JPS6355976A - Field effect semiconductor device - Google Patents

Field effect semiconductor device

Info

Publication number
JPS6355976A
JPS6355976A JP61199745A JP19974586A JPS6355976A JP S6355976 A JPS6355976 A JP S6355976A JP 61199745 A JP61199745 A JP 61199745A JP 19974586 A JP19974586 A JP 19974586A JP S6355976 A JPS6355976 A JP S6355976A
Authority
JP
Japan
Prior art keywords
layer
field effect
electrode
source electrode
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61199745A
Other languages
Japanese (ja)
Other versions
JPH0673381B2 (en
Inventor
Yoshimitsu Tanaka
義光 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP61199745A priority Critical patent/JPH0673381B2/en
Publication of JPS6355976A publication Critical patent/JPS6355976A/en
Publication of JPH0673381B2 publication Critical patent/JPH0673381B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To obtain a device suitable for controlling a large current, by providing a drain electrode on one side of a substrate, providing a source electrode and an insulating gate electrode on the other side, forming a channel at the surface of a reverse conductivity region at the surface of the other side, thereby providing another source electrode at the outside of said region. CONSTITUTION:On a semiconductor substrate 2, an N<+> layer 3a, which is to become a drain region of an FET, and an N<-> layer 3b are provided. P layers (reverse conductivity type region) 5 which are separated one another are formed on the surface of the substrate 2. N<+> layer 3c are formed on the surface of the layer 3b at the outsides of the P layers 5. A drain electrode 6 is formed on the layer 3a. A source electrode 7 is formed so as to bridge the surfaces of P<+> layers 4, which are formed separately from the surfaces of the P layers 5. A gate electrode 8 is formed on each insulating layer 10. Another source electrode 9 is formed on each N<+> layer 3c. The channel of an insulating gate FET is formed on the surface part of each P layer 5 of the FET 1 in this constitution. The channel of a junction type FET is formed into the drain region.

Description

【発明の詳細な説明】 〔技術分野〕 この発明は電界効果半導体装置に関する。[Detailed description of the invention] 〔Technical field〕 The present invention relates to a field effect semiconductor device.

〔背景技術〕[Background technology]

電界効果半導体装置のひとつに絶縁ゲート型電界効果ト
ランジスタがある。絶縁ゲート型電界効果トランジスタ
は、縦型構造のものが開発されてからは電力制御用等い
わゆるパワー用としての用途が拓けてきた。第2図は、
縦型構造の絶縁ゲート型電界効果トランジスタの断面構
造をあられしたものである。縦型構造の絶縁ゲート型電
界効果トランジスタ21は、半導体基板22の裏面にド
レイン電極26を備えていて、表面にソース電極27.
27とゲート電極28.28を備えている、ゲート電極
28は絶縁層30の上に形成されている。チャンネルは
ゲート電極28下の2層25   ・の表面部CHに形
成される。
An insulated gate field effect transistor is one type of field effect semiconductor device. Since the development of insulated gate field effect transistors with a vertical structure, applications for so-called power applications such as power control have been expanded. Figure 2 shows
This is a cross-sectional view of a vertical insulated gate field effect transistor. The insulated gate field effect transistor 21 having a vertical structure includes a drain electrode 26 on the back surface of a semiconductor substrate 22, and a source electrode 27 on the front surface.
A gate electrode 28 is formed on the insulating layer 30, comprising a gate electrode 27 and a gate electrode 28.28. The channel is formed in the surface portion CH of the two layers 25.sub.2 under the gate electrode 28.

ただ、絶縁ゲート型電界効果トランジスタ21は、他の
電力制御素子と比べると、導通状態の素子における順方
向電圧降が大きい(つまりオン抵抗が大きい)傾向にあ
る。絶縁ゲート型電界効果トランジスダ21が導通状態
にあるとき、電流は、ドレイン電極27から入りN層2
3内を2点矢印で示すように縦向きに流れ、表面付近で
横向きに流れを変えチャンネルを通ってドレイン電極2
6に達する。この場合、基板表面付近におけるN層(ド
レイン領域)23で電流の集中化が起こる、つまり、ド
レイン領域が有効に導体として作用しきれないのである
。そのため、どうしても、オン抵抗が大きくなるのであ
る。オン抵抗が大きいと素子容量が小さくなるため、利
用範囲が制限されるなどの不都合がある。
However, compared to other power control elements, the insulated gate field effect transistor 21 tends to have a large forward voltage drop (that is, a large on-resistance) in a conductive element. When the insulated gate field effect transistor 21 is in a conductive state, current enters from the drain electrode 27 and flows through the N layer 2.
3 flows vertically as shown by the two-pointed arrow, then changes horizontally near the surface and flows through the channel to the drain electrode 2.
Reach 6. In this case, current concentration occurs in the N layer (drain region) 23 near the substrate surface, that is, the drain region cannot function effectively as a conductor. Therefore, the on-resistance inevitably increases. If the on-resistance is large, the element capacitance becomes small, resulting in disadvantages such as a limited range of use.

〔発明の目的〕[Purpose of the invention]

上記の事情に鑑み、この発明は、ドレイン領域が有効に
作用しオン抵抗が小さく、大電流制御に適した電界効果
半導体装置を提供することを目的とする。
In view of the above circumstances, it is an object of the present invention to provide a field effect semiconductor device in which the drain region functions effectively, has low on-resistance, and is suitable for large current control.

〔発明の開示〕[Disclosure of the invention]

前記目的を達成するため、この発明は、半導体基板の一
側にドレイン電極を備えているとともに他側にソース電
極と絶縁ゲート電極を備えていて、前記基板の他側表面
に形成された逆導電型領域表面にチャンネルが形成され
るようになっている電界効果半導体装置において、前記
逆導電型領域の外側における前記他側表面に別のソース
電極を備えていることを特徴とする電界効果半導体装置
を要旨とする。
To achieve the above object, the present invention includes a semiconductor substrate having a drain electrode on one side, a source electrode and an insulated gate electrode on the other side, and a reverse conductive electrode formed on the other side surface of the substrate. A field effect semiconductor device in which a channel is formed on the surface of a type region, characterized in that another source electrode is provided on the other side surface outside the opposite conductivity type region. The gist is:

以下、この発明にかかる電界効果半導体装置を、その−
例である縦型の電界効果トランジスタ(以下、rFF、
TJという)をあられした図面を参照しながら詳しく説
明する。
Hereinafter, the field effect semiconductor device according to the present invention will be described.
An example of a vertical field effect transistor (rFF)
This will be explained in detail with reference to the drawings showing the TJ.

第1図は、この発明にかかる電界効果半導体装置の一実
施例であるFETの断面構造をあられしたものである。
FIG. 1 shows a cross-sectional structure of an FET which is an embodiment of a field effect semiconductor device according to the present invention.

FETIのドレイン領域となるN+層3aとN−層3b
を有する半導体基板2を備えている。半導体基板2表面
に互いに離れてP層(逆導電型領域)5・・・5が形成
されていて、各P層5の表面に互いに離れるようにして
N1層4.4が形成されている。2層5の外側における
N−層3bの表面にN゛層3Cが形成されている。N″
層3aの上(半導体基板の他側表面)にはドレイン電極
6が形成されている。P層5表面とN゛層44表面の両
方に渡るようにしてソース電極7・・・7が形成されて
いる。ゲート電極8・・・8は絶縁層10の上に形成さ
れている。N“層3Cには別のソース電極9.9が形成
されている。
N+ layer 3a and N- layer 3b which become the drain region of FETI
A semiconductor substrate 2 is provided. P layers (opposite conductivity type regions) 5 . An N layer 3C is formed on the surface of the N− layer 3b outside the second layer 5. N''
A drain electrode 6 is formed on the layer 3a (on the other surface of the semiconductor substrate). Source electrodes 7 . . . 7 are formed so as to span both the surface of the P layer 5 and the surface of the N layer 44 . Gate electrodes 8...8 are formed on the insulating layer 10. Another source electrode 9.9 is formed in the N'' layer 3C.

FE、T1は、MOS (絶縁ゲート型)FETとJ(
接合型)FETのふたつの型の縦型トランジスタを有し
ている。MOSFETは、N3層(ソースfJ域)4、
P層(ベース領域)5、ドレイン領域となるN−層3a
、N”層3b、電極6.7.8で構成されていて、チャ
ンネルは2層5の表面部CHに形成される。JFETは
、N0層(ソース領域)3c、P層(ゲート領域)5、
ドレイン領域となるN−層3a、N“層3b、電極6.
9で構成されていて、チャンネルはドレイン領域に形成
される。つまり、従来と違って、FETIには、JFE
Tも形成されているのである。
FE, T1 are MOS (insulated gate type) FET and J(
It has two types of vertical transistors: junction type) FET. The MOSFET has N3 layer (source fJ region) 4,
P layer (base region) 5, N- layer 3a which becomes the drain region
, an N'' layer 3b, and electrodes 6, 7, and 8, and a channel is formed in the surface portion CH of the second layer 5.The JFET consists of an N0 layer (source region) 3c, a P layer (gate region) ,
N- layer 3a, N'' layer 3b, electrode 6. which becomes a drain region.
9, and the channel is formed in the drain region. In other words, unlike before, FETI includes JFE
T is also formed.

FETIは、ゼロバイアス状態において空乏層が2点鎖
線Aより上のN−層3b内に横方向に連続して生ずるよ
うに、各領域(特にN−層など)における不純物濃度お
よびディメンジョン(特に2層5.5間の距離など)が
選定されている。そのため、FETIはエンハンストメ
ント型の動作をする。
In the FETI, the impurity concentration and dimension (especially 2 (e.g., the distance between layers 5.5) is selected. Therefore, FETI operates as an enhancement type.

ゲート電圧(ゲート電極8に印加される電圧)がMOS
FETのしきい値電圧より低いときは、MOSFETは
導通しない。さらに空乏層の作用により、JFETも遮
断状態にある。したがって、ドレイン電圧が一定の値以
下のときには、FETIには全く電流が流れないことに
なる。ゲート電圧がしきい値電圧を越えると、MOSF
ETが導通ずるようになる。このとき、電極6.8間の
電圧を支えて、JFETを遮断状態に保たせていた空乏
層が、実効的に電圧を支えきれなくなる、そのため、J
FETも導通することとなる。したがって、FETIが
導通状態にあるときには、従来のドレイン電極6とソー
ス電極7の間に形成される電流通路の他に、ドレイン電
極6と別のソース電極9の間にあらたな電流通路が形成
されることとなる。つまり、N−層3bは表面付近の個
所も十分電流通路として使われることとなるので、FE
TIはオン抵抗が上昇を抑制され、かつ電流容量が増加
することとなるのである。もちろん、従来と同じ電流容
量であれば、オン抵抗が低くくなることになる。
The gate voltage (voltage applied to the gate electrode 8) is MOS
When the voltage is lower than the threshold voltage of the FET, the MOSFET does not conduct. Furthermore, due to the effect of the depletion layer, the JFET is also in a cut-off state. Therefore, when the drain voltage is below a certain value, no current flows through the FETI. When the gate voltage exceeds the threshold voltage, the MOSF
ET becomes conductive. At this time, the depletion layer that supported the voltage between the electrodes 6 and 8 and kept the JFET in a cut-off state can no longer effectively support the voltage, so that the
The FET will also become conductive. Therefore, when the FETI is in a conductive state, in addition to the current path formed between the conventional drain electrode 6 and source electrode 7, a new current path is formed between the drain electrode 6 and another source electrode 9. The Rukoto. In other words, the parts near the surface of the N- layer 3b are also used as current paths, so the FE
In TI, the increase in on-resistance is suppressed and the current capacity increases. Of course, if the current capacity is the same as before, the on-resistance will be lower.

この発明は、上記実施例に限定されない。例えば、各半
導体層の導電型が全(逆である構成であってもよい、2
層5の数も3個であったが、これに限られない。
This invention is not limited to the above embodiments. For example, the conductivity type of each semiconductor layer may be all (or vice versa).
Although the number of layers 5 was also three, it is not limited to this.

〔発明の効果〕〔Effect of the invention〕

以上に述べたように、この発明にかかる電界効果半導体
装置は、半導体基板の一側にドレイン電極を備えている
とともに他側にソース電極と絶縁ゲート電極を備えてい
て、前記基板の他側表面に形成された逆導電型領域表面
にチャンネルが形成されるようになっている構成におい
て、前記逆導電型領域の外側における前記他側表面に別
のソース電極を備えている。そのため、電界効果半導体
装置は、ドレイン領域が有効に作用しオン抵抗が小さく
、大電流制御に適したものとなる。
As described above, the field effect semiconductor device according to the present invention includes a drain electrode on one side of a semiconductor substrate, a source electrode and an insulated gate electrode on the other side, and a surface of the other side of the substrate. In the configuration in which a channel is formed on the surface of a region of opposite conductivity type formed in the semiconductor device, another source electrode is provided on the other side surface outside the region of opposite conductivity type. Therefore, in the field effect semiconductor device, the drain region functions effectively, the on-resistance is small, and the device is suitable for large current control.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明にかかる電界効果半導体装置の一実
施例であるFETの構造をあられした断面図、第2図は
、従来のFETの構造をあられした断面図である。 1・・・FET(電界効果半導体装置) 2・・・半導
体基板  5・・・P層(逆導電型領域) 6・・・ド
レイン電極  7・・・ソース電極  8・・・ゲート
電極9・・・別のソース電極 代理人 弁理士  松 本 武 彦 第2図
FIG. 1 is a sectional view showing the structure of an FET which is an embodiment of the field effect semiconductor device according to the present invention, and FIG. 2 is a sectional view showing the structure of a conventional FET. 1...FET (field effect semiconductor device) 2...Semiconductor substrate 5...P layer (opposite conductivity type region) 6...Drain electrode 7...Source electrode 8...Gate electrode 9...・Another source electrode representative: Patent attorney Takehiko Matsumoto Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)半導体基板の一側にドレイン電極を備えていると
ともに他側にソース電極と絶縁ゲート電極を備えていて
、前記基板の他側表面に形成された逆導電型領域表面に
チャンネルが形成されるようになっている電界効果半導
体装置において、前記逆導電型領域の外側における前記
他側表面に別のソース電極を備えていることを特徴とす
る電界効果半導体装置。
(1) A semiconductor substrate has a drain electrode on one side, a source electrode and an insulated gate electrode on the other side, and a channel is formed on the surface of an opposite conductivity type region formed on the other side of the substrate. What is claimed is: 1. A field effect semiconductor device characterized in that the field effect semiconductor device is characterized in that another source electrode is provided on the other side surface outside the opposite conductivity type region.
(2)逆導電型領域が互いに離間するようにして複数個
形成されていて、別のソース電極が前記逆導電型領域の
間に位置している特許請求の範囲第1項記載の電界効果
半導体装置。
(2) A field effect semiconductor according to claim 1, wherein a plurality of opposite conductivity type regions are formed so as to be spaced apart from each other, and another source electrode is located between the opposite conductivity type regions. Device.
JP61199745A 1986-08-26 1986-08-26 Field effect semiconductor device Expired - Lifetime JPH0673381B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61199745A JPH0673381B2 (en) 1986-08-26 1986-08-26 Field effect semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61199745A JPH0673381B2 (en) 1986-08-26 1986-08-26 Field effect semiconductor device

Publications (2)

Publication Number Publication Date
JPS6355976A true JPS6355976A (en) 1988-03-10
JPH0673381B2 JPH0673381B2 (en) 1994-09-14

Family

ID=16412924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61199745A Expired - Lifetime JPH0673381B2 (en) 1986-08-26 1986-08-26 Field effect semiconductor device

Country Status (1)

Country Link
JP (1) JPH0673381B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0654827A1 (en) * 1993-05-26 1995-05-24 Texas Instruments Incorporated Integrated power cascode
WO1995018465A1 (en) * 1993-12-28 1995-07-06 North Carolina State University Three-terminal gate-controlled semiconductor switching device with rectifying-gate
US5488236A (en) * 1994-05-26 1996-01-30 North Carolina State University Latch-up resistant bipolar transistor with trench IGFET and buried collector

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0654827A1 (en) * 1993-05-26 1995-05-24 Texas Instruments Incorporated Integrated power cascode
WO1995018465A1 (en) * 1993-12-28 1995-07-06 North Carolina State University Three-terminal gate-controlled semiconductor switching device with rectifying-gate
US5488236A (en) * 1994-05-26 1996-01-30 North Carolina State University Latch-up resistant bipolar transistor with trench IGFET and buried collector

Also Published As

Publication number Publication date
JPH0673381B2 (en) 1994-09-14

Similar Documents

Publication Publication Date Title
JP2585331B2 (en) High breakdown voltage planar element
JPH051626B2 (en)
JPS63266882A (en) Vertical-type insulated-gate field-effect transistor
JPH07202205A (en) Semiconductor element that has high surface breakdown voltage
JPS62176168A (en) Vertical mos transistor
JPS63252480A (en) Vertical mos field-effect transistor
JPS6355976A (en) Field effect semiconductor device
JPH03129764A (en) Semiconductor device
JP2608976B2 (en) Semiconductor device
JPH01111378A (en) Vertical mosfet
JP3376294B2 (en) Semiconductor device
JPH09246545A (en) Semiconductor element for power
JPS60262468A (en) Mos type field-effect transistor
JPH04241463A (en) Semiconductor device
JP2611429B2 (en) Conductivity modulation type MOSFET
JP2629437B2 (en) Lateral insulated gate bipolar transistor
JP3074064B2 (en) Lateral MOS field effect transistor
JPH0590579A (en) Power field-effect transistor
JPH04127574A (en) Vertical type insulated-gate field-effect transistor
JPH0513759A (en) Mis transistor
JP2973450B2 (en) Semiconductor device
JPH025484A (en) Mos semiconductor device
JPH0521804A (en) Insulated gate type field effect semiconductor device
JPH01207977A (en) Semiconductor device
JPH01114079A (en) Semiconductor device