JPH0222868A - Insulated-gate field-effect transistor - Google Patents

Insulated-gate field-effect transistor

Info

Publication number
JPH0222868A
JPH0222868A JP17321888A JP17321888A JPH0222868A JP H0222868 A JPH0222868 A JP H0222868A JP 17321888 A JP17321888 A JP 17321888A JP 17321888 A JP17321888 A JP 17321888A JP H0222868 A JPH0222868 A JP H0222868A
Authority
JP
Japan
Prior art keywords
groove
semiconductor substrate
gate
conductive layer
drain region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17321888A
Other languages
Japanese (ja)
Inventor
Yukio Kamiya
幸男 神谷
Katsuji Shimizu
清水 克次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP17321888A priority Critical patent/JPH0222868A/en
Publication of JPH0222868A publication Critical patent/JPH0222868A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To obtain a transistor where a required ON current flows in a comparatively small area on a semiconductor substrate by a method wherein a gate electrode of an insulated-gate field-effect transistor is installed in a groove part inside the semiconductor substrate in order to make an effective cross-sectional area of a conducting channel large as compared with an apparent gate width and to reduce an ON resistance. CONSTITUTION:A conductive layer 3 corresponds to a gate electrode; a source region 1s and a drain region 1d as N-type diffusion layers are installed on both sides of the layer. A groove 7 is formed in a part sandwiched between the source region 1s and the drain region 1d; the surface of the groove 7 is coated with a gate insulating film 2 and is filled with a conductive layer 3 composed of polycrystalline silicon. Accordingly, when a positive voltage is applied to the conductive layer 3, an N-channel 6 is formed inside a P-type semiconductor substrate in its immediate neighborhood, and reaches a periphery of the groove; accordingly, a channel length is increased as compared with a case where the groove does not exist.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は絶縁ゲート電界効果トランジスタに関し、特に
MOS)ランジスタの構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to insulated gate field effect transistors, and in particular to the structure of MOS transistors.

〔従来の技術〕[Conventional technology]

従来MO3)ランジスタはそのソース部分とドレイン領
域としての不純物拡散層とその両者間に位置するゲート
部分を半導体基板面上に平面的に配置した構造のものが
一般的であった。
Conventional MO3) transistors generally have a structure in which an impurity diffusion layer serving as a source region and a drain region, and a gate region located between the two are arranged in a plane on a semiconductor substrate surface.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来のMOSトランジスタはそのゲート部分が
半導体基板表面に絶縁膜と電極としての導電物質を単純
に積み重ねただけの構造であるため、MOSトランジス
タ導通時にゲート電極下に形成される導通チャネルは、
ゲート電極に印加され、た電圧からの電界が及ぶ範囲と
しての極めて半導体基板表面に近い層のみに限って形成
されていた。従ってこの構造ではゲート電極下の導通チ
ャネル断面積があまり大きくならない為、MOSトラン
ジスタのオン抵抗を減少させることが困難で、その目的
の為にはゲート電極の長さを増加する手段が有るのみで
あり集積度向上の制約となるという欠点があった。
In the conventional MOS transistor described above, the gate part has a structure in which an insulating film and a conductive material as an electrode are simply stacked on the surface of a semiconductor substrate, so the conduction channel formed under the gate electrode when the MOS transistor is turned on is
The layer is formed only in a layer extremely close to the surface of the semiconductor substrate, which is the range covered by the electric field from the voltage applied to the gate electrode. Therefore, in this structure, the cross-sectional area of the conduction channel under the gate electrode is not very large, so it is difficult to reduce the on-resistance of the MOS transistor, and the only way to achieve this is to increase the length of the gate electrode. However, there was a drawback in that it became a constraint on increasing the degree of integration.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の絶縁ゲート電界効果トランジスタは、第1導電
型半導体基板に選択的に設けられた第2導電型拡散層か
らなるソース領域及びドレイン領域と、前記ソース領域
とドレイン領域に挟まれた部分に設けられた溝表面のゲ
ート絶縁膜と、前記ゲート絶縁膜を介して前記溝を埋め
る導電層からなるゲート電極とを含むというものである
The insulated gate field effect transistor of the present invention includes a source region and a drain region comprising a second conductivity type diffusion layer selectively provided in a first conductivity type semiconductor substrate, and a portion sandwiched between the source region and the drain region. The semiconductor device includes a gate insulating film on the surface of the groove provided, and a gate electrode made of a conductive layer filling the groove with the gate insulating film interposed therebetween.

〔実施例〕〔Example〕

次に、本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は本発明の第1の実施例を示し、第1図(a)は
半導体基板面を上から見た平面図、第1図(b)は第1
図(a>のx−x’線断面図、第1図(C)は第1図(
a)のY−Y’線断面図である。
1 shows a first embodiment of the present invention, FIG. 1(a) is a plan view of the semiconductor substrate surface viewed from above, and FIG. 1(b) is a first embodiment of the invention.
Figure 1 (C) is a sectional view taken along the line xx' of Figure
It is a YY' line sectional view of a).

導電M!J3はゲート電極に相当し、その両側にはN膨
拡散層であるソース領域ISとドレイン領域1dが設け
られている。ソース領域ISとドレイン領域1dに挟ま
れた部分に溝7が設けられていて、溝7の表面はゲート
絶縁膜2で被覆され、多結晶シリコンからなる導電層3
で埋められている。従って導電層3に正電圧を印加すれ
ばその直近のP形半導体基板内にNチャネル6が形成さ
れ、それは溝の周囲にも及ぶためチャネル長が溝の無い
場合に比べて増加する。尚、この構造は通常のゲート電
極形成工程の前にフォトレジスト工程とエツチング工程
によって予め溝を形成することにより容易に実現できる
。なお、ソース電極、ドレイン電極は便宜上図示しなか
った。
Conductive M! J3 corresponds to a gate electrode, and a source region IS and a drain region 1d, which are N expansion diffusion layers, are provided on both sides of J3. A groove 7 is provided in a portion sandwiched between the source region IS and the drain region 1d, and the surface of the groove 7 is covered with a gate insulating film 2, and a conductive layer 3 made of polycrystalline silicon.
It is filled with Therefore, when a positive voltage is applied to the conductive layer 3, an N channel 6 is formed in the P-type semiconductor substrate immediately adjacent to the conductive layer 3, and this also extends around the groove, so that the channel length increases compared to the case without the groove. Note that this structure can be easily realized by forming grooves in advance by a photoresist process and an etching process before the usual gate electrode forming process. Note that the source electrode and drain electrode are not shown for convenience.

第2図は本発明の第2の実施例の平面図である。この実
施例ではゲート電極としての溝を両端に設けているため
、MOS)ランジスタ導通時のNチャネルのチャネル長
がさらに大きくなる利点がある。
FIG. 2 is a plan view of a second embodiment of the invention. In this embodiment, since grooves serving as gate electrodes are provided at both ends, there is an advantage that the channel length of the N channel when the MOS transistor is conductive is further increased.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、絶縁ゲート電界効果トラ
ンジスタのゲート電極の構造を半導体基板内部に入り組
んだ形態とする(溝部に設ける)ことにより、ゲート電
圧の電界効果が半導体基板内に及ぶ範囲を拡大し、導通
チャネルの有効断面積を見かけ上のく平面的な)ゲート
幅に比較して大とし、オン抵抗を減少させる効果がある
。従って大電流の要求されるドライブ回路等を構成する
必要のある場合、本発明を利用することにより、半導体
基板上の比較的小面積に於て要求されたオン電流を流す
ことのできるトランジスタを実現することが可能となり
、集積回路に利用すると集積度を向上できる。
As explained above, the present invention makes the gate electrode structure of an insulated gate field effect transistor intricate inside the semiconductor substrate (provided in the groove), thereby reducing the range in which the field effect of the gate voltage extends inside the semiconductor substrate. This has the effect of increasing the effective cross-sectional area of the conduction channel compared to the apparently planar gate width and reducing the on-resistance. Therefore, when it is necessary to configure a drive circuit that requires a large current, the present invention can be used to realize a transistor that can flow the required on-current in a relatively small area on a semiconductor substrate. When used in integrated circuits, the degree of integration can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は本発明の第1の実施例を示す平面図、第
1図(b)、(C)はそれぞれ第1図(a)のx−x’
線及びY−Y’線断面図、第2図は本発明の第2の実施
例を示す平面図である。 IS・・・ソース領域、1d・・・ドレイン領域、2・
・・ゲート絶縁膜、3・・・導電層、4・・・P形半導
体基板、5・・・フィールド酸化膜、6・・・Nチャネ
ル、7.7−1.7−2・・・溝。 月1図
FIG. 1(a) is a plan view showing the first embodiment of the present invention, and FIGS. 1(b) and (C) are xx' in FIG. 1(a), respectively.
FIG. 2 is a plan view showing a second embodiment of the present invention. IS...source region, 1d...drain region, 2.
... Gate insulating film, 3... Conductive layer, 4... P-type semiconductor substrate, 5... Field oxide film, 6... N channel, 7.7-1.7-2... Groove . Monthly 1st figure

Claims (1)

【特許請求の範囲】[Claims] 第1導電型半導体基板に選択的に設けられた第2導電型
拡散層からなるソース領域及びドレイン領域と、前記ソ
ース領域とドレイン領域に挟まれた部分に設けられた溝
表面のゲート絶縁膜と、前記ゲート絶縁膜を介して前記
溝を埋める導電層からなるゲート電極とを含むことを特
徴とする絶縁ゲート電界効果トランジスタ。
a source region and a drain region made of a second conductivity type diffusion layer selectively provided on a first conductivity type semiconductor substrate; and a gate insulating film on a groove surface provided in a portion sandwiched between the source region and the drain region. , and a gate electrode made of a conductive layer filling the groove with the gate insulating film interposed therebetween.
JP17321888A 1988-07-11 1988-07-11 Insulated-gate field-effect transistor Pending JPH0222868A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17321888A JPH0222868A (en) 1988-07-11 1988-07-11 Insulated-gate field-effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17321888A JPH0222868A (en) 1988-07-11 1988-07-11 Insulated-gate field-effect transistor

Publications (1)

Publication Number Publication Date
JPH0222868A true JPH0222868A (en) 1990-01-25

Family

ID=15956320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17321888A Pending JPH0222868A (en) 1988-07-11 1988-07-11 Insulated-gate field-effect transistor

Country Status (1)

Country Link
JP (1) JPH0222868A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5780340A (en) * 1996-10-30 1998-07-14 Advanced Micro Devices, Inc. Method of forming trench transistor and isolation trench
US5796143A (en) * 1996-10-30 1998-08-18 Advanced Micro Devices, Inc. Trench transistor in combination with trench array
US5801075A (en) * 1996-10-30 1998-09-01 Advanced Micro Devices, Inc. Method of forming trench transistor with metal spacers
US5874341A (en) * 1996-10-30 1999-02-23 Advanced Micro Devices, Inc. Method of forming trench transistor with source contact in trench
US6100146A (en) * 1996-10-30 2000-08-08 Advanced Micro Devices, Inc. Method of forming trench transistor with insulative spacers
JP2011138947A (en) * 2009-12-28 2011-07-14 Sony Corp Semiconductor device and method for manufacturing the same

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5780340A (en) * 1996-10-30 1998-07-14 Advanced Micro Devices, Inc. Method of forming trench transistor and isolation trench
US5796143A (en) * 1996-10-30 1998-08-18 Advanced Micro Devices, Inc. Trench transistor in combination with trench array
US5801075A (en) * 1996-10-30 1998-09-01 Advanced Micro Devices, Inc. Method of forming trench transistor with metal spacers
US5874341A (en) * 1996-10-30 1999-02-23 Advanced Micro Devices, Inc. Method of forming trench transistor with source contact in trench
US5962894A (en) * 1996-10-30 1999-10-05 Advanced Micro Devices, Inc. Trench transistor with metal spacers
US6005272A (en) * 1996-10-30 1999-12-21 Advanced Micro Devices, Inc. Trench transistor with source contact in trench
US6037629A (en) * 1996-10-30 2000-03-14 Advanced Micro Devices Inc. Trench transistor and isolation trench
US6057194A (en) * 1996-10-30 2000-05-02 Advanced Micro Devices, Inc. Method of forming trench transistor in combination with trench array
US6100146A (en) * 1996-10-30 2000-08-08 Advanced Micro Devices, Inc. Method of forming trench transistor with insulative spacers
US6201278B1 (en) 1996-10-30 2001-03-13 Advanced Micro Devices, Inc. Trench transistor with insulative spacers
JP2011138947A (en) * 2009-12-28 2011-07-14 Sony Corp Semiconductor device and method for manufacturing the same
US9548360B2 (en) 2009-12-28 2017-01-17 Sony Corporation Semiconductor component and manufacturing method thereof
US9748384B2 (en) 2009-12-28 2017-08-29 Sony Corporation Semiconductor component and manufacturing method thereof
US9991383B2 (en) 2009-12-28 2018-06-05 Sony Corporation Semiconductor component and manufacturing method thereof
US10727335B2 (en) 2009-12-28 2020-07-28 Sony Corporation Semiconductor component and manufacturing method thereof
US11043590B2 (en) 2009-12-28 2021-06-22 Sony Corporation Semiconductor component and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JPS6359545B2 (en)
JP2599493B2 (en) Semiconductor device
JPH0222868A (en) Insulated-gate field-effect transistor
JPH01128568A (en) Semiconductor device
JPH03129764A (en) Semiconductor device
JP2825038B2 (en) Semiconductor device
JPS63262873A (en) Semiconductor device
JPH1197698A (en) Thin-film transistor
JP4175750B2 (en) Insulated gate semiconductor device
JP3376294B2 (en) Semiconductor device
JP3137840B2 (en) Semiconductor device
JPH07142731A (en) Power device and method for forming it
JPS6353972A (en) Composite semiconductor device
JPH0493083A (en) Semiconductor device and manufacture thereof
JPH01111378A (en) Vertical mosfet
JP4577948B2 (en) Offset gate field effect transistor
JPS6340376A (en) Field-effect semiconductor device
JP2540754B2 (en) High voltage transistor
JPH09283747A (en) Lateral field effect transistor
JPS62291179A (en) Double diffused mosfet
JP3233002B2 (en) Field effect transistor
JPS6054791B2 (en) Composite field effect transistor
JPH04251979A (en) High withstand-voltage transistor
JPH05136408A (en) Semiconductor device
JPH0669510A (en) High-breakdown-strength semiconductor device