JPH0281476A - Mos type semiconductor device - Google Patents

Mos type semiconductor device

Info

Publication number
JPH0281476A
JPH0281476A JP63233110A JP23311088A JPH0281476A JP H0281476 A JPH0281476 A JP H0281476A JP 63233110 A JP63233110 A JP 63233110A JP 23311088 A JP23311088 A JP 23311088A JP H0281476 A JPH0281476 A JP H0281476A
Authority
JP
Japan
Prior art keywords
layer
region
impurity concentration
type
abnormality
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63233110A
Other languages
Japanese (ja)
Other versions
JP2768362B2 (en
Inventor
Saburo Tagami
田上 三郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP63233110A priority Critical patent/JP2768362B2/en
Publication of JPH0281476A publication Critical patent/JPH0281476A/en
Application granted granted Critical
Publication of JP2768362B2 publication Critical patent/JP2768362B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/167Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table further characterised by the doping material

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To prevent an abnormality at a turning-on operation and an abnormality of an ON voltage by a method wherein a surface layer in a first region between opposite channel regions is formed of an N-type layer whose impurity concentration is higher than that of the first region at the lower part of the layer but is lower than that of a prescribed value. CONSTITUTION:At the lower part of a gate insulating film 5 under a gate electrode 6, an N-layer 10 is added to a surface part of an N<-> base layer 2. An impurity concentration of this N-layer 10 is higher than that of the N<-> layer 2; the layer has a concentration of 5X10<13>/cc. Thereby, when a lifetime killer such as gold or the like is introduced for a high-speed operation, the lifetime killer acts as an acceptor and prevents that a surface layer of the N<-> base layer or an N<-> drain layer is transformed into a P-type; it is possible to prevent an abnormality at a turning-on operation and an abnormality of an ON voltage which are caused by a transformation into the P-type.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、第−導電形のドレイン領域の表面部に第二導
電形のベース層を有し、ベース層にはドレイン領域との
間にチャネル形成領域をはさむ高不純物濃度の第−導電
形のソース層およびそのソース層のドレイン領域より遠
い側に高不純物濃度のベース層を有し、チャネル形成領
域上にはゲート絶縁膜を介してゲート電極とソース層お
よび高不純物濃度ベース層に接触するソース電極とを備
えた電力用縦型MOS F ETや絶縁ゲート型バイポ
ーラトランジスタなどのMO3O3型半導体装置する。
Detailed Description of the Invention [Industrial Field of Application] The present invention has a base layer of a second conductivity type on the surface of a drain region of a first conductivity type, and the base layer has a base layer between it and the drain region. A source layer of the first conductivity type with a high impurity concentration sandwiching a channel formation region and a base layer with a high impurity concentration on the side farther from the drain region of the source layer. MO3O3 type semiconductor devices, such as vertical power MOSFETs and insulated gate bipolar transistors, include an electrode, a source layer, and a source electrode in contact with a high impurity concentration base layer.

ご従来の技術〕 MO3型半導体装置には、単一キャリアのみを利用する
電力用MO3FETと、電子と正孔の2種のキャリアに
よる電導度変調を利用する絶縁ゲート型バイポーラトラ
ンジスタ (IGBT)がある。
Conventional technology] MO3 type semiconductor devices include power MO3FETs that use only a single carrier, and insulated gate bipolar transistors (IGBTs) that use conductivity modulation by two types of carriers, electrons and holes. .

1!1mゲート型バイポーラトランジスタは、低いオン
抵抗と電力用MOS F ETの高速性を結び付けたも
のとして着目されているが、その基本構成は第2図に示
すとおりで、構造的には縦型MO3FETのドレイン領
域となるN゛層をP゛層に置き換えたものということが
できる。すなわち、P゛基板1 (ドレイン)の上に低
不純物濃度のN−層2 (ベース)を形成し、この表面
部に選択的に2層3を、さらにこの表面部に選択的にN
″眉4ソース)を形成し、PIl13のN−層2とN゛
層4挟まれた表面領域をチャネル領域として、この上に
ゲート絶縁WA5を介してゲート916を形成する。そ
して、PI!I  (チャネル!l)3とN゛層4また
がってソース1を極7を設け、ドレイン側にドレイン電
極8を設ける。ソース電極7の接触する部分にはpH3
より深いP°ベース層9を形成する。
The 1!1m gate type bipolar transistor is attracting attention as it combines low on-resistance with the high speed of power MOSFETs, but its basic configuration is shown in Figure 2, and its structure is vertical. It can be said that the N' layer, which becomes the drain region of the MO3FET, is replaced with a P' layer. That is, an N- layer 2 (base) with a low impurity concentration is formed on a P substrate 1 (drain), a 2 layer 3 is selectively formed on this surface area, and an N layer 3 is selectively formed on this surface area.
The surface region sandwiched between the N- layer 2 and the N-layer 4 of the PIl 13 is used as a channel region, and a gate 916 is formed thereon via the gate insulating WA5. (Channel!l) 3 and the N layer 4, a source 1 is provided with a pole 7, and a drain electrode 8 is provided on the drain side.The part in contact with the source electrode 7 has a pH of 3
A deeper P° base layer 9 is formed.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

この素子はスイッチングスピードを速めるために通常の
ライフタイムキラーを導入するが、金のようにシリコン
原子と置換してアクセプタとして働くキラーの場合、絶
縁膜付近に偏析してN−基板2のドナー濃度を下げるた
めに、ドレイン電圧■。が一定値に達するまではオンし
なかったり、オン電圧が極端に大きくなるなどの異常を
ひき起こす、第3図+al、(blはこの状態を示し、
(blはf8+のX−X線に沿っての断面における電位
分布を示す。
This element introduces a normal lifetime killer to increase the switching speed. However, in the case of a killer such as gold, which works as an acceptor by replacing silicon atoms, it segregates near the insulating film and increases the donor concentration of the N-substrate 2. ■ To lower the drain voltage. This can cause abnormalities such as not turning on until the voltage reaches a certain value, or the on-voltage becoming extremely large.
(bl indicates the potential distribution in the cross section along the X-X line of f8+.

図ta+のように低不純物濃度のP−層21が形成され
ているために、図(blに線31によって示すようにB
点付近に電位の井戸が生じ、■、が上昇してもA点の電
位はM132へとわずかしか上昇せずチャネル電流が流
れないからである。また隣り合うセル間の間隔が狭くな
るとN基板と隣り合う二つのP層で構成するJFET 
 (接合型FET)が容易にピンチオフしてしまうため
オン電圧が極端に大きくなる。同様な問題は縦型MO3
FETにおいても生ずる。
Since the P- layer 21 with a low impurity concentration is formed as shown in figure ta+, B
This is because a potential well is generated near the point, and even if . In addition, when the distance between adjacent cells becomes narrower, a JFET consisting of an N substrate and two adjacent P layers
Since the (junction type FET) easily pinches off, the on-voltage becomes extremely large. Similar problem is vertical MO3
This also occurs in FETs.

本発明の課題は、上記のように金などのライフタイムキ
ラーを導入した場合のNヘース層のチャネル領域に接す
る表面層がP転することによるターンオン異常1オン電
圧異常を防止したMO3型半導体装置を提供することに
ある。
The object of the present invention is to prevent the turn-on abnormality 1-on voltage abnormality caused by the P conversion of the surface layer in contact with the channel region of the N hese layer when a lifetime killer such as gold is introduced as described above. Our goal is to provide the following.

〔課題を解決するための手段〕[Means to solve the problem]

上記の課題の解決のために、本発明は、少なくとも、低
不純物濃度のN形の第−領域と、第一領域表面部に選択
的に形成されたP形の第三領域と、第二領域表面部に選
択的に形成された高不純物1廣でN形の第三領域とを有
し、第三領域と第一領域の間の第二領域をチャネル領域
として対向するチャネル領域上にわたって絶t! Mを
介してゲート電極が設けられ、一つの主電橋が第二領域
および第三領域の表面に共通に接触するMO3型半導体
装置において、対向するチャネル領域の間の第一領域の
表面層がその層より下の第一?in城の不純物濃度より
高く、5×10”’/cc以下の不純物濃度をもつN形
の層であるものとする。
In order to solve the above problems, the present invention provides at least an N-type first region with a low impurity concentration, a P-type third region selectively formed on the surface of the first region, and a second region. It has an N-type third region with a high impurity concentration selectively formed on the surface portion, and a second region between the third region and the first region is used as a channel region, and an absolute T region is formed over the opposing channel region. ! In an MO3 type semiconductor device in which a gate electrode is provided through M and one main bridge commonly contacts the surfaces of the second region and the third region, the surface layer of the first region between the opposing channel regions is The first one below that layer? It is assumed that the layer is an N-type layer having an impurity concentration higher than that of the inner layer and less than or equal to 5×10''/cc.

〔作用〕[Effect]

N形第−領域の表面層が高い不純物21度をもつことに
より、アクセプタ的なライフタイムキラーにより表面に
P−Jiが形成されるのを防ぐ、ごの作用は絶縁ゲート
型バイポーラ1ランジスタでも縦型MO3FETでも同
様で、ターンオフ異心オン電圧異常を防ぐことができる
。なお5 X I Q I L/cc以上のNNとする
と、N層形成の際不純物の横方向拡散によりチャネル領
域が狭くなるので望ましくない。
The surface layer of the N-type region has a high impurity concentration of 21 degrees, which prevents the formation of P-Ji on the surface due to an acceptor-like lifetime killer. The same applies to the type MO3FET, and it is possible to prevent turn-off abnormality and on-voltage abnormality. Note that an NN of 5 X I Q I L/cc or more is not desirable because the channel region becomes narrower due to lateral diffusion of impurities during formation of the N layer.

〔実施例〕〔Example〕

第1図は絶縁ゲート型バイポーラトランジスタにおける
本発明の一実施例を示し、第2図と共通の部分には同一
の符号が付されている0図から明らかなように、ゲート
電極6の下のゲート絶縁膜5の下には、N−ベース層2
の表面部にN層10が付加されている。このN層10は
N−層2より不純物1度が高く、5 X 10■3/ 
ccの濃度を有する。この層はN−N2の表面部に選択
的に形成してもよいが、例えばP″基板上にエピタキシ
ャル法で形成されたN−層2の上に不純物を濃くしたエ
ピタキシャル層として形成するか、あるいはN−Jlの
表面部に全面に拡散により形成してもよい、P゛層12
層3.N゛層4そのあとから形成する際には、このN層
10の不純物濃度が著しく高くないため特に支障はない
FIG. 1 shows an embodiment of the present invention in an insulated gate bipolar transistor. As is clear from FIG. 0, in which parts common to FIG. Under the gate insulating film 5, an N-base layer 2 is formed.
An N layer 10 is added to the surface portion of the substrate. This N layer 10 has a higher degree of impurity than the N− layer 2, and has an impurity ratio of 5×10■3/
It has a concentration of cc. This layer may be formed selectively on the surface of the N-N2 layer, but for example, it may be formed as an epitaxial layer with concentrated impurities on the N- layer 2 formed on the P'' substrate by an epitaxial method, or Alternatively, the P layer 12 may be formed on the entire surface of the N-Jl by diffusion.
Layer 3. When forming the N layer 4 thereafter, there is no particular problem since the impurity concentration of the N layer 10 is not extremely high.

第4図は縦型MO3FETにおける本発明の別の実施例
を示し、第1図におけるP゛基板1の代わりにN・基板
11を用いた他は絶縁ゲート型バイポーラトランジスタ
と同様である。
FIG. 4 shows another embodiment of the present invention in a vertical MO3FET, which is similar to the insulated gate bipolar transistor except that an N substrate 11 is used instead of the P substrate 1 in FIG.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、絶縁ゲート型バイポーラトランジスタ
や縦型M OS Ii’ E TのようなMO3型半導
体装!の高速化のために金などのライフタイムキラーを
導入するとき、ライフタイムキラーがアクセプタとして
働き、N−ベース層あるいはN−ドレイン層の表面層を
P転するのを防止するため、対向するチャネル領域間の
絶縁膜下の表面層を予めN−層より不純物濃度の高い層
としておく。これにより、P転によるターンオン異常、
オン電圧異常を防止することができる。
According to the present invention, MO3 type semiconductor devices such as insulated gate bipolar transistors and vertical MOS Ii'ET! When a lifetime killer such as gold is introduced to increase the speed of The surface layer under the insulating film between the regions is made in advance to be a layer having a higher impurity concentration than the N- layer. As a result, turn-on abnormality due to P rotation,
On-voltage abnormalities can be prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の絶縁ゲート型バイポーラト
ランジスタの要部断面図、第2図は従来の絶縁ゲート型
バイポーラトランジスタの要部断面図、第3図は第2図
のトランジスタにおける問題点の説明図で、fatは要
部断面図、l′b)は(alのX−XvAに沿った断面
での電位分布図、第4図は本発明の別の実施例の縦型M
 OS F E Tの要部断面図である。 1:Po ドレイン層、ll:N”  ドレイン層、2
:ベース層、3:チャネル層、4:ソース層、5:ゲー
トへ色録膜、6:ゲート電極、7:ソース第11 (Q) (b) 第3図 第4因 第2図
FIG. 1 is a sectional view of a main part of an insulated gate bipolar transistor according to an embodiment of the present invention, FIG. 2 is a sectional view of a main part of a conventional insulated gate bipolar transistor, and FIG. 3 is a problem with the transistor of FIG. 2. In the diagram, fat is a sectional view of the main part, l'b) is a potential distribution diagram in a cross section along X-XvA of (al), and FIG. 4 is a vertical type M of another embodiment of the present invention.
It is a sectional view of the main part of OS FET. 1: Po drain layer, ll: N” drain layer, 2
: Base layer, 3: Channel layer, 4: Source layer, 5: Color recording film to gate, 6: Gate electrode, 7: Source 11 (Q) (b) Figure 3, Factor 4, Figure 2

Claims (1)

【特許請求の範囲】[Claims] 1)少なくとも、低不純物濃度のN形の第一領域と、第
一領域表面部に選択的に形成されたP形の第二領域と、
第二領域表面部に選択的に形成された高不純物濃度でN
形の第三領域とを有し、第三領域と第一領域の間の第二
領域をチャネル領域として対向するチャネル領域上にわ
たって絶縁膜を介してゲート電極が設けられ、一つの主
電極が第二領域および第三領域の表面に共通に接触する
ものにおいて、対向するチャネル領域の間の第一領域の
表面層がその層より下の第一領域の不純物濃度より高く
、5×10^1^4/cc以下の不純物濃度をもつN形
の層であることを特徴とするMOS型半導体装置。
1) at least an N-type first region with a low impurity concentration and a P-type second region selectively formed on the surface of the first region;
High impurity concentration selectively formed on the surface of the second region
a second region between the third region and the first region as a channel region, and a gate electrode is provided over the opposing channel regions with an insulating film interposed therebetween; In the case where the surface layer of the first region between the opposing channel regions is in common contact with the surfaces of the two regions and the third region, the impurity concentration is higher than the impurity concentration of the first region below that layer, and the impurity concentration is 5×10^1^ A MOS type semiconductor device characterized by being an N-type layer having an impurity concentration of 4/cc or less.
JP63233110A 1988-09-17 1988-09-17 MOS type semiconductor device Expired - Lifetime JP2768362B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63233110A JP2768362B2 (en) 1988-09-17 1988-09-17 MOS type semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63233110A JP2768362B2 (en) 1988-09-17 1988-09-17 MOS type semiconductor device

Publications (2)

Publication Number Publication Date
JPH0281476A true JPH0281476A (en) 1990-03-22
JP2768362B2 JP2768362B2 (en) 1998-06-25

Family

ID=16949927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63233110A Expired - Lifetime JP2768362B2 (en) 1988-09-17 1988-09-17 MOS type semiconductor device

Country Status (1)

Country Link
JP (1) JP2768362B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993012545A1 (en) * 1991-12-09 1993-06-24 Nippondenso Co. Ltd. Vertical insulated gate semiconductor device and method for its manufacture
EP0615292A1 (en) * 1993-03-10 1994-09-14 Hitachi, Ltd. Insulated gate bipolar transistor
JP2006237553A (en) * 2004-09-02 2006-09-07 Fuji Electric Holdings Co Ltd Semiconductor device and its manufacturing method
CN111697078A (en) * 2020-06-29 2020-09-22 电子科技大学 VDMOS device with high avalanche tolerance and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62122175A (en) * 1986-08-22 1987-06-03 Nec Corp Semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62122175A (en) * 1986-08-22 1987-06-03 Nec Corp Semiconductor device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993012545A1 (en) * 1991-12-09 1993-06-24 Nippondenso Co. Ltd. Vertical insulated gate semiconductor device and method for its manufacture
US5545908A (en) * 1991-12-09 1996-08-13 Nippondenso Co., Ltd. Vertical type insulated-gate semiconductor device
EP0615292A1 (en) * 1993-03-10 1994-09-14 Hitachi, Ltd. Insulated gate bipolar transistor
JP2006237553A (en) * 2004-09-02 2006-09-07 Fuji Electric Holdings Co Ltd Semiconductor device and its manufacturing method
CN111697078A (en) * 2020-06-29 2020-09-22 电子科技大学 VDMOS device with high avalanche tolerance and preparation method thereof

Also Published As

Publication number Publication date
JP2768362B2 (en) 1998-06-25

Similar Documents

Publication Publication Date Title
JP4839519B2 (en) Semiconductor device
US4485392A (en) Lateral junction field effect transistor device
US6091086A (en) Reverse blocking IGBT
US6724043B1 (en) Bipolar MOSFET device
US4717940A (en) MIS controlled gate turn-off thyristor
US4987098A (en) Method of producing a metal-oxide semiconductor device
JPH0851202A (en) Semiconductor bidirectional switch, and its drive method
JP3522887B2 (en) High voltage semiconductor device
US4935799A (en) Composite semiconductor device
JP3522983B2 (en) Horizontal IGBT
JPH0281476A (en) Mos type semiconductor device
US4558243A (en) Bidirectional power FET with shorting-channel off state
JPH03129764A (en) Semiconductor device
JPH04125972A (en) Mos semiconductor element and manufacture thereof
US5710444A (en) Insulated gate bipolar transistor having a coupling element
JP2720574B2 (en) Dual-gate insulated gate bipolar transistor
JP3376294B2 (en) Semiconductor device
JPH08130312A (en) Lateral semiconductor device and its use
JPH01238062A (en) Anode short type conductive modulation mosfet
JP2724204B2 (en) Conduction modulation type MOSFET
WO1991017570A1 (en) Insulated gate bipolar transistor
JP2629437B2 (en) Lateral insulated gate bipolar transistor
US6727527B1 (en) Reverse blocking IGBT
JP2856257B2 (en) P-channel insulated gate bipolar transistor
JPH0416443Y2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080410

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080410

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080410

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090410

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090410

Year of fee payment: 11