JPS594077A - Field-effect transistor - Google Patents

Field-effect transistor

Info

Publication number
JPS594077A
JPS594077A JP11167882A JP11167882A JPS594077A JP S594077 A JPS594077 A JP S594077A JP 11167882 A JP11167882 A JP 11167882A JP 11167882 A JP11167882 A JP 11167882A JP S594077 A JPS594077 A JP S594077A
Authority
JP
Japan
Prior art keywords
region
drain
effect transistor
field effect
drain electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11167882A
Other languages
Japanese (ja)
Inventor
Yutaka Tomizawa
豊 冨澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP11167882A priority Critical patent/JPS594077A/en
Publication of JPS594077A publication Critical patent/JPS594077A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To reduce a voltage fall loss in a collector, by providing the drain region of FET with a region of conductivity type reverse to that of the drain region, and by short-circuiting the two regions by a drain electrode. CONSTITUTION:A P<+> type region 6 opposite to a P type source 4 is formed on the main surface of an N type drain region 2', and the two regions are short- circuited by a drain electrode. The p-n junction 7 between the layers 6 and 2' is at the same potential on the main surface due to the short circuit by the drain electrode, while it is at a high potential in a deep part near the source 4 and thus a hole is injected from the P<+> region. This hole causes carrier modulation, and thereby the resistance of the drain regions is lowered and the fall of the voltage is reduced. This effect is increased as current switching becomes large. Although a switching time tends to be delayed by a time required for the extinction of the hole, the demand can be met sufficiently in conjunction with a remarkable effect of the reduction of a voltage fall loss.

Description

【発明の詳細な説明】 この発明は電界効果トランジスタに係り、特に電界効果
トランジスタのドレイン領域の構造を改良して電気的特
性の向上をはかることを目的とする。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to field effect transistors, and particularly aims to improve electrical characteristics by improving the structure of the drain region of field effect transistors.

電界効果トランジスタ(以下FETと略称する)は耐圧
とON抵抗の相反関係が甚だしく、次に述べるON抵抗
に最も支配的なドレイン高抵抗層の比抵抗と厚さをいか
に小さくして高い耐圧を得るかが設計上のキーポイント
になっておシ、耐圧設計の最適化をはかる必要がある。
Field effect transistors (hereinafter abbreviated as FETs) have an extremely contradictory relationship between breakdown voltage and ON resistance, and the question is how to reduce the specific resistance and thickness of the drain high resistance layer, which is the most dominant factor in ON resistance, to obtain a high breakdown voltage. This is the key point in the design, and it is necessary to optimize the pressure-resistant design.

また、MOS FETのスイッチング速度は非常に速く
スイッチング損失を大幅に低減できる特長があるが、一
方ではバイポーラトランジスタに比べて飽和電圧が大き
くパワー損失が増大する欠点があった。上記飽和電圧を
小さくするためには、チップ面積を大きくすることが号
も簡単であるが形状が大型化し現状に即応しない。非飽
和領域におけるON抵抗は第1図に模式的に断面図示す
るNo5F’ETについて次式で示される。
Furthermore, although the switching speed of MOS FETs is very fast and switching losses can be significantly reduced, MOS FETs have the drawback of higher saturation voltage and increased power loss than bipolar transistors. In order to reduce the above-mentioned saturation voltage, it is easy to increase the chip area, but this increases the size and does not correspond to the current situation. The ON resistance in the non-saturation region is expressed by the following equation for No5F'ET, which is schematically shown in cross section in FIG.

RoN= Ls + Rch + Rac + RD+
 Rsub(式中、R8はソース抵抗、Rchはチャン
ネル抵抗、Racは蓄積抵抗、RDはドレイン抵抗、R
subは基板抵抗を夫々示す) 上式において、スイッチングレギュレータ用パワーMO
8PETについてはドレイン抵抗(RD)がもつとも支
配的な成分であり、主に高抵抗領域(N一層)における
′w1圧降下による軍、力消費が大きく影響していると
いう問題点がある。
RoN= Ls + Rch + Rac + RD+
Rsub (where R8 is the source resistance, Rch is the channel resistance, Rac is the storage resistance, RD is the drain resistance, R
(sub indicates the substrate resistance, respectively) In the above equation, the power MO for the switching regulator
Regarding 8PET, there is a problem in that the drain resistance (RD) is the dominant component, and the power consumption due to the 'w1 pressure drop mainly in the high resistance region (N layer) has a large influence.

この発明は斜上の従来のFETの構造の欠点を改良する
ためになされたもので、コレクタにおける電圧降下ロス
を低減させる構造を提供する。
The present invention has been made to improve the drawbacks of the conventional structure of the slanted FET, and provides a structure that reduces the voltage drop loss at the collector.

この発明にかかる軍、界効果トランジスタはそのドレイ
ン電極によって短絡されたドレイン領域とは反対導電型
の領域を形成したことを特徴とするものである。
The field effect transistor according to the present invention is characterized in that a region of a conductivity type opposite to that of the drain region short-circuited by the drain electrode is formed.

一例のMOS FETの断面を第2図に示し、そのソー
ス電極(S)からソース領域(1)、ドレイン領域(2
)ヲ経てドレイン電極(D)に至る電流の分布が破線で
示されている。なお、(G)はゲート電極、(3)は酸
化シリコン層(電気絶縁層)、(4)はチャンネル形成
ベース領域、(5)はドレイン高濃波領域である。
A cross section of an example of a MOS FET is shown in Figure 2, from the source electrode (S) to the source region (1) and drain region (2).
) The distribution of the current that reaches the drain electrode (D) is shown by a broken line. Note that (G) is a gate electrode, (3) is a silicon oxide layer (electrical insulating layer), (4) is a channel forming base region, and (5) is a drain high concentration region.

次に、この発明を第3図に1例を示すMOS−PETに
よ狡説明する。図示の半導体素子(以降素子と略称)は
ドレイン領域(2つのみが異なっている。
Next, the invention will be explained in detail using a MOS-PET, an example of which is shown in FIG. The illustrated semiconductor device (hereinafter abbreviated as device) has a drain region (the only difference being two regions).

すなわち、ドレイン領域(2うにはこの領域が占める主
面の一部から反対導電型物質を拡散させてソース領域(
1)に対向させた反対導電型領域(6)、 (63・・
・が形成されている。そして、第2図に示した電流の流
路の一部(特に上記反対導電型領域の近傍部)について
みると、Pの反対導電型領域(6)とNのドレイン領域
(2つとのPN接合(7)は、主面ではドレイン軍、極
で短絡されて等電位であるが、ソース領域に接近した、
すなわち深い部分では電位が高くなりP領域から正孔が
注入される。この注入された正孔によりキャリヤモジュ
レーションを生じ、ドレイン領域の抵抗が下がり電圧降
下が低減するように々っている。
That is, a material of the opposite conductivity type is diffused from a part of the main surface occupied by the drain region (2) to form the source region (2).
1) opposite conductivity type regions (6), (63...
・is formed. Looking at a part of the current flow path shown in FIG. 2 (particularly in the vicinity of the above-mentioned opposite conductivity type region), there is a PN junction between the P opposite conductivity type region (6) and the N drain region (the two In (7), the drain region is short-circuited at the pole and has an equal potential on the main surface, but the region close to the source region
That is, the potential becomes high in the deep portion, and holes are injected from the P region. The injected holes cause carrier modulation, which lowers the resistance of the drain region and reduces the voltage drop.

従来のFETには第4図に示す縦型のMOS−FET 
Conventional FETs include the vertical MOS-FET shown in Figure 4.
.

第5図に示す横型のMOS−FET 、第6図に示す縦
型の接合形FET 、第7図に示す横型の接合形FET
などがある。各図において、(1)はソース領域、(2
)はドレイン領域、(3)は酸化シリコン層、(4)は
チャンネル形成ベース領域、(5)、(至)、l′le
、(伺はドレイン高濃度領域、(8) 、 (+、lは
ゲート領域、f9)ld分離領域である。
Horizontal MOS-FET shown in Fig. 5, vertical junction FET shown in Fig. 6, horizontal junction FET shown in Fig. 7
and so on. In each figure, (1) is the source region, (2
) is the drain region, (3) is the silicon oxide layer, (4) is the channel forming base region, (5), (to), l'le
(8) (+, l is the gate region, f9) is the ld isolation region.

第8図に示す素子は縦型のMOS−FETで、ドレイン
領域がドレイン領域(12とドレイン電極(D)側に設
けられたドレイン高濃度領域(+鴫とがらなり、さらに
ドレイン・高濃度領域の主面の一部からソース領域に対
向させた、反対導電型領域fle 、 H−が形成され
ている。
The device shown in FIG. 8 is a vertical MOS-FET, in which the drain region consists of a drain region (12) and a drain high concentration region (+) provided on the drain electrode (D) side, and a Opposite conductivity type regions fle and H− are formed from a part of the main surface to face the source region.

次に第9図に示す素子は横型のMOS−FETで、ドレ
イン高濃度領域ffiがソース領域(1)やチャンネル
形成ベース領域(4)と同じ主面側に形成され、これに
本発明の反対導電型領域(イ)、(2e・・・が形成さ
れている。
Next, the device shown in FIG. 9 is a horizontal MOS-FET in which the drain high concentration region ffi is formed on the same main surface side as the source region (1) and the channel forming base region (4). Conductivity type regions (a), (2e...) are formed.

次に第10図に横型J−FETの素子を示す2、図にお
ける(8)はゲート領域、c1ツはドレイン高濃度領域
、(イ)は本発明Kかかる反対導電型領域、(9)は分
離領域である。
Next, FIG. 10 shows a lateral J-FET element. In the figure, (8) is the gate region, C1 is the drain high concentration region, (A) is the opposite conductivity type region according to the present invention, and (9) is the gate region. It is a separate area.

さらに、第11図に示す縦型J−FETけドレイン高濃
度領域(49を有し、これに本発明にかかる反対導電型
領域11Ei) 、 (4f9・・・が設けられている
。なお、08はゲート領域である。
Furthermore, the vertical J-FET shown in FIG. is the gate region.

なお、本発明にかかる反対導電型領域は、ドレイン領域
と接合を成すものであるが、前記実施例では、これを全
てドレイン電極によって短絡した如く示した。しかし、
短絡の目的が実質的に達成されうるならばドレイン電極
近傍における前記接合を破壊せしめる如き手段を用いて
もよい。
Note that the opposite conductivity type region according to the present invention forms a junction with the drain region, but in the above embodiments, it is shown as if they were all short-circuited by the drain electrode. but,
If the purpose of short circuiting can be substantially achieved, means such as destroying the junction in the vicinity of the drain electrode may be used.

斜上の構造に基づく現象はソースから流れる電流が大き
い程注入も大きくなるため大電流スイッチングになる程
効果は大きい。またこの構造は注入された正孔が消滅す
る時間だけスイッチングタイムが遅くなる傾向があるが
、電圧降下損失が顕著に低減できる効果を実用」〕組み
合わせ協調させることKよって充分要望に応じうる。こ
れに基づき半導体チップのサイズが縮小できる顕著な利
点がある。
The phenomenon based on the diagonal structure is such that the larger the current flowing from the source, the larger the injection, so the effect is greater as the switching current becomes larger. In addition, although this structure tends to slow down the switching time by the time the injected holes disappear, it is possible to achieve the effect of significantly reducing voltage drop loss in practical use. Based on this, there is a significant advantage that the size of the semiconductor chip can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はMOS FETにおけるON抵抗を説明するた
めの断面図、第2図はMOS PETの断面図、第3図
け1実施例のMOS FET素子の断面図、第4図、第
5図、第6図および第7図はいずれも従来のFFJT素
子の断面図、第8図、第9図、第1θ図および第11図
はいずれも夫々がこの発明の実施例KかかるFEAT素
子の断面図である。 1     ソース領域 2.2′      ドレイン領域 4     チャンネル形成ベース領域5.15,25
,35.45 ドレイン高濃度領域 6.16,26,36.46 ドレイン領域と反対導電型領域 D      ドレイン電極 S     ソース電極 G     ゲート電極 代理人 弁理士  井 上 −男 第1図 わ 第  2  図 一37゛ 第3図 り 第4図 仁 第5図 第  6  図 第  7  図 第  8  図 第9図 第  10  図
Fig. 1 is a cross-sectional view for explaining the ON resistance in a MOS FET, Fig. 2 is a cross-sectional view of a MOS PET, Fig. 3 is a cross-sectional view of a MOS FET element of the first embodiment, Fig. 4, Fig. 5, 6 and 7 are all cross-sectional views of a conventional FFJT element, and FIGS. 8, 9, 1θ, and 11 are cross-sectional views of a FEAT element according to Embodiment K of the present invention. It is. 1 Source region 2.2' Drain region 4 Channel forming base region 5.15, 25
, 35.45 Drain high concentration region 6.16, 26, 36.46 Drain region and opposite conductivity type region D Drain electrode S Source electrode G Gate electrode agent Patent attorney Inoue -M Figure 1 Figure 2 Figure 137 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10

Claims (1)

【特許請求の範囲】 +1)  電界効果トランジスタにおいて、そのドレイ
ン領域に多数キャリヤを注入して、ドレイン領域におけ
る電圧降下を低減させる反対導電型領域を設け、ドレイ
ン領域に接続するドレイン電極により該反対導電型領域
を短絡したことを特徴とする電界効果トランジスタ。 (2、特許請求の範囲第1項記載の電界効果トランジス
タにおいて、前記反対導電型領域がドレイン電極でドレ
イン領域と短絡された面からソース領域に向って延びて
いることを特徴とする縦型の絶縁ゲート電界効果トラン
ジスタ。 (3)特許請求の範囲第1項記載の電界効果トランジス
タにおいて、前記反対導電型領域がドレイン電極でドレ
イン領域と短絡された面に沿うてソース領域に向って延
びていることを特徴とする横型の絶縁ゲート電界効果ト
ランジスタ。 (4)特許請求の範囲第1項記載の電界効果トランジス
タにおいて、反対導電型領域がドレイン電極でドレイン
領域と短絡された面からソース領域に向って延びている
ことを特徴とする縦型の接合形電界効果トランジスタ。 (5)特許請求の範囲第1項記載の電界効果トランジス
タにおいて、反対導電型領域がドレイン電極でドレイン
領域と短絡された面に沿うてソース領域に向は延びてい
る横型の接合形電界効果トランジスタ。
[Claims] +1) In a field effect transistor, majority carriers are injected into the drain region to provide an opposite conductivity type region that reduces the voltage drop in the drain region, and the opposite conductivity type region is provided by a drain electrode connected to the drain region. A field effect transistor characterized by having a type region short-circuited. (2. The field effect transistor according to claim 1, wherein the opposite conductivity type region extends from a surface short-circuited with the drain region at the drain electrode toward the source region. Insulated gate field effect transistor. (3) In the field effect transistor according to claim 1, the opposite conductivity type region extends toward the source region along a surface short-circuited with the drain region at the drain electrode. A lateral insulated gate field effect transistor characterized in that: (4) In the field effect transistor according to claim 1, the opposite conductivity type region extends from the surface short-circuited with the drain region at the drain electrode toward the source region. (5) In the field effect transistor according to claim 1, the opposite conductivity type region is short-circuited with the drain region by the drain electrode. A lateral junction field effect transistor that extends along the source region.
JP11167882A 1982-06-30 1982-06-30 Field-effect transistor Pending JPS594077A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11167882A JPS594077A (en) 1982-06-30 1982-06-30 Field-effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11167882A JPS594077A (en) 1982-06-30 1982-06-30 Field-effect transistor

Publications (1)

Publication Number Publication Date
JPS594077A true JPS594077A (en) 1984-01-10

Family

ID=14567404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11167882A Pending JPS594077A (en) 1982-06-30 1982-06-30 Field-effect transistor

Country Status (1)

Country Link
JP (1) JPS594077A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS605568A (en) * 1983-06-23 1985-01-12 Sanken Electric Co Ltd Vertical insulated gate field effect transistor
JPS6248073A (en) * 1985-08-27 1987-03-02 Mitsubishi Electric Corp Semiconductor device
JPS62126668A (en) * 1985-11-27 1987-06-08 Mitsubishi Electric Corp Semiconductor device
JPS62219667A (en) * 1986-03-20 1987-09-26 Matsushita Electronics Corp Insulated gate type field-effect transistor
US4841345A (en) * 1985-08-27 1989-06-20 Mitsubishi Denki Kabushiki Kaisha Modified conductivity modulated MOSFET

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5428579A (en) * 1977-08-05 1979-03-03 Hitachi Ltd Field effect switching element
JPS56150870A (en) * 1980-03-25 1981-11-21 Rca Corp Vertical mos-fet device
JPS57120369A (en) * 1980-12-02 1982-07-27 Gen Electric Gate enhanced rectifier

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5428579A (en) * 1977-08-05 1979-03-03 Hitachi Ltd Field effect switching element
JPS56150870A (en) * 1980-03-25 1981-11-21 Rca Corp Vertical mos-fet device
JPS57120369A (en) * 1980-12-02 1982-07-27 Gen Electric Gate enhanced rectifier

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS605568A (en) * 1983-06-23 1985-01-12 Sanken Electric Co Ltd Vertical insulated gate field effect transistor
JPH0465552B2 (en) * 1983-06-23 1992-10-20 Sanken Electric Co Ltd
JPS6248073A (en) * 1985-08-27 1987-03-02 Mitsubishi Electric Corp Semiconductor device
US4841345A (en) * 1985-08-27 1989-06-20 Mitsubishi Denki Kabushiki Kaisha Modified conductivity modulated MOSFET
JPH0551188B2 (en) * 1985-08-27 1993-07-30 Mitsubishi Electric Corp
JPS62126668A (en) * 1985-11-27 1987-06-08 Mitsubishi Electric Corp Semiconductor device
JPS62219667A (en) * 1986-03-20 1987-09-26 Matsushita Electronics Corp Insulated gate type field-effect transistor

Similar Documents

Publication Publication Date Title
US20040207009A1 (en) Power semiconductor device
KR20060078487A (en) Method for manufacturing the semiconductor device
US5631483A (en) Power device integrated structure with low saturation voltage
JP2574267B2 (en) Insulated gate transistor array
JPH05160407A (en) Vertical insulating gate type semiconductor device and manufacture thereof
JP2011517511A (en) A semiconductor device in which a first insulated gate field effect transistor is connected in series with a second field effect transistor
JPH06224426A (en) Semiconductor device
JPH07202205A (en) Semiconductor element that has high surface breakdown voltage
JPH03194974A (en) Mos type semiconductor device
JPS61124178A (en) Field effect semiconductor device
JPH0560263B2 (en)
JPS594077A (en) Field-effect transistor
CA1279409C (en) Composite semiconductor device
JPH03129764A (en) Semiconductor device
JPH0414263A (en) Insulated gate type bipolar transistor
JPH0612823B2 (en) Bidirectional power high speed MOSFET device
JPH07111324A (en) Insulated-gate type thyristor
JP3111725B2 (en) Dual gate semiconductor device
JP3277701B2 (en) Horizontal insulated gate bipolar transistor
JPH042169A (en) Horizontal type conductivity modulation semiconductor device
JPH01111378A (en) Vertical mosfet
JP3196575B2 (en) Composite semiconductor device and power conversion device using the same
JPH0758783B2 (en) Conduction modulation type MOSFET
JP3271396B2 (en) Insulated gate bipolar transistor
JPS62293678A (en) Switching semiconductor device