opening the silicon nitride film by ordinary photolithography, by vacuum evaporation or the like, for example, as ohmic electrodes. AuGe/Ni or Au Qe/P
After vapor-depositing and alloying in a hydrogen atmosphere at 400° C., Ti/Pt/Au and the like are formed by making full use of a so-called lift-off technique using a normal photolithography method.

上述の実施例で示す様に、本発明ではゲート開口部側壁
への絶縁膜残しによるゲート長短縮化、及び、側壁膜形
成後にさらに該半導体基板を蝕刻することによる寄生抵
抗低減化を組み合わせることにより、ガリウム砒素等の
MES FETにおける入力容量等の低減化、及び所望
能動層厚さにおける寄生抵抗低減化を一緒に実現し、し
かも、製品の製造コストを安く製造できる効果がある。
As shown in the embodiments described above, the present invention combines the shortening of the gate length by leaving an insulating film on the sidewall of the gate opening, and the reduction of parasitic resistance by further etching the semiconductor substrate after forming the sidewall film. It is possible to reduce the input capacitance, etc. in MES FETs made of gallium arsenide, etc., and to reduce the parasitic resistance at a desired active layer thickness, and also to reduce the manufacturing cost of the product.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第7図は本発明の一実施例の製造工程を説
明するだめの工程途中の工程順の基板断面図である。 l・・・・・・ガリウム砒素基板、2・・・・・・N型
能動層、3・・・・・・酸化膜、4・・・・・・フォト
レジスト膜、5・・・・・・開口部、6・・・・・・シ
リコン窒化膜、7・・・・・・堀込み溝′、8・・・・
・・ゲート電極、9・・・・・・ソース・ドレイン電極
1 to 7 are cross-sectional views of the substrate in the middle of the process to explain the manufacturing process of an embodiment of the present invention. 1... Gallium arsenide substrate, 2... N-type active layer, 3... Oxide film, 4... Photoresist film, 5...・Opening, 6...Silicon nitride film, 7...Drilled groove', 8...
...Gate electrode, 9...Source/drain electrode.

Claims (1)

【特許請求の範囲】[Claims] ガリウム砒素などの化合物半導体基板にショットキ接合
を形成してなるショットキ接合型電界効果トランジスタ
(以下MES FETという)の製造に際し、前記基板
上に設けた絶縁膜にショットキ接合形成用の初期開口を
設け、つぎに気相成長法またはプラズマエンハンスメン
ト気相成長法などにより前記初期開口部の寸法から所望
短縮分の寸法の約172の厚さに絶縁膜を堆積し、つぎ
に7レオンガス(CF4)に水素(H2)を5〜50チ
の比率で混合したガスプラズマによる反応性プラズマエ
ツチングによシ前記初期開ロ部の側壁に堆積している絶
縁膜を残してその他の部分の絶縁膜を除去し、つぎに前
記側壁の絶縁膜を侵さずに前記半導体基板をエツチング
するエツチング液により前記開口部の底に所望深さの溝
を堀ることを含むことを特徴とする半導体装置の製造方
法。
When manufacturing a Schottky junction field effect transistor (hereinafter referred to as MES FET) in which a Schottky junction is formed on a compound semiconductor substrate such as gallium arsenide, an initial opening for forming a Schottky junction is provided in an insulating film provided on the substrate, Next, an insulating film is deposited by vapor phase epitaxy or plasma enhancement vapor phase epitaxy to a thickness of about 172 mm, which is the desired shortening from the initial opening dimension, and hydrogen ( By reactive plasma etching using gas plasma mixed with H2) at a ratio of 5 to 50 cm, the insulating film deposited on the side wall of the initial opening is removed, and the other parts of the insulating film are removed. 1. A method of manufacturing a semiconductor device, comprising: digging a groove of a desired depth at the bottom of the opening using an etching solution that etches the semiconductor substrate without corroding the insulating film on the side wall.
JP58080369A 1983-05-09 1983-05-09 Method for manufacturing semiconductor device Expired - Lifetime JPH065682B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58080369A JPH065682B2 (en) 1983-05-09 1983-05-09 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58080369A JPH065682B2 (en) 1983-05-09 1983-05-09 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPS59205765A true JPS59205765A (en) 1984-11-21
JPH065682B2 JPH065682B2 (en) 1994-01-19

Family

ID=13716351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58080369A Expired - Lifetime JPH065682B2 (en) 1983-05-09 1983-05-09 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JPH065682B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61251080A (en) * 1985-04-27 1986-11-08 Fujitsu Ltd Manufacture of field effect transistor
JPS62156876A (en) * 1985-12-28 1987-07-11 Matsushita Electronics Corp Semiconductor device
JPS63116430A (en) * 1986-10-28 1988-05-20 インタ−ナショナル・ビジネス・マシ−ンズ・コ−ポレ−ション Method of forming mask
JPH01136337A (en) * 1987-10-30 1989-05-29 Internatl Business Mach Corp <Ibm> Method of forming spacers with different widths on substrate
JPH02105540A (en) * 1988-10-14 1990-04-18 Nec Corp Manufacture of semiconductor device
JPH0897232A (en) * 1994-09-29 1996-04-12 Nec Corp Manufacture of semiconductor device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5772384A (en) * 1980-10-24 1982-05-06 Nippon Telegr & Teleph Corp <Ntt> Manufacture of field-effect transistor
JPS57133682A (en) * 1980-12-24 1982-08-18 Philips Nv Method of producing field effect transistor
JPS57204175A (en) * 1981-06-11 1982-12-14 Nec Corp Manufacture of semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5772384A (en) * 1980-10-24 1982-05-06 Nippon Telegr & Teleph Corp <Ntt> Manufacture of field-effect transistor
JPS57133682A (en) * 1980-12-24 1982-08-18 Philips Nv Method of producing field effect transistor
JPS57204175A (en) * 1981-06-11 1982-12-14 Nec Corp Manufacture of semiconductor device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61251080A (en) * 1985-04-27 1986-11-08 Fujitsu Ltd Manufacture of field effect transistor
JPS62156876A (en) * 1985-12-28 1987-07-11 Matsushita Electronics Corp Semiconductor device
JPS63116430A (en) * 1986-10-28 1988-05-20 インタ−ナショナル・ビジネス・マシ−ンズ・コ−ポレ−ション Method of forming mask
JPH01136337A (en) * 1987-10-30 1989-05-29 Internatl Business Mach Corp <Ibm> Method of forming spacers with different widths on substrate
JPH02105540A (en) * 1988-10-14 1990-04-18 Nec Corp Manufacture of semiconductor device
JPH0897232A (en) * 1994-09-29 1996-04-12 Nec Corp Manufacture of semiconductor device

Also Published As

Publication number Publication date
JPH065682B2 (en) 1994-01-19

Similar Documents

Publication Publication Date Title
EP0113161B1 (en) Method of fabricating a schottky gate field effect transistor
US6838325B2 (en) Method of forming a self-aligned, selectively etched, double recess high electron mobility transistor
US4536942A (en) Fabrication of T-shaped metal lines for semiconductor devices
JPH0624209B2 (en) Method for forming double recess field effect transistor
JPS59205765A (en) Manufacture of semiconductor device
US5376812A (en) Semiconductor device
JPH0864775A (en) Manufacture of semiconductor device
US6051484A (en) Semiconductor device and method of manufacturing thereof
JPS622666A (en) Field effect transistor
JPS59193069A (en) Manufacture of semiconductor device
JPS60225478A (en) Manufacture of compound semiconductor device
JPH0684950A (en) Manufacture of field effect transistor
JP2591436B2 (en) Method for manufacturing field effect transistor
JPS63137481A (en) Manufacture of semiconductor device
JPS62115782A (en) Manufacture of semiconductor device
JP2906856B2 (en) Method for manufacturing field effect transistor
JP2607310B2 (en) Method for manufacturing field effect transistor
JPS6323366A (en) Manufacture of field-effect transistor
JPH0327536A (en) Manufacture of field effect transistor
EP0613174A2 (en) Method for making fine-line semiconductor devices
JPH04137737A (en) Manufacture of semiconductor device
JPH0745637A (en) Compound semiconductor device and its manufacture
JPS59205766A (en) Field-effect transistor
JPH01253968A (en) Manufacture of field effect transistor
JPH01251659A (en) Manufacture of hetero junction bipolar transistor