JPS6054791B2 - Composite field effect transistor - Google Patents

Composite field effect transistor

Info

Publication number
JPS6054791B2
JPS6054791B2 JP52132730A JP13273077A JPS6054791B2 JP S6054791 B2 JPS6054791 B2 JP S6054791B2 JP 52132730 A JP52132730 A JP 52132730A JP 13273077 A JP13273077 A JP 13273077A JP S6054791 B2 JPS6054791 B2 JP S6054791B2
Authority
JP
Japan
Prior art keywords
type
region
conductivity type
type region
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52132730A
Other languages
Japanese (ja)
Other versions
JPS5466078A (en
Inventor
祐光 竹名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP52132730A priority Critical patent/JPS6054791B2/en
Publication of JPS5466078A publication Critical patent/JPS5466078A/en
Publication of JPS6054791B2 publication Critical patent/JPS6054791B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7809Vertical DMOS transistors, i.e. VDMOS transistors having both source and drain contacts on the same surface, i.e. Up-Drain VDMOS transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Junction Field-Effect Transistors (AREA)

Description

【発明の詳細な説明】 本発明は電界効果トランジスタに関するものである。[Detailed description of the invention] The present invention relates to field effect transistors.

従来の絶縁ゲート型電界効果トランジスタ(MOSFE
T)の一例を第1図に示す。
Conventional insulated gate field effect transistor (MOSFE)
An example of T) is shown in FIG.

P型半導体基板51上のN型エピタキシャル層52にP
型領域54とN゛型領域57とを有し、さらにP型領域
54中にはN゛型領域56を有している。N゛型領域5
6とN型エピタキシャル層52とにかけてP型領域54
上に絶縁膜53とゲート電極59とを被着している。こ
れはN゛型領域を57をドレイン、N+型領域56をソ
ース、ゲート電極59を第1ゲート、P型領域54とP
型半導体基板51を第2ゲートとする絶縁ゲート型電界
効果トランジスタ(以下MOSEFTという)で、チャ
ンネル領域とソース領域を同一の拡散窓で拡散出来るた
め非常にチャンネル長が短くしたがつて相互コンダクタ
ンス胛の大きな特性のMOSEFTを作ることが可能で
ある。
P is applied to the N-type epitaxial layer 52 on the P-type semiconductor substrate 51.
It has a type region 54 and an N-type region 57, and further has an N-type region 56 in the P-type region 54. N-type region 5
6 and the N-type epitaxial layer 52, the P-type region 54
An insulating film 53 and a gate electrode 59 are deposited thereon. This includes an N type region 57 as a drain, an N+ type region 56 as a source, a gate electrode 59 as a first gate, a P type region 54 and a P
This is an insulated gate field effect transistor (hereinafter referred to as MOSEFT) that uses the type semiconductor substrate 51 as the second gate.Since the channel region and the source region can be diffused in the same diffusion window, the channel length is extremely short and the transconductance band is short. It is possible to create a MOSEFT with large characteristics.

しカルチャンネル長をあまり短くすると耐圧が低くなる
ためN型エピタキシャル層52の不純物濃度を下げてこ
のN型領域へ・の空乏層の伸びを大きくしてやり、ドレ
イン・ソース間耐圧を高くするようにしなければならな
い。しカルN型エピタキシャル層52の不純物濃度をあ
まり下げるとドレインの抵抗が大きくなりオン抵抗が増
加し特性上あまり好ましくない。一方第2図は接合型電
界効果トランジスタ(以下、J−FETという)の一例
を示したものである。これはP型半導体基板61上のN
型エピタキシャル層62にドレイン領域67とソース領
域となるN゛型領域66とこれらの間に存し第1ゲート
領域となるP型領域64とを有し、P型半導体基板61
は第2ゲート領域として用いたものである。このような
構造のJ−FETの場合上記MOS、EFTに比べてチ
ャンネル長を短くすることは出来ないためあまり相互コ
ンダクタンス胛を大きくすることはできないが、空乏層
をN型エピタキシャル層62(チャンネル領域)とP型
領域64(第1ゲート領域)並びにP型半導体基板61
(第2ゲート領域)の両方に伸びるようにしてやればN
型エピタキシャル層62の不純物濃度を極端に下げなく
てもドレイン・ソース間耐圧を十分に大きくすることが
可能であり、低オン抵抗、高耐圧を実現出来る。本発明
は絶縁ゲート型電界効果トランジスタ(MOSEFT)
と接合型電界効果トランジスタ(J−FET)を複合化
し、ドレイン・ソース間のオン抵抗RDs(0N)を大
きくせずに、大きな相互コンダクタンスGmと高いドレ
イン●ソース間耐旺追V。
However, if the total channel length is too short, the breakdown voltage will decrease, so it is necessary to lower the impurity concentration of the N-type epitaxial layer 52 and increase the extension of the depletion layer into this N-type region, thereby increasing the drain-source breakdown voltage. Must be. If the impurity concentration of the N-type epitaxial layer 52 is lowered too much, the resistance of the drain increases and the on-resistance increases, which is not very desirable in terms of characteristics. On the other hand, FIG. 2 shows an example of a junction field effect transistor (hereinafter referred to as J-FET). This is the N on the P-type semiconductor substrate 61.
The type epitaxial layer 62 has a drain region 67, an N-type region 66 which becomes a source region, and a P-type region 64 which exists between these and becomes a first gate region, and a P-type semiconductor substrate 61.
is used as the second gate region. In the case of a J-FET with such a structure, the channel length cannot be made shorter than that of the above-mentioned MOS and EFT, so the mutual conductance cannot be made too large. ), P-type region 64 (first gate region), and P-type semiconductor substrate 61
(Second gate region) If you make it extend to both sides, N
It is possible to sufficiently increase the drain-source breakdown voltage without extremely lowering the impurity concentration of the type epitaxial layer 62, and low on-resistance and high breakdown voltage can be achieved. The present invention is an insulated gate field effect transistor (MOSEFT)
By combining a junction field effect transistor (J-FET) and a junction field effect transistor (J-FET), it has a large mutual conductance Gm and high drain-source resistance V without increasing the on-resistance RDs (0N) between the drain and source.

,を同時に満足し、さらにまた帰還容量Crss及び出
力容量COssをも小さくすることを目的としたもので
ある。このことにより電界効果トランジスタは信頼度が
高まり高耐圧大電力化が可能となり、さらに高周波高出
力用途としてすぐれた性能のものが得られる。次に図面
を参照して本発明をより詳細に説明すする。
, and also to reduce the feedback capacitance Crss and the output capacitance COss. This increases the reliability of field-effect transistors, enables them to withstand high voltages and increase power consumption, and provides excellent performance for high-frequency, high-output applications. Next, the present invention will be explained in more detail with reference to the drawings.

第3図は本発明の基本的実施例を示したもので、P型半
導体基板71のN型エピタキシャル層72にN+型領域
77とP型領域74とを有し、このP型領域74内には
さらにN+型領域76が形成されている。
FIG. 3 shows a basic embodiment of the present invention, in which an N type epitaxial layer 72 of a P type semiconductor substrate 71 has an N+ type region 77 and a P type region 74. Furthermore, an N+ type region 76 is formed.

これらN+型領域76,77およびP型領域74は環状
の同心円を形成している。N+型領域76で囲まれる部
分上には絶縁膜73を介してゲート電極79が形成され
ている。この半導体装置は等価的に第4図の如く動作す
る。すなわちN+型領域77をドレインD,P型領域7
4をゲートG2絶縁膜73下のN型エピタキシャル層7
2の表面をソースとする接合型電界効果トランジスタは
第4図のFET−2を構成しており、さらにN+型領域
76をソースS、電極79を第1ゲートG1、絶縁膜7
3下のN型エピタキシャル層72の表面をドレインとす
る絶縁ゲート型電界効果トランジスタは第4図のFET
一1を構成しており、これらFET−1とFET−2と
は絶縁膜73下のエピタキシャル層72の表面.で直列
に接続された構造となつている。このような複合型の電
界効果トランジスタではFET−1のドレイン●ソース
間にかかる電圧の最高値はFET−2のピンチオフ電圧
に等しいので、FET−2のピンチオフ電圧をFET−
1のドーレイン・ソース間耐圧より低くなるようにし、
FET−2のドレイン●ソース間耐圧を十分に大きくし
てやれば、全体の耐圧を大きく出来る。
These N+ type regions 76, 77 and P type region 74 form annular concentric circles. A gate electrode 79 is formed on the portion surrounded by the N+ type region 76 with an insulating film 73 interposed therebetween. This semiconductor device operates equivalently as shown in FIG. That is, the N+ type region 77 is used as the drain D, and the P type region 7 is used as the drain D.
4 is the N-type epitaxial layer 7 under the gate G2 insulating film 73
A junction field effect transistor whose source is the surface of the insulating film 7 constitutes the FET-2 shown in FIG.
The insulated gate field effect transistor whose drain is the surface of the N-type epitaxial layer 72 below 3 is the FET shown in FIG.
These FET-1 and FET-2 form the surface of the epitaxial layer 72 under the insulating film 73. The structure is connected in series. In such a composite field effect transistor, the maximum value of the voltage applied between the drain and source of FET-1 is equal to the pinch-off voltage of FET-2, so the pinch-off voltage of FET-2 is
The drain-source breakdown voltage is set to be lower than the drain-source breakdown voltage of 1.
If the drain-source breakdown voltage of FET-2 is made sufficiently large, the overall breakdown voltage can be increased.

ただしオン抵抗を大きくしないためにFET−2のオン
抵抗はFET−1のオン抵抗よりも十分に小さくする必
要がある。したがつて上記条件を満足するように設計し
てやればFET−1で決まる胛と低イオン抵抗でFET
−1の耐圧とFET−2の耐圧との和にほぼ等しい耐圧
をもつた高耐圧電界効果トランジスタを作ることが可能
である。また構造上ドレインをゲート1間の容卜連Rs
sとドレインとソース間容量COssを小さくすること
も可能である。本発明の一具体的実施例を第5図によつ
て説明する。
However, in order not to increase the on-resistance, the on-resistance of FET-2 must be made sufficiently smaller than the on-resistance of FET-1. Therefore, if the design satisfies the above conditions, it will be possible to create an FET with low ionic resistance and the same value determined by FET-1.
It is possible to produce a high-voltage field effect transistor having a breakdown voltage approximately equal to the sum of the breakdown voltage of -1 and the breakdown voltage of FET-2. Also, due to the structure, the drain is connected between gate 1 and Rs.
It is also possible to reduce s and the drain-source capacitance COss. A specific embodiment of the present invention will be described with reference to FIG.

第5A図はP型半導体基板の上にN型半導体領域を有す
るエピタキシャル・ウェハーであり、基板1はP型不純
物基板(例えば1014〜1016at0ms/c!l
)、領域2はN型エピタキシャル層(例えば1014〜
1016at0ms/Crl)、厚さ数μm〜10数μ
m程度)である。
FIG. 5A shows an epitaxial wafer having an N-type semiconductor region on a P-type semiconductor substrate, and the substrate 1 is a P-type impurity substrate (for example, 1014 to 1016 at0 ms/c!l).
), region 2 is an N-type epitaxial layer (e.g. 1014~
1016at0ms/Crl), thickness of several μm to several tens of μm
m).

このエピタキシャルウェハー上に不純物拡散に対するマ
スク層3(例えば熱酸化膜等)を形成する。次に第5B
図に示すようにゲート2のP型不純物を拡散するための
窓を開けP型領域4を形成する。
A mask layer 3 (for example, a thermal oxide film, etc.) for impurity diffusion is formed on this epitaxial wafer. Next, 5th B
As shown in the figure, a window for diffusing the P-type impurity of the gate 2 is opened to form a P-type region 4.

この場合ゲート2の拡散はFET−1の耐圧よりFET
−2のピンチオフ電圧が低く、FET−1のオン抵抗よ
りもFET−2のオン抵抗が低くなるようにする必要が
ある。その後、マスク層(例えば熱酸化膜等)を全面に
形成した後、第5C図に示すようにP型不純物拡散層4
の部分と一方の部分は重なるが他方はP型不純物層4の
領域から十分離して不純物層4の影響を受けないような
拡散窓を開け第2のP型不純物層5を形成する。
In this case, the diffusion of gate 2 is higher than the withstand voltage of FET-1.
It is necessary to ensure that the pinch-off voltage of FET-2 is low and that the on-resistance of FET-2 is lower than that of FET-1. Thereafter, after forming a mask layer (for example, a thermal oxide film, etc.) on the entire surface, a P-type impurity diffusion layer 4 is formed as shown in FIG. 5C.
A second P-type impurity layer 5 is formed by opening a diffusion window in which one portion overlaps with the other, but is sufficiently separated from the region of the P-type impurity layer 4 so as not to be affected by the impurity layer 4.

さらに第5D図に示すように領域7を拡散するための窓
を開けN型不純物領域6と領域7を同時に形成する。
Furthermore, as shown in FIG. 5D, a window for diffusing region 7 is opened and N-type impurity region 6 and region 7 are formed simultaneously.

ここで領域6がソース、領域7がドレインとなり、領域
5と領域6の拡散の広がりの差がFET−1のチャンネ
ル長となる。しかるのち、第5E図に示すように所望の
厚さの絶縁物層8を領域2と6の間の領域5の表面部分
の上に形成し、さらに電極9(ゲート1)、電極10(
ソース7)、電極11(ドレイン)、電極12(ゲート
2″)を形成し全工程を終了する。
Here, region 6 becomes the source, region 7 becomes the drain, and the difference in diffusion spread between regions 5 and 6 becomes the channel length of FET-1. Thereafter, as shown in FIG. 5E, an insulating layer 8 of a desired thickness is formed on the surface portion of the region 5 between the regions 2 and 6, and an electrode 9 (gate 1) and an electrode 10 (
A source 7), an electrode 11 (drain), and an electrode 12 (gate 2'') are formed, and the entire process is completed.

本実施例は前号ET−2のゲート2に相当する部分をソ
ース電極と短絡した場合について述べたが、独立に引き
出しゲート2″と共にFETのピンチフオ電圧をコント
ロールすることが出来ることは明らかである。第6A図
は第5A図と同様P型半導体基板21の上にN型エピタ
キシャル層22があるエピタキシャル・ウェハーであり
、基板21はP型不純物基板(例えば1014〜101
6at0ms/Cll)、エピタキシャル層22はN型
エピタキシャル層(例えば1014〜1016at0m
s/d1厚さ数μm〜10数μm程度)である。
In this example, the case where the part corresponding to the gate 2 of ET-2 in the previous issue was short-circuited with the source electrode was described, but it is clear that the pinch-off voltage of the FET can be controlled independently in conjunction with the extraction gate 2''. 6A is an epitaxial wafer having an N-type epitaxial layer 22 on a P-type semiconductor substrate 21, similar to FIG. 5A, and the substrate 21 is a P-type impurity substrate (for example, 1014 to 101
6at0ms/Cll), and the epitaxial layer 22 is an N-type epitaxial layer (for example, 1014 to 1016at0m
s/d1 thickness of several μm to about 10-odd μm).

このNエピタキシャルウェハー上に不純物拡散に対する
マスク層23(例えば熱酸化膜等)を形成する。次に第
6B図に示すように部分的に開孔し、更にゲート2(領
域24)を形成するための窓以外の窓にマスク層23″
を形成する。
A mask layer 23 (for example, a thermal oxide film, etc.) for impurity diffusion is formed on this N epitaxial wafer. Next, as shown in FIG. 6B, holes are partially opened, and a mask layer 23'' is formed on the windows other than those for forming gate 2 (region 24).
form.

マスク層23とは異なるものを用い、マスク層23″を
選択的に除去できるもの(例えばフォトレジスタ材、S
i3N4等)を用いる。しかるのち第6C図のようにP
型領域24を形成する。
A material different from the mask layer 23 is used to selectively remove the mask layer 23'' (for example, a photoresist material, S
i3N4 etc.). Then, as shown in Figure 6C, P
A mold region 24 is formed.

これも第5B図と同様FET−1の耐圧よりFET−2
のピンチオフ電圧が低く、FET一1のオン抵抗よりも
FET−2のオン抵抗が低くなるように領域24を形成
する。その後、マスク層23″を除去し、第6D図のご
とくN型不純物層26,2『,27を形成する。
This is also similar to Figure 5B, since the withstand voltage of FET-1 is
The region 24 is formed such that the pinch-off voltage of FET-2 is low and the on-resistance of FET-2 is lower than that of FET-1. Thereafter, the mask layer 23'' is removed, and N-type impurity layers 26, 2'', 27 are formed as shown in FIG. 6D.

この場合領域26がソース領域27がドレインに相当し
、領域26と2『の間の領域24の間隔がFET−1の
チャンネル長に相当する。このように領域26″をもう
けることによりFET−2のピンチオフ電圧とFET−
1のチャンネル長を独立に決めることができる。最後に
第6E図のように所望の厚さの絶縁物層28を領域26
と26″の間の領域24の表面部分の上に形成し、さら
に電極29(ゲート1)、電極30(ソース)、電極3
1(ドレイン)、電極32(ゲート20を形成し全工程
を終了する。
In this case, the region 26 corresponds to the source region 27 and the drain, and the distance between the regions 26 and 2' corresponds to the channel length of the FET-1. By providing the region 26'' in this way, the pinch-off voltage of FET-2 and the FET-
1 channel length can be determined independently. Finally, as shown in FIG.
electrode 29 (gate 1), electrode 30 (source), electrode 3
1 (drain) and electrode 32 (gate 20) are formed to complete the entire process.

本具体的実施例は第5図の場合と同様前記FET一2の
ゲート2に相当する部分をソース電極と短絡した場合に
ついて述べているが、独立に引き出しゲート2″と共に
FET−2のピンチオア電圧をコントロールできること
は明らかである。第7図は更に他の具体的実施例でFE
T−2のゲート2とゲート2″を拡散層によつて内部で
短j絡した場合である。
This specific example describes the case where the portion corresponding to the gate 2 of the FET-2 is shorted to the source electrode as in the case of FIG. 5, but the pinch-or voltage of the FET-2 is It is clear that it is possible to control the FE.
This is a case where gate 2 and gate 2'' of T-2 are internally shorted by a diffusion layer.

P型半導体基板41上にはN型エピタキシャル層42を
有し、このN型エピタキシャル層42にこのエピタキシ
ャル層42を四角く囲むように半導体基板41に達する
P+型領域40を形成している。またこのN型エピタキ
シャル層にはN+型領域46とそれぞれ平行に形成され
ているこれらN+型領域46,47とP型領域44は対
称的に左側部分にも形成されている。この2つのN+型
領域46を連結するように絶縁物43とゲート電極49
とが形成されている。この具体的実施例は2つのN+型
領域47がドレインDl2つのN+型領域がソースS1
ゲート電極49が第1ゲートG1、2つのP型領域44
とこれにP+型領域を介して接続されるP型半導体基板
を第2ゲートG2とする複合型電界効果トランジスタと
して動作する。以上具体例をNチャンネル型の場合につ
いて述べたが、Pチャンネル型の場合にも全く適用可能
であることは明らかである。
An N-type epitaxial layer 42 is provided on a P-type semiconductor substrate 41, and a P+-type region 40 reaching the semiconductor substrate 41 is formed in this N-type epitaxial layer 42 so as to squarely surround this epitaxial layer 42. Further, in this N-type epitaxial layer, these N+-type regions 46 and 47, which are formed parallel to the N+-type region 46, and the P-type region 44 are also formed symmetrically on the left side. An insulator 43 and a gate electrode 49 are connected to connect these two N+ type regions 46.
is formed. In this specific embodiment, two N+ type regions 47 are drain D1 and two N+ type regions 47 are source S1.
The gate electrode 49 is the first gate G1, and the two P-type regions 44
The second gate G2 operates as a composite field effect transistor having a P type semiconductor substrate connected thereto via a P+ type region as a second gate G2. Although the specific example has been described above for an N-channel type, it is clear that it is completely applicable to a P-channel type as well.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の絶縁ゲート型電界効果トランジスタの構
造の一例を示す断面図である。 第2図は従来の接合型電界効果トランジスタの構造の一
例を示す断面図である。第3図は本発明の一実施例を示
す断面図である。第4図は本発明の一実施例の等価回路
図である。第5図A上は本発明の一具体的実施例を製造
工程順に示す断面図である。第6図A上本発明の他の具
体的実施例を製造工程順に示す断面図である。第7図は
本発明の更に他の具体的実施例を示す図である。N+・
・・・・・N型高濃度不純物領域、N・・・・・・N型
不純物領域、P・・・・・・P型不純物領域、S・・・
・・・ソース、D・・・・・・ドレイン、G1・・・・
・・ゲート1、G2・・・・・・ゲート2、G2″・・
・・・・ゲート2″、1,21,41,51,61,7
1・・・・・・P型半導体基板、2,22,42,52
,62,72・・・・・・N型エピタキシャル層、3,
23,43,53,63,73・・・・・・酸化膜、4
,24,44,54,64,74・・・・・・P型領域
、6,26,46,56,66,76・・・・・・N+
型領域、7,27,47,57,67,77・・・・・
・N+型領域、9,29,49,59,79・・・・・
・ゲート電極。
FIG. 1 is a cross-sectional view showing an example of the structure of a conventional insulated gate field effect transistor. FIG. 2 is a sectional view showing an example of the structure of a conventional junction field effect transistor. FIG. 3 is a sectional view showing one embodiment of the present invention. FIG. 4 is an equivalent circuit diagram of an embodiment of the present invention. The upper part of FIG. 5A is a sectional view showing a specific embodiment of the present invention in the order of manufacturing steps. FIG. 6A is a sectional view showing another specific embodiment of the present invention in the order of manufacturing steps; FIG. 7 is a diagram showing still another specific embodiment of the present invention. N+・
...N-type high concentration impurity region, N...N-type impurity region, P...P-type impurity region, S...
...Source, D...Drain, G1...
...Gate 1, G2...Gate 2, G2''...
...Gate 2'', 1, 21, 41, 51, 61, 7
1...P-type semiconductor substrate, 2, 22, 42, 52
, 62, 72...N-type epitaxial layer, 3,
23, 43, 53, 63, 73...Oxide film, 4
, 24, 44, 54, 64, 74...P type region, 6, 26, 46, 56, 66, 76...N+
Type area, 7, 27, 47, 57, 67, 77...
・N+ type region, 9, 29, 49, 59, 79...
・Gate electrode.

Claims (1)

【特許請求の範囲】[Claims] 1 一導電型半導体基板の上部に第1の反対導電型領域
を有し、該第1の反対導電型領域内に第1の一導電型領
域を有し、該第1の一導電型領域内に第2の反対導電型
領域を有し、さらに前記第1の反対導電型領域と前記第
2の反対導電型領域との間にかさまれた前記第1の導電
型領域の表面上に絶縁物層と該絶縁物層上に導電性電極
を有し、前記一導電型半導体基板と前記第1の一導電型
領域をゲートとしかつ前記一導電型半導体基板と前記第
1の一導電型領域の間の前記第1の反対導電型領域をチ
ャンネルとする接合型電界効果トランジスタと、前記第
2の反対導電型領域をソースとし、前記導電性電極をゲ
ートとしかつ前記第1の反対導電型領域をドレインとす
る絶縁ゲート型電界効果トランジスタとを直列接続した
構造の複合型電界効果トランジスタ。
1 having a first opposite conductivity type region on the upper part of one conductivity type semiconductor substrate, having a first one conductivity type region within the first opposite conductivity type region, and having a first one conductivity type region within the first one conductivity type region; a second opposite conductivity type region, and further comprising an insulating material on the surface of the first conductivity type region interposed between the first opposite conductivity type region and the second opposite conductivity type region. layer and a conductive electrode on the insulating layer, the one-conductivity type semiconductor substrate and the first one-conductivity type region are used as gates, and the one-conductivity type semiconductor substrate and the first one-conductivity type region are connected to each other. a junction field effect transistor having the first opposite conductivity type region between as a channel, the second opposite conductivity type region as a source, the conductive electrode as a gate, and the first opposite conductivity type region as a gate; A composite field effect transistor with a structure in which an insulated gate field effect transistor serving as a drain is connected in series.
JP52132730A 1977-11-04 1977-11-04 Composite field effect transistor Expired JPS6054791B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52132730A JPS6054791B2 (en) 1977-11-04 1977-11-04 Composite field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52132730A JPS6054791B2 (en) 1977-11-04 1977-11-04 Composite field effect transistor

Publications (2)

Publication Number Publication Date
JPS5466078A JPS5466078A (en) 1979-05-28
JPS6054791B2 true JPS6054791B2 (en) 1985-12-02

Family

ID=15088241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52132730A Expired JPS6054791B2 (en) 1977-11-04 1977-11-04 Composite field effect transistor

Country Status (1)

Country Link
JP (1) JPS6054791B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH025659U (en) * 1988-06-23 1990-01-16

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07142731A (en) * 1993-05-26 1995-06-02 Texas Instr Inc <Ti> Power device and method for forming it
DE19902749C2 (en) * 1999-01-25 2002-02-07 Infineon Technologies Ag Power transistor arrangement with high dielectric strength

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH025659U (en) * 1988-06-23 1990-01-16

Also Published As

Publication number Publication date
JPS5466078A (en) 1979-05-28

Similar Documents

Publication Publication Date Title
US4178605A (en) Complementary MOS inverter structure
JPS59193066A (en) Mos semiconductor device
JPH0425175A (en) Diode
JPH02210871A (en) Semiconductor device
JPH10209174A (en) Junction field-effect transistor
US4142197A (en) Drain extensions for closed COS/MOS logic devices
JP3150443B2 (en) Semiconductor device
JPS6054791B2 (en) Composite field effect transistor
JP2579954B2 (en) MOS transistor
JPH06232396A (en) High frequency high output field-effect transistor
JPH06349852A (en) Mos type field-effect transistor
JPH0222868A (en) Insulated-gate field-effect transistor
JP3248791B2 (en) Semiconductor device
JP2605757B2 (en) Method for manufacturing semiconductor device
JPS63173373A (en) Field-effect transistor
JPS6334619B2 (en)
JP2728424B2 (en) Semiconductor integrated circuit device
JP4577948B2 (en) Offset gate field effect transistor
JPH0548109A (en) Vertical type mos transistor and its manufacture
JPH0590515A (en) Voltage transfer circuit
JPS61100975A (en) Junction type field-effect transistor
JPS59195869A (en) Manufacture of semiconductor device
JPS6295863A (en) Semiconductor device with high dielectric strength
JPH06181312A (en) Manufacture of semiconductor device
JPS6358973A (en) Semiconductor device