JPH01111378A - Vertical mosfet - Google Patents

Vertical mosfet

Info

Publication number
JPH01111378A
JPH01111378A JP62269844A JP26984487A JPH01111378A JP H01111378 A JPH01111378 A JP H01111378A JP 62269844 A JP62269844 A JP 62269844A JP 26984487 A JP26984487 A JP 26984487A JP H01111378 A JPH01111378 A JP H01111378A
Authority
JP
Japan
Prior art keywords
layer
type
semiconductor layer
region
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62269844A
Other languages
Japanese (ja)
Inventor
Tatsuro Sakai
達郎 酒井
Nobuhiko Yamashita
暢彦 山下
Naoki Murakami
直樹 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP62269844A priority Critical patent/JPH01111378A/en
Publication of JPH01111378A publication Critical patent/JPH01111378A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0873Drain regions
    • H01L29/0878Impurity concentration or distribution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/42376Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the length or the sectional shape

Abstract

PURPOSE:To reduce a capacitance value between a gate and a drain by a method wherein a third semiconductor region which is of a first conductivity type and whose resistivity is lower than that of a second semiconductor layer is formed near the surface inside the second semiconductor layer. CONSTITUTION:An N-type semiconductor region 10 is formed near the surface of an N-type epitaxial layer 2 after one part of a gate electrode 4 in a region where the gate electrode 4 is superposed via a gate insulating film 3 on the surface of the N-type epitaxial layer 2 has been removed and while the removed gate electrode is used as a mask. Accordingly, a current path in an ON state is secured by the N-type semiconductor region 10 which has been formed on the surface of the N-type epitaxial layer 2; a width W2 to be removed of the gate electrode 4 can be made wider than a width to be removed of a conventional vertical-type MOSFET. By this setup, a capacitance value between a gate and a drain can be reduced sharply; a switching duration can be shortened and switching loss can be reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ゲート・ドレイン間容量の小さい縦型MOS
FET に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is directed to a vertical MOS with small gate-drain capacitance.
It is related to FET.

〔従来の技術〕[Conventional technology]

第3図は従来の縦型MOSFETの構造を示す断面図で
ある。、同図において、低比折抗のN+基板1と比較的
比抵抗の高いN型エピタキシャル層2を有し1ゲート絶
縁膜3の上に形成名れたポリシリコンよりなるゲート電
極4をマスクとしてP型チャネル形成領域5およびN+
ソース領域6が拡散によって形成名れ、ゲート電極4の
表面に層間絶縁膜7を形成し、P型チャネル形成頌域5
およびN+ソース領域6に接するようにソース電極8が
形成名れ N+基板1の裏面にドレイン電極9が形成名
れている。
FIG. 3 is a sectional view showing the structure of a conventional vertical MOSFET. In the figure, a gate electrode 4 made of polysilicon, which is formed on a gate insulating film 3 and has an N+ substrate 1 with a low specific resistance and an N-type epitaxial layer 2 with a relatively high resistivity, is used as a mask. P-type channel forming region 5 and N+
A source region 6 is formed by diffusion, an interlayer insulating film 7 is formed on the surface of the gate electrode 4, and a P-type channel forming region 5 is formed.
A source electrode 8 is formed in contact with the N+ source region 6, and a drain electrode 9 is formed on the back surface of the N+ substrate 1.

また、他の縦型MOSFET として第4図に示すよう
に第3図の従来の縦型MO8F’ETにおいてN!エピ
タキシャル層層上上ゲート電極4の一部を除去し、ゲー
ト電極4とドレイン電極9との重々シ面積を低減し、ゲ
ート・ドレイン間容量の低減を図る構造が提案されてい
る。
As another vertical MOSFET, as shown in FIG. 4, in the conventional vertical MO8F'ET shown in FIG. 3, N! A structure has been proposed in which a portion of the upper gate electrode 4 on the epitaxial layer is removed to reduce the area between the gate electrode 4 and the drain electrode 9, thereby reducing the gate-drain capacitance.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、第3図に示す縦型MOSFETは、ゲー
ト絶縁膜3を介してN型エピタキシャル層2とゲート電
極4とが重なる面積が広く、ゲート・ドレイン間容量が
大きくなるという問題があった。
However, the vertical MOSFET shown in FIG. 3 has a problem in that the area where the N-type epitaxial layer 2 and the gate electrode 4 overlap with each other via the gate insulating film 3 is large, resulting in a large gate-drain capacitance.

また、第4図に示す縦型MOSFET・は第3図の場合
とは異なり、ゲ、−)−に極4に正の電圧を印加したオ
ン状態で、除去されたゲート電極4下のN型エピタキシ
ャル層20表面に電子よシなる蓄積店が形成名れないた
め、素子のオン抵抗増加を抑制するには、ゲート電極4
の除去幅W1を一定以上には大きくできず、ゲート・ド
レイン間容量を大幅には低減することはできないという
問題があった。
Furthermore, unlike the case shown in FIG. 3, the vertical MOSFET shown in FIG. Since no storage stores such as electrons are formed on the surface of the epitaxial layer 20, in order to suppress an increase in the on-resistance of the device, it is necessary to
There is a problem in that the removal width W1 cannot be increased beyond a certain level, and the gate-drain capacitance cannot be significantly reduced.

本発明の目的は、従来の縦型MOSFET  における
上述の問題点を改善し、オン抵抗の増加を伴うことなく
、ゲート・ドレイン間容量を低減できる縦型MOSFE
T  を提供することにある。
The purpose of the present invention is to improve the above-mentioned problems in conventional vertical MOSFETs, and to provide a vertical MOSFET that can reduce gate-drain capacitance without increasing on-resistance.
The goal is to provide T.

〔問題点を解決するための手段〕[Means for solving problems]

本発明による縦型MOSFETは、第1導電型の第1の
半導体層上に形成名れた第1導電型でかつ第1の半導体
層に比して高い比抵抗の第2の半導体層の表面において
第1の絶縁層を介して第1の導電性層が重なる領域の第
1の導電性層を一部を除去し、かつ第2の半導体層の表
面近傍に第1導電型でかつ第2の半導体層に比して低い
比抵抗の第3の半導体領域もしくは第3の半導体領域と
第2導電型の第4の半導体領域とを形成したものである
In the vertical MOSFET according to the present invention, a surface of a second semiconductor layer of the first conductivity type and having a higher specific resistance than the first semiconductor layer is formed on the first semiconductor layer of the first conductivity type. In the step, a part of the first conductive layer is removed in a region where the first conductive layer overlaps with the first insulating layer interposed therebetween, and a semiconductor layer of the first conductivity type and a second conductive layer is added near the surface of the second semiconductor layer. A third semiconductor region having a resistivity lower than that of the semiconductor layer, or a third semiconductor region and a fourth semiconductor region of a second conductivity type are formed.

〔作用〕[Effect]

本発明においては、第3の半導体領域によってオン状態
における電流路が確保される。
In the present invention, the third semiconductor region ensures a current path in the on state.

〔実施例〕〔Example〕

第1図は本発明による縦型MOSFET の一実施例を
示す断面図である。同図において、1はN+基板、2は
N世エピタキシャル層、3はゲート絶・  縁膜、4は
ゲート電極、5はP型チャネル形成領域、6はN+ソー
ス領域、Tは層間絶縁膜、8はソース電極、9はドレイ
ン電極、10はN型エピタキシャル層2の表面において
ゲート絶縁膜3を介してゲート電極4が重なる領域のゲ
ート電極4を一部除去し、さらに除去したゲート電極を
マスクとしてN型エピタキシャル層2の表面近傍に形成
名れたN型半導体領域である。
FIG. 1 is a sectional view showing an embodiment of a vertical MOSFET according to the present invention. In the figure, 1 is an N+ substrate, 2 is an N-series epitaxial layer, 3 is a gate insulating film, 4 is a gate electrode, 5 is a P-type channel forming region, 6 is an N+ source region, T is an interlayer insulating film, 8 10 is a source electrode, 9 is a drain electrode, and 10 is a portion of the surface of the N-type epitaxial layer 2 where the gate electrode 4 overlaps with the gate insulating film 3, and the removed gate electrode is used as a mask. This is an N-type semiconductor region formed near the surface of the N-type epitaxial layer 2.

このような構成によれば、N型エピタキシャル層2の表
面に形成名れたN型半導体領域10によってオン状態に
おける電流路が確保され、ゲート電極4の除去幅W2を
第4図の従来の縦型MOSFETの除去幅Wl ようも
太きく (W2 > Wt )することができ、ゲート
・ドレイン間容量を大幅に低減することが可能となる。
According to such a structure, a current path in the on state is secured by the N-type semiconductor region 10 formed on the surface of the N-type epitaxial layer 2, and the removal width W2 of the gate electrode 4 can be changed from the conventional vertical direction shown in FIG. The removal width Wl of the type MOSFET can be increased (W2 > Wt), and the gate-drain capacitance can be significantly reduced.

第2図は本発明による縦型MOSFETの他の実施例を
示す断面図である。同図において、1はN+基板、2は
N型エピタキシャル層、3はゲート絶縁膜、4はゲート
電極、5はP型チャネル形成領域、6はN+ソース領域
、Tは層間絶縁膜、8はソース電極、9はドレイン電極
、10はN型半導体領域、11はN型半導体領域10内
に形成名れたP型半導体領域である。
FIG. 2 is a sectional view showing another embodiment of the vertical MOSFET according to the present invention. In the figure, 1 is an N+ substrate, 2 is an N-type epitaxial layer, 3 is a gate insulating film, 4 is a gate electrode, 5 is a P-type channel forming region, 6 is an N+ source region, T is an interlayer insulating film, and 8 is a source 9 is a drain electrode, 10 is an N-type semiconductor region, and 11 is a P-type semiconductor region formed within the N-type semiconductor region 10.

このような構成によれば、N型エピタキシャル層2内は
形成し?cN型半導体領域10によってオン状態におけ
る電流路が確保されるため、ゲート電極4の除去幅W2
を第4図の従来の縦型MOSFETの除去幅W、 より
も大きくすることができ、ゲート・ドレイン間容量を大
幅に低減することが可能となる。さらに特に低耐圧の縦
型MOSFETにおいては、ゲート電極4を零あるいは
負の電圧を加え、ドレイン電極9にソース電極8に対し
て正の電圧を加えたオフ状態において、N型エピタキシ
ャル層2内に延びる空乏層幅が小さいため、N型エピタ
キシャル層2表面にドレイン電圧の大部分が加わ夛、こ
の部分で降伏を生じる可能性があるが、P型半導体領域
11の形成によってN型エピタキシャル層2表面にドレ
イン電圧の大部分が加わることが避けられ、素子耐圧を
高く保つことが可能となる。
According to such a configuration, the inside of the N-type epitaxial layer 2 is not formed. Since the cN-type semiconductor region 10 ensures a current path in the on state, the removal width W2 of the gate electrode 4 is
can be made larger than the removal width W of the conventional vertical MOSFET shown in FIG. 4, making it possible to significantly reduce the gate-drain capacitance. Furthermore, especially in a low-voltage vertical MOSFET, in an off state in which a zero or negative voltage is applied to the gate electrode 4 and a positive voltage is applied to the drain electrode 9 with respect to the source electrode 8, the N-type epitaxial layer 2 is Since the extending depletion layer width is small, most of the drain voltage is applied to the surface of the N-type epitaxial layer 2, and breakdown may occur in this area. This prevents most of the drain voltage from being applied to the device, making it possible to maintain a high device breakdown voltage.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、オン抵抗。 As explained above, according to the present invention, the on-resistance.

耐圧は従来の縦型MO8F’ETとほぼ同等に保ち、か
つゲート・ドレイン間容量を大幅に低減できる。
The breakdown voltage can be kept almost the same as that of conventional vertical MO8F'ET, and the gate-drain capacitance can be significantly reduced.

したがって、スイッチング時間の短縮およびスイッチン
グ損失の低減が図れるので、小型で高効率であることが
袂求されるスイッチ/グミ源用の主スィッチ素子として
最適である。
Therefore, it is possible to shorten the switching time and reduce switching loss, making it ideal as a main switch element for a switch/gummy source that is required to be small and highly efficient.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による縦型MO8FgTの一実施例を示
す断面図、第2図は本発明による縦型MOSFETの他
の実施例を示す断面図、第3図および第4図は従来の縦
型MOSFETの断面図である。 1 * e @ IIN+基板、2e e * e N
型エピタキシャル層、3・・・・ゲート絶縁膜、4・・
・・ゲート電極、5・・・・P型チャネル形成領域、G
・・・・N+ソース領域、7・・・・層間絶縁膜、8・
・・・ソース電極、9・φ・・ドレイン電極、10・・
・・N型半導体領域、11・・・・P型半導体領域。 特許出願人  日本電信電話株式会社
FIG. 1 is a sectional view showing one embodiment of the vertical MOSFET according to the present invention, FIG. 2 is a sectional view showing another embodiment of the vertical MOSFET according to the present invention, and FIGS. FIG. 2 is a cross-sectional view of a type MOSFET. 1 * e @ IIN + board, 2e e * e N
type epitaxial layer, 3...gate insulating film, 4...
...Gate electrode, 5...P-type channel formation region, G
... N+ source region, 7... interlayer insulating film, 8.
・・・Source electrode, 9・φ・・Drain electrode, 10・・
...N-type semiconductor region, 11...P-type semiconductor region. Patent applicant Nippon Telegraph and Telephone Corporation

Claims (2)

【特許請求の範囲】[Claims] (1)第1導電型の第1の半導体層と、前記第1の半導
体層上に形成名れた第1導電量でかつ前記第1の半導体
層に比して高い比抵抗の第2の半導体層とを有し、前記
第2の半導体層内に第1導電量とは逆のチャネル形成用
の第2導電型を有する第1の半導体領域と、第1導電型
の第2の半導体領域とがチャネルを形成すべく形成され
、前記チャネルおよび第2の半導体層の表面に第1の絶
縁層を介して第1の導電性層が形成され、前記第1の半
導体領域および第2の半導体領域に接して第2の導電性
層および第1の半導体層表面に第3の導電性層が形成さ
れた縦型MOSFETにおいて、前記第1の導電性層が
第1の絶縁層を介して第2の半導体層と重なる領域にお
いてその一部が除去され、かつ第2の半導体層内の表面
近傍に第1導電型でかつ第2の半導体層に比して低い比
抵抗の第3の半導体領域が形成されたことを特徴とする
縦型MOSFET。
(1) A first semiconductor layer of a first conductivity type, and a second semiconductor layer formed on the first semiconductor layer and having a first conductivity and a higher resistivity than the first semiconductor layer. a first semiconductor region having a second conductivity type for forming a channel opposite to the first conductivity in the second semiconductor layer; and a second semiconductor region of the first conductivity type. is formed to form a channel, a first conductive layer is formed on the surface of the channel and the second semiconductor layer via a first insulating layer, and the first conductive layer is formed on the surface of the channel and the second semiconductor layer, and In a vertical MOSFET in which a second conductive layer and a third conductive layer are formed on the surface of the first semiconductor layer in contact with a region, the first conductive layer is connected to the first conductive layer through the first insulating layer. A third semiconductor region having a first conductivity type and a resistivity lower than that of the second semiconductor layer is removed in a region overlapping with the second semiconductor layer, and is located near the surface of the second semiconductor layer. A vertical MOSFET characterized by being formed.
(2)前記第2の半導体層内の表面近傍に第1導電型で
かつ第2の半導体層に比して低い比抵抗の第3の半導体
領域と第2導電型の第4の半導体領域とが形成されたこ
とを特徴とする特許請求の範囲第1項記載の縦型MOS
FET。
(2) A third semiconductor region of the first conductivity type and having a lower specific resistance than the second semiconductor layer and a fourth semiconductor region of the second conductivity type near the surface of the second semiconductor layer. The vertical MOS according to claim 1, characterized in that:
FET.
JP62269844A 1987-10-26 1987-10-26 Vertical mosfet Pending JPH01111378A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62269844A JPH01111378A (en) 1987-10-26 1987-10-26 Vertical mosfet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62269844A JPH01111378A (en) 1987-10-26 1987-10-26 Vertical mosfet

Publications (1)

Publication Number Publication Date
JPH01111378A true JPH01111378A (en) 1989-04-28

Family

ID=17477976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62269844A Pending JPH01111378A (en) 1987-10-26 1987-10-26 Vertical mosfet

Country Status (1)

Country Link
JP (1) JPH01111378A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004022693A (en) * 2002-06-14 2004-01-22 Toshiba Corp Semiconductor device
JP2008004872A (en) * 2006-06-26 2008-01-10 Toshiba Corp Semiconductor device
JP2009224811A (en) * 2009-07-06 2009-10-01 Toshiba Corp Semiconductor device
US7851852B2 (en) 2004-09-16 2010-12-14 Semiconductor Components Industries, L.L.C. Method of forming a low capacitance semiconductor device and structure therefor
CN109786465A (en) * 2018-12-17 2019-05-21 重庆平伟实业股份有限公司 Power semiconductor and its manufacturing method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004022693A (en) * 2002-06-14 2004-01-22 Toshiba Corp Semiconductor device
JP4537646B2 (en) * 2002-06-14 2010-09-01 株式会社東芝 Semiconductor device
US7851852B2 (en) 2004-09-16 2010-12-14 Semiconductor Components Industries, L.L.C. Method of forming a low capacitance semiconductor device and structure therefor
JP2008004872A (en) * 2006-06-26 2008-01-10 Toshiba Corp Semiconductor device
JP2009224811A (en) * 2009-07-06 2009-10-01 Toshiba Corp Semiconductor device
CN109786465A (en) * 2018-12-17 2019-05-21 重庆平伟实业股份有限公司 Power semiconductor and its manufacturing method
CN109786465B (en) * 2018-12-17 2022-07-15 重庆平伟实业股份有限公司 Power semiconductor device and method for manufacturing the same

Similar Documents

Publication Publication Date Title
US11069805B2 (en) Embedded JFETs for high voltage applications
US5710455A (en) Lateral MOSFET with modified field plates and damage areas
US6713794B2 (en) Lateral semiconductor device
JPH0330310B2 (en)
KR19990022793A (en) High Voltage Lateral Metal Oxide Semiconductor Field Effect Transistor with Semiconductor Chip Connection Area
JPS63266882A (en) Vertical-type insulated-gate field-effect transistor
KR20140002676A (en) Vertical dmos-field effect transistor and method of making the same
JPH04107867A (en) Semiconductor device
KR19990087140A (en) Semiconductor device
JPH01111378A (en) Vertical mosfet
JPH03129764A (en) Semiconductor device
JPH04125972A (en) Mos semiconductor element and manufacture thereof
JP2720574B2 (en) Dual-gate insulated gate bipolar transistor
JP3376294B2 (en) Semiconductor device
JPH07142731A (en) Power device and method for forming it
JP2001015742A (en) Semiconductor device
US5270566A (en) Insulated gate semiconductor device
JPH0349266A (en) Mos-type semiconductor device
JPH0222868A (en) Insulated-gate field-effect transistor
KR100492981B1 (en) Lateral double diffusion MOS transistor and manufacturing method thereof
JP3217552B2 (en) Horizontal high voltage semiconductor device
JP2004288873A (en) Semiconductor device
JP2629437B2 (en) Lateral insulated gate bipolar transistor
JPS6355976A (en) Field effect semiconductor device
KR100498406B1 (en) Power mos device having trench gate and fabricating method therefor