JP2001015742A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JP2001015742A
JP2001015742A JP11186545A JP18654599A JP2001015742A JP 2001015742 A JP2001015742 A JP 2001015742A JP 11186545 A JP11186545 A JP 11186545A JP 18654599 A JP18654599 A JP 18654599A JP 2001015742 A JP2001015742 A JP 2001015742A
Authority
JP
Japan
Prior art keywords
layer
drain
conductivity type
source
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11186545A
Other languages
Japanese (ja)
Inventor
Yusuke Kawaguchi
雄介 川口
Norio Yasuhara
紀夫 安原
Akio Nakagawa
明夫 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP11186545A priority Critical patent/JP2001015742A/en
Publication of JP2001015742A publication Critical patent/JP2001015742A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7816Lateral DMOS transistors, i.e. LDMOS transistors
    • H01L29/7825Lateral DMOS transistors, i.e. LDMOS transistors with trench gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/42376Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the length or the sectional shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a MOSFET which is low in on-resistance. SOLUTION: This device possesses trenches 5, which are made in roughly parallel in the direction of the middle between a source and a drain on the surface of a semiconductor substrate 1 between the first conductivity-type drain layer 3 and the first conductivity-type source layer 3, a gate insulate film 6 which is made on the surface of the semiconductor substrate 1 and the surface of the trenches 5, a gate electrode 7 which is made on the gate insulating film 6, a drain electrode 8 which contacts with the second conductivity-type of drain layer, and a source electrode 9 which contacts with the second conductivity-type of source layer 4. The distance from the end on source side of the trench 5 to the source electrode 9 becomes shorter than the distance from the end on source side of the section of the gate electrode 7 on the source of the semiconductor substrate to the source electrode 9. Accordingly, since this can shorten the length of the element, this device can lessen the area with the same on- resistance of the element.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は半導体装置に係り、
特に横型パワーMOSFETに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device,
In particular, it relates to a lateral power MOSFET.

【0002】[0002]

【従来の技術】図7は従来の横型トレンチMOSFET
の断面図の一例である。N型半導体基板101表面に選
択的にP型ウェル層102が形成され、 N型半導体基
板101表面に選択的にN型ドレイン層103が形成さ
れ、 P型ウェル層102表面に選択的にN型ソース層
104が形成され、 N型ドレイン層103とN型ソー
ス層104の間には溝105がドレイン−ソース方向と
ほぼ平行に形成され、N型ドレイン層103とN型ソー
ス層104の間と溝105表面にはゲート絶縁膜105
が形成され、ゲート絶縁膜105上にゲート電極106
が形成され、N型ドレイン層103と電気的にコンタク
トするドレイン電極107が形成され、N型ソース層1
04とP型ウェル層102とに電気的にコンタクトする
ソース電極108が形成されている。
2. Description of the Related Art FIG. 7 shows a conventional lateral trench MOSFET.
1 is an example of a cross-sectional view of FIG. A P-type well layer 102 is selectively formed on the surface of the N-type semiconductor substrate 101, an N-type drain layer 103 is selectively formed on the surface of the N-type semiconductor substrate 101, and an N-type is selectively formed on the surface of the P-type well layer 102. A source layer 104 is formed. A groove 105 is formed between the N-type drain layer 103 and the N-type source layer 104 substantially in parallel with the drain-source direction. A gate insulating film 105 is formed on the surface of the groove 105.
Is formed, and a gate electrode 106 is formed on the gate insulating film 105.
Is formed, and a drain electrode 107 that is in electrical contact with the N-type drain layer 103 is formed.
A source electrode 108 is formed which is in electrical contact with the substrate 04 and the P-type well layer 102.

【0003】また、図8は従来の横型トレンチMOSF
ETの断面図の一例である。P型半導体基板110表面
に選択的にP型ウェル層102が形成され、 P型ウェ
ル層102表面に選択的にN型ドレイン層103、N型
ソース層104が形成され、N型ドレイン層103とN
型ソース層104の間には溝105がドレイン−ソース
方向とほぼ平行に形成され、N型ドレイン層103とN
型ソース層104の間と溝105表面にはゲート絶縁膜
105が形成され、ゲート絶縁膜105上にゲート電極
106が形成され、N型ドレイン層103と電気的にコ
ンタクトするドレイン電極107が形成され、N型ソー
ス層104とP型ウェル層102とに電気的にコンタク
トするソース電極108が形成されている。
FIG. 8 shows a conventional lateral trench MOSF.
It is an example of a sectional view of ET. A P-type well layer 102 is selectively formed on the surface of a P-type semiconductor substrate 110, and an N-type drain layer 103 and an N-type source layer 104 are selectively formed on the surface of the P-type well layer 102. N
A trench 105 is formed substantially parallel to the drain-source direction between the N-type drain layer 103 and the N-type drain layer 103.
A gate insulating film 105 is formed between the mold source layers 104 and on the surface of the groove 105, a gate electrode 106 is formed on the gate insulating film 105, and a drain electrode 107 that is in electrical contact with the N-type drain layer 103 is formed. , A source electrode 108 that electrically contacts the N-type source layer 104 and the P-type well layer 102 is formed.

【0004】このような素子を大電流のスイッチング素
子として用いた場合、オン時の素子の抵抗を低く抑える
ことが重要であるが、このような素子は溝を形成し、溝
の側壁をチャネルとして用いているため、素子のオン抵
抗を低くすることができる。たとえば、図7の構造では
耐圧25Vに対しオン抵抗20mΩ・mm2、図8の構
造では耐圧12Vに対し、オン抵抗12mΩ・mm2が
可能である。しかしながら、N型ソース層と溝、ゲート
電極とがオーバーラップする必要があるため、素子長が
長くなる、すなわち素子面積が大きくなるという問題が
あった。
When such an element is used as a high-current switching element, it is important to suppress the resistance of the element at the time of ON. However, such an element forms a groove and uses the side wall of the groove as a channel. Since it is used, the on-resistance of the element can be reduced. For example, in the structure of FIG. 7, the on-resistance is 20 mΩ · mm 2 for the withstand voltage of 25 V, and in the structure of FIG. 8, the on-resistance is 12 mΩ · mm 2 for the withstand voltage of 12 V. However, since the N-type source layer must overlap the trench and the gate electrode, there is a problem that the element length is increased, that is, the element area is increased.

【0005】[0005]

【発明が解決しようとする課題】従来の素子ではオン抵
抗を小さくするためには素子面積が大きくなってしまう
という問題があった。
In the conventional device, there is a problem that the device area becomes large in order to reduce the on-resistance.

【0006】本発明はオン抵抗の小さいMOSFETを
提供することを目的とする。
An object of the present invention is to provide a MOSFET having a low on-resistance.

【0007】[0007]

【課題を解決するための手段】前記課題を解決するた
め、本発明(請求項1)は、半導体基板と、前記半導体
基板表面に形成された第2導電型ウェル層と、この第2
導電型ウェル層と異なる前記半導体基板表面に選択的に
形成された第1導電型ドレイン層と、前記第2導電型ウ
ェル層表面に選択的に形成された第1導電型ソース層
と、前記第1導電型ドレイン層と前記第1導電型ソース
層の間の前記半導体基板表面に、ドレイン−ソース間方
向にほぼ平行な方向に形成された溝と、前記第1導電型
ドレイン層と前記第1導電型ソース層の間の前記半導体
基板表面および前記溝の表面に形成されたゲート絶縁膜
と、前記ゲート絶縁膜上に形成されたゲート電極と、前
記第2導電型ドレイン層に電気的にコンタクトするドレ
イン電極と、前記第2導電型ソース層と前記第1導電型
ウェル層に電気的にコンタクトするソース電極とを具備
し、前記溝のソース側端から前記ソース電極までの距離
が、前記半導体基板表面上の前記ゲート電極部分のソー
ス側端から前記ソース電極までの距離よりも短いことを
特徴とする半導体装置を提供する。
In order to solve the above problems, the present invention (claim 1) provides a semiconductor substrate, a second conductivity type well layer formed on a surface of the semiconductor substrate,
A first conductivity type drain layer selectively formed on the semiconductor substrate surface different from the conductivity type well layer; a first conductivity type source layer selectively formed on the second conductivity type well layer surface; A groove formed in the surface of the semiconductor substrate between the drain layer of one conductivity type and the source layer of the first conductivity type in a direction substantially parallel to the direction between the drain and the source; A gate insulating film formed on the surface of the semiconductor substrate and the trench between conductive type source layers, a gate electrode formed on the gate insulating film, and an electrical contact with the second conductive type drain layer A drain electrode, and a source electrode electrically contacting the second conductivity type source layer and the first conductivity type well layer, wherein a distance from a source side end of the trench to the source electrode is the semiconductor. substrate To provide a semiconductor device, characterized in that shorter than the distance from the source side edge of the gate electrode portion on the surface to the source electrode.

【0008】また、本発明(請求項2)は、半導体基板
と、前記半導体基板表面に形成された第2導電型ウェル
層と、この第2導電型ウェル層と異なる前記半導体基板
表面に選択的に形成された第1導電型ドレイン層と、前
記第2導電型ウェル層表面に選択的に形成された第1導
電型ソース層と、前記第1導電型ドレイン層と前記第1
導電型ソース層の間の前記半導体基板表面に、ドレイン
−ソース間方向にほぼ平行な方向に形成された溝と、前
記第1導電型ドレイン層と前記第1導電型ソース層の間
の前記半導体基板表面および前記溝の表面に形成された
ゲート絶縁膜と、前記ゲート絶縁膜上に形成されたゲー
ト電極と、前記第2導電型ドレイン層に電気的にコンタ
クトするドレイン電極と、前記第2導電型ソース層と前
記第1導電型ウェル層に電気的にコンタクトするソース
電極とを具備し、前記溝のドレイン側端から前記ドレイ
ン電極までの距離が、前記半導体基板表面上の前記ゲー
ト電極部分のドレイン側端から前記ドレイン電極までの
距離よりも短いことを特徴とする半導体装置を提供す
る。
Further, the present invention (claim 2) provides a semiconductor substrate, a second conductivity type well layer formed on the semiconductor substrate surface, and a semiconductor substrate surface different from the second conductivity type well layer. A first conductivity type drain layer selectively formed on the surface of the second conductivity type well layer; a first conductivity type drain layer selectively formed on a surface of the second conductivity type well layer;
A groove formed in the surface of the semiconductor substrate between the conductive type source layers in a direction substantially parallel to the direction between the drain and the source; and the semiconductor between the first conductive type drain layer and the first conductive type source layer. A gate insulating film formed on the surface of the substrate and the surface of the trench, a gate electrode formed on the gate insulating film, a drain electrode electrically contacting the drain layer of the second conductivity type; A source electrode electrically contacting the first conductivity type well layer, and a distance from a drain side end of the trench to the drain electrode is equal to a distance of the gate electrode portion on the semiconductor substrate surface. A semiconductor device is provided which is shorter than a distance from a drain side end to the drain electrode.

【0009】また、本発明(請求項3)は、半導体基板
と、前記半導体基板表面に形成された第2導電型ウェル
層と、この第2導電型ウェル層と異なる前記半導体基板
表面に選択的に形成された第1導電型ドレイン層と、前
記第2導電型ウェル層表面に選択的に形成された第1導
電型ソース層と、前記第1導電型ドレイン層と前記第1
導電型ソース層の間の前記半導体基板表面に、ドレイン
−ソース間方向にほぼ平行な方向に形成された溝と、前
記第1導電型ドレイン層と前記第1導電型ソース層の間
の前記半導体基板表面および前記溝の表面に形成された
ゲート絶縁膜と、前記ゲート絶縁膜上に形成されたゲー
ト電極と、前記第2導電型ドレイン層に電気的にコンタ
クトするドレイン電極と、前記第2導電型ソース層と前
記第1導電型ウェル層に電気的にコンタクトするソース
電極とを具備し、前記溝のソース側端から前記ソース電
極までの距離が、前記半導体基板表面上の前記ゲート電
極部分のソース側端から前記ソース電極までの距離より
も短く、かつ前記溝のドレイン側端から前記ドレイン電
極までの距離が、前記半導体基板表面上の前記ゲート電
極部分のドレイン側端から前記ドレイン電極までの距離
よりも短いことを特徴とする半導体装置を提供する。
Further, the present invention (claim 3) provides a semiconductor substrate, a second conductivity type well layer formed on the semiconductor substrate surface, and a semiconductor substrate surface different from the second conductivity type well layer. A first conductivity type drain layer selectively formed on the surface of the second conductivity type well layer; a first conductivity type drain layer selectively formed on a surface of the second conductivity type well layer;
A groove formed in the surface of the semiconductor substrate between the conductive type source layers in a direction substantially parallel to the direction between the drain and the source; and the semiconductor between the first conductive type drain layer and the first conductive type source layer. A gate insulating film formed on the surface of the substrate and the surface of the trench, a gate electrode formed on the gate insulating film, a drain electrode electrically contacting the drain layer of the second conductivity type; A source electrode electrically contacting the first conductivity type well layer, wherein a distance from a source side end of the trench to the source electrode is equal to a distance of the gate electrode portion on the semiconductor substrate surface. The distance from the source-side end to the source electrode is shorter than the distance from the drain-side end of the trench to the drain electrode, and the drain of the gate electrode portion on the semiconductor substrate surface To provide a semiconductor device, characterized in that shorter than the distance from the edge to the drain electrode.

【0010】本発明によれば、素子長を短くできるた
め、同じ素子のオン抵抗で面積を小さくできる。
According to the present invention, since the element length can be reduced, the area can be reduced by the on-resistance of the same element.

【0011】[0011]

【発明の実施の形態】図1は本発明の第1の実施形態を
説明する平面図であり、図2(a)は図1での線A−A
‘、図2(b)は図1での線B−B'での断面図であ
る。図中1はN型半導体基板を示しており、N型半導体
基板1表面に選択的にP型ウェル層2が形成されてお
り、N型半導体基板1表面に選択的にN型ドレイン層3
が形成され、P型ウェル層2の表面に選択的にN型ソー
ス層4が形成され、N型ドレイン層3とN型ソース層4
の間には溝5がドレイン−ソース方向とほぼ平行に形成
され、N型ドレイン層3とN型ソース層4のP型ウェル
層2表面と溝5表面にはゲート絶縁膜6が形成され、ゲ
ート絶縁膜6上にはゲート電極7が形成され、N型ドレ
イン層3と電気的にコンタクトするドレイン電極8と、
N型ソース層及びP型ウェル層に電気的にコンタクトす
るソース電極9が形成されている。また、溝5はドレイ
ン−ソース方向とほぼ90度の角度をなして繰り返し複
数形成されている。また、溝5のソース側端からソース
電極9までの距離はゲート電極7のソース側端からソー
ス電極までの距離よりも短い。このような構造にするこ
とにより、図7のLに相当する距離を短くすることがで
きる。また、さらにソースn+層をゲートポリシリコン
をマスクとしてイオン注入により形成できるので、プロ
セス上の精度も向上する。本構造により、耐圧25Vで
オン抵抗は13mΩ・mm2に低減する。
FIG. 1 is a plan view for explaining a first embodiment of the present invention, and FIG. 2A is a line AA in FIG.
2B is a cross-sectional view taken along line BB 'in FIG. In the figure, reference numeral 1 denotes an N-type semiconductor substrate, in which a P-type well layer 2 is selectively formed on the surface of an N-type semiconductor substrate 1, and an N-type drain layer 3 is selectively formed on the surface of the N-type semiconductor substrate 1.
Is formed, an N-type source layer 4 is selectively formed on the surface of the P-type well layer 2, and an N-type drain layer 3 and an N-type source layer 4 are formed.
A groove 5 is formed substantially in parallel with the drain-source direction, and a gate insulating film 6 is formed on the surface of the P-type well layer 2 of the N-type drain layer 3 and the N-type source layer 4 and on the surface of the groove 5. A gate electrode 7 is formed on the gate insulating film 6, and a drain electrode 8 electrically contacting the N-type drain layer 3;
A source electrode 9 is formed to electrically contact the N-type source layer and the P-type well layer. Also, a plurality of grooves 5 are repeatedly formed at an angle of about 90 degrees with the drain-source direction. The distance from the source side end of the groove 5 to the source electrode 9 is shorter than the distance from the source side end of the gate electrode 7 to the source electrode. With such a structure, the distance corresponding to L in FIG. 7 can be reduced. Further, since the source n + layer can be formed by ion implantation using the gate polysilicon as a mask, the accuracy in the process is improved. With this structure, the on-resistance is reduced to 13 mΩ · mm 2 at a withstand voltage of 25 V.

【0012】図3は本発明の第2の実施形態を説明する
平面図であり、図4は図3での線A−A‘での断面図で
ある。図中1はN型半導体基板を示しており、N型半導
体基板1表面に選択的にP型ウェル層2が形成されてお
り、N型半導体基板1表面に選択的にN型ドレイン層3
が形成され、P型ウェル層2の表面に選択的にN型ソー
ス層4が形成され、N型ドレイン層3とN型ソース層4
の間には溝5がドレイン−ソース方向とほぼ平行に形成
され、N型ドレイン層3とN型ソース層4のP型ウェル
層2表面と溝5表面にはゲート絶縁膜6が形成され、ゲ
ート絶縁膜6上にはゲート電極7が形成され、N型ドレ
イン層3と電気的にコンタクトするドレイン電極8と、
N型ソース層及びP型ウェル層に電気的にコンタクトす
るソース電極9が形成されている。また、溝5はドレイ
ン−ソース方向とほぼ90度の角度をなして繰り返し複
数形成されている。また、溝5のドレイン側端からドレ
イン電極9までの距離はゲート電極7のドレイン側端か
らドレイン電極までの距離よりも短い。このような構造
にすることにより、図7のL‘に相当する距離を短くす
ることができる。これにより、耐圧25Vでオン抵抗は
15mΩ・mm2に低減する。
FIG. 3 is a plan view illustrating a second embodiment of the present invention, and FIG. 4 is a cross-sectional view taken along line AA 'in FIG. In the figure, reference numeral 1 denotes an N-type semiconductor substrate, in which a P-type well layer 2 is selectively formed on the surface of an N-type semiconductor substrate 1, and an N-type drain layer 3 is selectively formed on the surface of the N-type semiconductor substrate 1.
Is formed, an N-type source layer 4 is selectively formed on the surface of the P-type well layer 2, and an N-type drain layer 3 and an N-type source layer 4 are formed.
A groove 5 is formed substantially in parallel with the drain-source direction, and a gate insulating film 6 is formed on the surface of the P-type well layer 2 of the N-type drain layer 3 and the N-type source layer 4 and on the surface of the groove 5. A gate electrode 7 is formed on the gate insulating film 6, and a drain electrode 8 electrically contacting the N-type drain layer 3;
A source electrode 9 is formed to electrically contact the N-type source layer and the P-type well layer. Also, a plurality of grooves 5 are repeatedly formed at an angle of about 90 degrees with the drain-source direction. The distance from the drain side end of the groove 5 to the drain electrode 9 is shorter than the distance from the drain side end of the gate electrode 7 to the drain electrode. With such a structure, the distance corresponding to L ′ in FIG. 7 can be reduced. Thereby, the on-resistance is reduced to 15 mΩ · mm 2 at a withstand voltage of 25 V.

【0013】図5は本発明の第3の実施形態を説明する
平面図であり、図6は図5での線A−A‘での断面図で
ある。図中10はP型半導体基板を示しており、P型半
導体基板10表面にP型ウェル層2が形成されており、
P型ウェル層2表面に選択的にN型ドレイン層3が形成
され、P型ウェル層2の表面に選択的にN型ソース層4
が形成され、N型ドレイン層3とN型ソース層4の間に
は溝5がドレイン−ソース方向とほぼ平行に形成され、
N型ドレイン層3とN型ソース層4のP型ウェル層2表
面と溝5表面にはゲート絶縁膜6が形成され、ゲート絶
縁膜6上にはゲート電極7が形成され、N型ドレイン層
3と電気的にコンタクトするドレイン電極8と、N型ソ
ース層及びP型ウェル層に電気的にコンタクトするソー
ス電極9が形成されている。また、溝5はドレイン−ソ
ース方向とほぼ90度の角度をなして繰り返し複数形成
されている。また、溝5のソース側端からソース電極9
までの距離はゲート電極7のソース側端からソース電極
までの距離よりも短く、溝5のドレイン側端からドレイ
ン電極9までの距離はゲート電極7のドレイン側端から
ドレイン電極までの距離よりも短い。このような構造に
することにより、図8のLとL'に相当する距離を短く
することができる。また、さらにソースn+層をゲート
ポリシリコンをマスクとしてイオン注入により形成でき
るので、プロセス上の精度も向上する。本構造により、
耐圧12Vでオン抵抗は5mΩ・mm2に低減する。
FIG. 5 is a plan view for explaining a third embodiment of the present invention, and FIG. 6 is a sectional view taken along line AA 'in FIG. In the drawing, reference numeral 10 denotes a P-type semiconductor substrate, and a P-type well layer 2 is formed on the surface of the P-type semiconductor substrate 10;
An N-type drain layer 3 is selectively formed on the surface of the P-type well layer 2, and an N-type source layer 4 is selectively formed on the surface of the P-type well layer 2.
Is formed, and a groove 5 is formed between the N-type drain layer 3 and the N-type source layer 4 substantially in parallel with the drain-source direction.
A gate insulating film 6 is formed on the surface of the P-type well layer 2 and the surface of the trench 5 of the N-type drain layer 3 and the N-type source layer 4, and a gate electrode 7 is formed on the gate insulating film 6; A drain electrode 8 electrically contacting with the gate electrode 3 and a source electrode 9 electrically contacting the N-type source layer and the P-type well layer are formed. Also, a plurality of grooves 5 are repeatedly formed at an angle of about 90 degrees with the drain-source direction. Further, the source electrode 9 extends from the source side end of the groove 5.
Is shorter than the distance from the source side end of the gate electrode 7 to the source electrode, and the distance from the drain side end of the groove 5 to the drain electrode 9 is shorter than the distance from the drain side end of the gate electrode 7 to the drain electrode. short. With such a structure, the distance corresponding to L and L ′ in FIG. 8 can be reduced. Further, since the source n + layer can be formed by ion implantation using the gate polysilicon as a mask, the accuracy in the process is improved. With this structure,
At a withstand voltage of 12 V, the on-resistance is reduced to 5 mΩ · mm 2.

【0014】なお、本発明は上記実施形態に限定される
ことはなく、その趣旨を逸脱しない範囲で種々変形して
実施可能である。
It should be noted that the present invention is not limited to the above-described embodiment, and can be implemented in various modifications without departing from the spirit thereof.

【0015】[0015]

【発明の効果】以上説明したように、本発明が提供する
MOSFETでは素子長を短くできるため、同じ素子の
オン抵抗で面積を小さくできる。
As described above, in the MOSFET provided by the present invention, since the element length can be shortened, the area can be reduced by the ON resistance of the same element.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による半導体装置の第1の実施形態を示
す平面図。
FIG. 1 is a plan view showing a first embodiment of a semiconductor device according to the present invention.

【図2】図1のA−A‘及びB−B‘での断面図。FIG. 2 is a cross-sectional view taken along AA # and BB # in FIG.

【図3】本発明による半導体装置の第2の実施形態を示
す平面図。
FIG. 3 is a plan view showing a second embodiment of the semiconductor device according to the present invention.

【図4】図3のA−A‘での断面図。FIG. 4 is a sectional view taken along the line AA in FIG. 3;

【図5】本発明による半導体装置の第3の実施形態を示
す平面図。
FIG. 5 is a plan view showing a third embodiment of the semiconductor device according to the present invention.

【図6】図5のA−A‘での断面図。FIG. 6 is a sectional view taken along line AA ′ of FIG. 5;

【図7】従来の半導体装置の構成を示す断面図。FIG. 7 is a cross-sectional view illustrating a configuration of a conventional semiconductor device.

【図8】従来の他の半導体装置の構成を示す断面図。FIG. 8 is a cross-sectional view illustrating a configuration of another conventional semiconductor device.

【符号の説明】[Explanation of symbols]

1 … N型半導体基板 2 … P型ウェル層 3 … N型ドレイン層 4 … N型ソース層 5 … 溝 6 … ゲート絶縁膜 7 … ゲート電極 8 … ドレイン電極 9 … ソース電極 10 … P型半導体基板 101 … N型半導体基板 102 … P型ウェル層 103 … N型ドレイン層 104 … N型ソース層 105 … 溝 106 … ゲート絶縁膜 107 … ゲート電極 108 … ドレイン電極 109 … ソース電極 110 … P型半導体基板 DESCRIPTION OF SYMBOLS 1 ... N-type semiconductor substrate 2 ... P-type well layer 3 ... N-type drain layer 4 ... N-type source layer 5 ... Groove 6 ... Gate insulating film 7 ... Gate electrode 8 ... Drain electrode 9 ... Source electrode 10 ... P-type semiconductor substrate 101 ... N-type semiconductor substrate 102 ... P-type well layer 103 ... N-type drain layer 104 ... N-type source layer 105 ... groove 106 ... gate insulating film 107 ... gate electrode 108 ... drain electrode 109 ... source electrode 110 ... P-type semiconductor substrate

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中川 明夫 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝研究開発センター内 Fターム(参考) 5F040 DA22 EB01 EB13 EC16 EC20 EF18  ────────────────────────────────────────────────── ─── Continuing from the front page (72) Inventor Akio Nakagawa 1 Kosuka Toshiba-cho, Saiwai-ku, Kawasaki-shi, Kanagawa F-term in the Toshiba R & D Center (reference) 5F040 DA22 EB01 EB13 EC16 EC20 EF18

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板と、前記半導体基板表面に形
成された第2導電型ウェル層と、この第2導電型ウェル
層と異なる前記半導体基板表面に選択的に形成された第
1導電型ドレイン層と、前記第2導電型ウェル層表面に
選択的に形成された第1導電型ソース層と、前記第1導
電型ドレイン層と前記第1導電型ソース層の間の前記半
導体基板表面に、ドレイン−ソース間方向にほぼ平行な
方向に形成された溝と、前記第1導電型ドレイン層と前
記第1導電型ソース層の間の前記半導体基板表面および
前記溝の表面に形成されたゲート絶縁膜と、前記ゲート
絶縁膜上に形成されたゲート電極と、前記第2導電型ド
レイン層に電気的にコンタクトするドレイン電極と、前
記第2導電型ソース層と前記第1導電型ウェル層に電気
的にコンタクトするソース電極とを具備し、前記溝のソ
ース側端から前記ソース電極までの距離が、前記半導体
基板表面上の前記ゲート電極部分のソース側端から前記
ソース電極までの距離よりも短いことを特徴とする半導
体装置。
1. A semiconductor substrate, a second conductivity type well layer formed on a surface of the semiconductor substrate, and a first conductivity type drain selectively formed on a surface of the semiconductor substrate different from the second conductivity type well layer. A layer, a first conductivity type source layer selectively formed on the surface of the second conductivity type well layer, and a surface of the semiconductor substrate between the first conductivity type drain layer and the first conductivity type source layer. A groove formed in a direction substantially parallel to the direction between the drain and the source; and a gate insulating layer formed on the surface of the semiconductor substrate and the surface of the groove between the first conductivity type drain layer and the first conductivity type source layer. A film, a gate electrode formed on the gate insulating film, a drain electrode in electrical contact with the second conductivity type drain layer, and an electrical connection in the second conductivity type source layer and the first conductivity type well layer. Contact A source electrode, wherein a distance from the source side end of the trench to the source electrode is shorter than a distance from the source side end of the gate electrode portion on the semiconductor substrate surface to the source electrode. Semiconductor device.
【請求項2】 半導体基板と、前記半導体基板表面に形
成された第2導電型ウェル層と、この第2導電型ウェル
層と異なる前記半導体基板表面に選択的に形成された第
1導電型ドレイン層と、前記第2導電型ウェル層表面に
選択的に形成された第1導電型ソース層と、前記第1導
電型ドレイン層と前記第1導電型ソース層の間の前記半
導体基板表面に、ドレイン−ソース間方向にほぼ平行な
方向に形成された溝と、前記第1導電型ドレイン層と前
記第1導電型ソース層の間の前記半導体基板表面および
前記溝の表面に形成されたゲート絶縁膜と、前記ゲート
絶縁膜上に形成されたゲート電極と、前記第2導電型ド
レイン層に電気的にコンタクトするドレイン電極と、前
記第2導電型ソース層と前記第1導電型ウェル層に電気
的にコンタクトするソース電極とを具備し、前記溝のド
レイン側端から前記ドレイン電極までの距離が、前記半
導体基板表面上の前記ゲート電極部分のドレイン側端か
ら前記ドレイン電極までの距離よりも短いことを特徴と
する半導体装置。
2. A semiconductor substrate, a second conductivity type well layer formed on the semiconductor substrate surface, and a first conductivity type drain selectively formed on the semiconductor substrate surface different from the second conductivity type well layer. A layer, a first conductivity type source layer selectively formed on the surface of the second conductivity type well layer, and a surface of the semiconductor substrate between the first conductivity type drain layer and the first conductivity type source layer. A groove formed in a direction substantially parallel to the direction between the drain and the source; A film, a gate electrode formed on the gate insulating film, a drain electrode in electrical contact with the second conductivity type drain layer, and an electrical connection in the second conductivity type source layer and the first conductivity type well layer. Contact A distance from the drain-side end of the trench to the drain electrode is shorter than a distance from the drain-side end of the gate electrode portion on the surface of the semiconductor substrate to the drain electrode. Semiconductor device.
【請求項3】 半導体基板と、前記半導体基板表面に形
成された第2導電型ウェル層と、この第2導電型ウェル
層と異なる前記半導体基板表面に選択的に形成された第
1導電型ドレイン層と、前記第2導電型ウェル層表面に
選択的に形成された第1導電型ソース層と、前記第1導
電型ドレイン層と前記第1導電型ソース層の間の前記半
導体基板表面に、ドレイン−ソース間方向にほぼ平行な
方向に形成された溝と、前記第1導電型ドレイン層と前
記第1導電型ソース層の間の前記半導体基板表面および
前記溝の表面に形成されたゲート絶縁膜と、前記ゲート
絶縁膜上に形成されたゲート電極と、前記第2導電型ド
レイン層に電気的にコンタクトするドレイン電極と、前
記第2導電型ソース層と前記第1導電型ウェル層に電気
的にコンタクトするソース電極とを具備し、前記溝のソ
ース側端から前記ソース電極までの距離が、前記半導体
基板表面上の前記ゲート電極部分のソース側端から前記
ソース電極までの距離よりも短く、かつ前記溝のドレイ
ン側端から前記ドレイン電極までの距離が、前記半導体
基板表面上の前記ゲート電極部分のドレイン側端から前
記ドレイン電極までの距離よりも短いことを特徴とする
半導体装置。
3. A semiconductor substrate, a second conductivity type well layer formed on the semiconductor substrate surface, and a first conductivity type drain selectively formed on the semiconductor substrate surface different from the second conductivity type well layer. A layer, a first conductivity type source layer selectively formed on the surface of the second conductivity type well layer, and a surface of the semiconductor substrate between the first conductivity type drain layer and the first conductivity type source layer. A groove formed in a direction substantially parallel to the direction between the drain and the source; and a gate insulating layer formed on the surface of the semiconductor substrate and the surface of the groove between the first conductivity type drain layer and the first conductivity type source layer. A film, a gate electrode formed on the gate insulating film, a drain electrode in electrical contact with the second conductivity type drain layer, and an electrical connection in the second conductivity type source layer and the first conductivity type well layer. Contact A distance from the source side end of the trench to the source electrode is shorter than a distance from the source side end of the gate electrode portion on the surface of the semiconductor substrate to the source electrode, and Wherein the distance from the drain side end to the drain electrode is shorter than the distance from the drain side end of the gate electrode portion on the surface of the semiconductor substrate to the drain electrode.
JP11186545A 1999-06-30 1999-06-30 Semiconductor device Pending JP2001015742A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11186545A JP2001015742A (en) 1999-06-30 1999-06-30 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11186545A JP2001015742A (en) 1999-06-30 1999-06-30 Semiconductor device

Publications (1)

Publication Number Publication Date
JP2001015742A true JP2001015742A (en) 2001-01-19

Family

ID=16190390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11186545A Pending JP2001015742A (en) 1999-06-30 1999-06-30 Semiconductor device

Country Status (1)

Country Link
JP (1) JP2001015742A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006294645A (en) * 2005-04-05 2006-10-26 Seiko Instruments Inc Semiconductor device and manufacturing method thereof
KR100878287B1 (en) * 2006-08-28 2009-01-13 미쓰비시덴키 가부시키가이샤 Insulated gate semiconductor device and method for manufacturing the same
JP2015141922A (en) * 2014-01-27 2015-08-03 世界先進積體電路股▲ふん▼有限公司 Semiconductor device and method of manufacturing the same
US9130033B2 (en) 2013-12-03 2015-09-08 Vanguard International Semiconductor Corporation Semiconductor device and method for fabricating the same
WO2019202350A1 (en) * 2018-04-19 2019-10-24 日産自動車株式会社 Semiconductor device and method of manufacturing semiconductor device
CN114975601A (en) * 2022-07-28 2022-08-30 合肥晶合集成电路股份有限公司 Semiconductor device and manufacturing method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006294645A (en) * 2005-04-05 2006-10-26 Seiko Instruments Inc Semiconductor device and manufacturing method thereof
KR101235502B1 (en) * 2005-04-05 2013-02-20 세이코 인스트루 가부시키가이샤 Semiconductor device and method of manufacturing the same
KR100878287B1 (en) * 2006-08-28 2009-01-13 미쓰비시덴키 가부시키가이샤 Insulated gate semiconductor device and method for manufacturing the same
US9130033B2 (en) 2013-12-03 2015-09-08 Vanguard International Semiconductor Corporation Semiconductor device and method for fabricating the same
JP2015141922A (en) * 2014-01-27 2015-08-03 世界先進積體電路股▲ふん▼有限公司 Semiconductor device and method of manufacturing the same
WO2019202350A1 (en) * 2018-04-19 2019-10-24 日産自動車株式会社 Semiconductor device and method of manufacturing semiconductor device
JPWO2019202350A1 (en) * 2018-04-19 2021-04-22 日産自動車株式会社 Semiconductor devices and methods for manufacturing semiconductor devices
CN114975601A (en) * 2022-07-28 2022-08-30 合肥晶合集成电路股份有限公司 Semiconductor device and manufacturing method thereof

Similar Documents

Publication Publication Date Title
CN101371343B (en) Self-aligned trench MOSFET structure and method of manufacture
US6297534B1 (en) Power semiconductor device
KR100652449B1 (en) Lateral thin-film silicon-on-insulator soi jfet device
KR100843062B1 (en) Lateral insulated-gate bipolar transistor ligbt device in silicon-on-insulator soi technology
JPH09508492A (en) Three-terminal gate-controlled semiconductor switching device with rectifying gate
JP2000260984A (en) High breakdown-strength semiconductor element
JP2009542002A (en) Structure of shield gate trench FET having shield electrode and gate electrode connected to each other and method of forming the same
KR20000076758A (en) Mos-gated device having a buried gate and process for forming same
KR100194661B1 (en) Power transistor
JP2002270840A (en) Power mosfet
US9876069B1 (en) High-voltage semiconductor device and method for manufacturing the same
US9257517B2 (en) Vertical DMOS-field effect transistor
WO2006134810A1 (en) Semiconductor device
JP2001015742A (en) Semiconductor device
US6133591A (en) Silicon-on-insulator (SOI) hybrid transistor device structure
KR20010034356A (en) Lateral thin-film silicon-on-insulator (soi) device having multiple doping profile slopes in the drift region
CN115831757A (en) Manufacturing method of semiconductor structure and semiconductor structure
JP2007516587A (en) Lateral field effect transistor with insulated trench gate electrode
JPH03205832A (en) Insulated-gate semiconductor device and manufacture thereof
JP2001094099A (en) Silicon carbide semiconductor device and fabrication method thereof
JPH06169090A (en) Power mosfet
JP2004111772A (en) Insulated gate field effect semiconductor device
JPH01111378A (en) Vertical mosfet
JPH10107269A (en) Semiconductor device controllable by field effect and its manufacture
JP3376294B2 (en) Semiconductor device