JP2629437B2 - Lateral insulated gate bipolar transistor - Google Patents

Lateral insulated gate bipolar transistor

Info

Publication number
JP2629437B2
JP2629437B2 JP28012590A JP28012590A JP2629437B2 JP 2629437 B2 JP2629437 B2 JP 2629437B2 JP 28012590 A JP28012590 A JP 28012590A JP 28012590 A JP28012590 A JP 28012590A JP 2629437 B2 JP2629437 B2 JP 2629437B2
Authority
JP
Japan
Prior art keywords
layer
region
impurity concentration
conductivity type
bipolar transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP28012590A
Other languages
Japanese (ja)
Other versions
JPH04174561A (en
Inventor
憲幸 岩室
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Publication of JPH04174561A publication Critical patent/JPH04174561A/en
Application granted granted Critical
Publication of JP2629437B2 publication Critical patent/JP2629437B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電力用スイッチング素子として、またインテ
リジェントスイッチング素子として用いられる横型絶縁
ゲート型バイポーラトランジスタに関する。
The present invention relates to a lateral insulated gate bipolar transistor used as a power switching element and as an intelligent switching element.

〔従来の技術〕[Conventional technology]

電力用スイッチング素子として縦型絶縁ゲート型バイ
ポーラトランジスタ(縦型IGBT)が一般に使われ始めて
いる。これはnチャネル縦型MOSFETのドレイン領域のド
レイン電極側にp+層を付加したものと言うことができ
る。しかし近年、リサーフ(RESURF技術)の出現によ
り、横型IGBTでも充分大きな耐圧が実現できるようにな
り、加えて素子表面にすべての電極、すなわちソース,
ゲート,ドレイン各電極を配置できるという利点から、
個別素子としてのみではなく、制御回路も同一チップに
組み込まれたインテリジェント素子の出力段として実用
化に向けて盛んに研究・開発が行われている。
As a power switching element, a vertical insulated gate bipolar transistor (vertical IGBT) has begun to be generally used. This can be said to be the addition of ap + layer on the drain electrode side of the drain region of the n-channel vertical MOSFET. However, in recent years, with the advent of RESURF technology, a sufficiently large breakdown voltage can be realized even in a horizontal IGBT, and in addition, all electrodes, that is, sources,
Because of the advantage that gate and drain electrodes can be arranged,
Research and development are being actively conducted for practical use not only as individual elements but also as output stages of intelligent elements in which control circuits are incorporated in the same chip.

横型IGBTとは、第2図に示すようにp型基板2(第二
層)上に高比抵抗のn-層1(第1層)を形成し、このn-
層1の表面に選択的にp+層3(第一領域)とp+層4(第
二領域)とを間隔を介して形成する。そして、p+層3の
表面部に選択的にn+層5(第三領域)を形成する。その
結果生ずるp+層3のn-層1およびn+層5にはさまれた表
面領域にチャネルが生ずるように、その上にゲート絶縁
膜6を介してゲート端子Gと接続されたゲート電極7を
設ける。また、ゲート電極7と絶縁膜61を介してp+層3
およびn+層5に接触しソース端子Sに接続されたソース
電極8、フィールド絶縁膜62を介してp+層4に接触しド
レイン端子Dに接続されたドレイン電極9を設ける。そ
のほかに、ソース電極8に接触し、p基板2に達するp
++層10(第四領域)およびp+層4とn-層1の間に介在す
るn+層11を形成する。p++層10は、RESURF技術によりp
基板2の電位をソース電位と同じにするためのものであ
り、n+層11はn-層1とp+層3との間のpn接合への逆バイ
アス時に拡がる空乏層がp+層4に達してパンチスルーす
るのを防ぐためのものである。
The lateral IGBT, p-type substrate 2 as shown in FIG. 2 n of the (second layer) on the high resistivity - to form a layer 1 (first layer), the n -
A p + layer 3 (first region) and ap + layer 4 (second region) are selectively formed on the surface of the layer 1 with an interval therebetween. Then, an n + layer 5 (third region) is selectively formed on the surface of the p + layer 3. As a result of the resulting p + layer 3 n - layer 1 and the n + as a channel in the surface region sandwiched between the layer 5 occurs, a gate electrode connected to the gate terminal G via the gate insulating film 6 thereon 7 is provided. Further, the p + layer 3 is interposed between the gate electrode 7 and the insulating film 61.
A source electrode 8 connected to the source terminal S in contact with the n + layer 5, and a drain electrode 9 connected to the drain terminal D in contact with the p + layer 4 via the field insulating film 62. In addition, the p contacting the source electrode 8 and reaching the p substrate 2
The ++ layer 10 (fourth region) and the n + layer 11 interposed between the p + layer 4 and the n layer 1 are formed. The p ++ layer 10 is formed by the RESURF technology.
The n + layer 11 serves to make the potential of the substrate 2 the same as the source potential, and the depletion layer which expands when a reverse bias is applied to the pn junction between the n layer 1 and the p + layer 3 is a p + layer 4. To prevent punch through.

この素子は、ソース電極9を接地し、ゲート電極8と
ドレイン電極10に正の電圧を与えると、n+層5,p+層3,n-
層1,ゲート絶縁膜7およびゲート電極8からなるMOSFET
がオンし、n-層1に電子が流れ込む。これにより、p+
4/n+層11接合がオンし、p+層4から正孔がn-層1に流れ
込み、n-層2の抵抗を低くする。
In this element, when the source electrode 9 is grounded and a positive voltage is applied to the gate electrode 8 and the drain electrode 10, the n + layer 5, the p + layer 3, n
MOSFET comprising layer 1, gate insulating film 7 and gate electrode 8
Is turned on, and electrons flow into the n layer 1. This allows the p + layer
The 4 / n + layer 11 junction turns on, holes flow from the p + layer 4 into the n layer 1, and lower the resistance of the n layer 2.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかし、上記のような素子がオンしたとき、p+層4か
ら注入された正孔のすべてがn-層1を通ってソース電極
8へと流れ出るわけでなく、その一部はp基板2へ流れ
込んでしまう。これは、RESURF技術よりp基板2がソー
ス電極8と同電位となっているためでいる。このため、
n-層1が充分伝導度変調されることがなく、従ってオン
電圧の上昇を招くことである。この欠点は、各部の導電
型を逆にしたpチャネル横型IGBTでも同様に存在する。
However, when the device as described above is turned on, not all of the holes injected from the p + layer 4 flow out to the source electrode 8 through the n layer 1, and a part of the holes is transferred to the p substrate 2. It flows in. This is because the p substrate 2 has the same potential as the source electrode 8 by the RESURF technique. For this reason,
That is, the conductivity of the n - layer 1 is not sufficiently modulated, thereby increasing the on-state voltage. This disadvantage also exists in a p-channel lateral IGBT in which the conductivity type of each part is reversed.

本発明の目的は、RESURF技術を適用した横型IGBTの上
記欠点を解消し、伝導度変調が充分に起こる横型IGBTを
提供することにある。
An object of the present invention is to solve the above-mentioned disadvantages of a horizontal IGBT to which the RESURF technology is applied, and to provide a horizontal IGBT in which conductivity modulation sufficiently occurs.

〔課題を解決するための手段〕[Means for solving the problem]

上述の目的を達成するために、本発明は、低不純物濃
度の第一導電型の第一層の表面部にそれぞれ選択的に形
成された第二導電型の第一および第二領域が所定の間隔
を介して位置し、第一領域の表面部に選択的に第一導電
型の第三領域が形成され、第三領域と第一層の間にはさ
まれた第一領域の表面には絶縁膜を介してゲート電極が
設けられ、また第一領域および第三領域に共通に接触す
るソース電極ならびに第二領域に接触するドレイン電極
をそれぞれ一面上に備え、第一層の前記表面と反対側に
第一層より不純物濃度が高い第一導電型の第三層を介し
て比較的低不純物濃度の第二導電型の第二層が形成さ
れ、ソース電極に接触し第二層に達する高不純物濃度の
第四領域が形成されたものとする。
In order to achieve the above-described object, the present invention provides a method in which first and second regions of a second conductivity type selectively formed on a surface portion of a first layer of a first conductivity type having a low impurity concentration are each provided with a predetermined area. A third region of the first conductivity type is selectively formed on the surface portion of the first region, located at an interval, and the surface of the first region sandwiched between the third region and the first layer A gate electrode is provided via an insulating film, and a source electrode commonly in contact with the first region and the third region and a drain electrode in contact with the second region are respectively provided on one surface, and are opposite to the surface of the first layer. On the side, a second layer of the second conductivity type having a relatively low impurity concentration is formed via a third layer of the first conductivity type having a higher impurity concentration than the first layer, and the second layer of the second conductivity type contacts the source electrode and reaches the second layer. It is assumed that a fourth region having an impurity concentration is formed.

〔作用〕[Action]

ゲート電極への電圧印加により第三領域と第一層の間
にはさまれた第一領域の表面部にチャネルが生じ、素子
がオン状態に入ったときに第三領域から注入されたキャ
リアは、第一層と第三層の間で形成されるビルトイン電
界により、第二層に流れ出すのが阻止される。これによ
り、第一層に第二領域から注入されたキャリアがすべて
伝導度変調に寄与することとなり、素子のオン抵抗の増
大を防ぐ。
When a voltage is applied to the gate electrode, a channel is formed on the surface of the first region sandwiched between the third region and the first layer, and the carriers injected from the third region when the device enters an ON state are The flow out into the second layer is prevented by the built-in electric field formed between the first and third layers. As a result, all the carriers injected into the first layer from the second region contribute to the conductivity modulation, thereby preventing an increase in the on-resistance of the device.

〔実施例〕〔Example〕

第1図は、本発明の実施例の横型IGBTを示し、第2図
と共通の部分には同一の符号が付されている。第2図と
異なる点は、n-層1とp基板2の間にn型の第三層12が
介在していることである。第一の実施例のIGBTでは、不
純物濃度3.7×1014cm3のp基板2の上に厚さ5μmで不
純物濃度1.0×1016/cm3のn層12、厚さ20μmで不純物
濃度1.5×1015/cm3のn-層1をエピタキシャル成長で順
次積層させ、表面からのイオン注入および熱処理で表面
不純物濃度1.0×1016/cm3,xj2μmのp+層4および表面
不純物濃度1.0×1017/cm3,xj5μmのn+層11を形成し
た。第3図の電流・電圧曲線では、ゲート電圧VG=15V
において線31が第2図の断面構造をもつIGBT素子、線32
が第一の実施例の素子の特性を示し、この図からもわか
るように、本発明の実施例の素子の方がオン電圧が低下
しており、例えばI=10A/cm2のとき0.8V、I=20A/cm2
のとき0.5Vだけそれぞれ低くなっている。
FIG. 1 shows a horizontal IGBT according to an embodiment of the present invention, and portions common to FIG. 2 are denoted by the same reference numerals. The difference from FIG. 2 is that an n-type third layer 12 is interposed between the n layer 1 and the p substrate 2. In the IGBT of the first embodiment, an n layer 12 having a thickness of 5 μm and an impurity concentration of 1.0 × 10 16 / cm 3 , and an impurity concentration of 1.5 × 10 × 10 16 / cm 3 are formed on a p substrate 2 having an impurity concentration of 3.7 × 10 14 cm 3. 10 15 / cm 3 of the n - layer 1 are sequentially laminated in the epitaxial growth, the surface impurity concentration by ion implantation and heat treatment of the surface 1.0 × 10 16 / cm 3, x j 2μm of p + layer 4 and the surface impurity concentration of 1.0 × An n + layer 11 of 10 17 / cm 3 , x j 5 μm was formed. In the current / voltage curve of FIG. 3, the gate voltage V G = 15 V
The line 31 is an IGBT element having the cross-sectional structure of FIG.
Shows the characteristics of the device of the first embodiment, and as can be seen from this figure, the device of the embodiment of the present invention has a lower on-state voltage, for example, 0.8 V when I = 10 A / cm 2 . , I = 20A / cm 2
At this time, they are each reduced by 0.5V.

次に、第二の実施例のIGBTでは、n層12の不純物濃度
を1.0×1015/cm3とした。その素子のI−V特性は第3
図の線33の通りで、線31とほぼ重なり、オン電圧が低下
しないことを示す。そこでオン電圧の低下分とn層12の
不純物濃度の関係をn-層1の不純物濃度が1.5×1015/cm
3の場合においてさらに詳細に検討した。第4図がID=2
0A/cm2で測定したその結果であり、n層12の不純物濃度
がn-層1の不純物濃度を越えるあたりからオン電圧VDON
の低下が生じていることがわかる。次にn-層1の不純物
濃度を6.2×1015/cm3と高くしたときのID=20Aにおける
オン電圧低下分とn層12の不純物濃度の関係を第5図に
示す。この場合も、第4図の場合と同様、n層12の不純
物濃度がn-層1の不純物濃度を越えるあたりからオン電
圧が低下している。なおn層12の厚さは実用上層となる
範囲で薄くしてもよい。
Next, in the IGBT of the second embodiment, the impurity concentration of the n-layer 12 was set to 1.0 × 10 15 / cm 3 . The IV characteristic of the element is the third
As indicated by the line 33 in the figure, the line substantially overlaps the line 31, indicating that the on-voltage does not decrease. Therefore the relationship between the impurity concentration of the decreased amount and the n layer 12 of on-voltage impurity concentration of n - layer 1 is 1.5 × 10 15 / cm
The case 3 was discussed in more detail. Figure 4 shows I D = 2
This is a result measured at 0 A / cm 2 , and the on-state voltage V DON starts when the impurity concentration of the n-layer 12 exceeds the impurity concentration of the n layer 1.
It can be seen that a decrease has occurred. Next, FIG. 5 shows the relationship between the decrease in the ON voltage at I D = 20 A and the impurity concentration of the n-layer 12 when the impurity concentration of the n layer 1 is increased to 6.2 × 10 15 / cm 3 . Also in this case, as in the case of FIG. 4, the on-state voltage starts to decrease when the impurity concentration of the n layer 12 exceeds the impurity concentration of the n layer 1. Note that the thickness of the n-layer 12 may be reduced as long as it is practically a layer.

〔発明の効果〕〔The invention's effect〕

本発明によれば、RESURF技術によりソース電位と同電
位にされる第二導電形の第二層と高抵抗の第一導電形の
第一層の間に第一層より不純物濃度の高い第一導電形の
第三層を設けることにより、伝導度変調に寄与するドレ
イン側からの注入キャリアの第二層側への流出を防ぐこ
とができ、オン電圧の低い横型IGBTを得ることができ
た。
According to the present invention, the first layer having a higher impurity concentration than the first layer between the second layer of the second conductivity type and the first layer of the first resistance type having the same resistance as the source potential by the RESURF technique. By providing the third layer of the conductivity type, it was possible to prevent the injected carriers from the drain side contributing to the conductivity modulation from flowing out to the second layer side, and to obtain a lateral IGBT having a low on-voltage.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の実施例の横型IGBTの断面図、第2図は
従来の横型IGBTの断面図、第3図は本発明の実施例およ
び従来構造の横型IGBTの電流・電圧特性線図、第4図お
よび第5図は本発明に基づくn層の不純物濃度とオン電
圧低下分との関係線図である。 1……n-層(第一層)、2……p基板(第二層)、3…
…p+層(第一領域)、4……p+層(第二領域)、5……
n+層(第三領域)、6……ゲート絶縁膜、7……ゲート
電極、8……ソース電極、9……ドレイン電極、10……
p++層(第四領域)、12……n層(第三層)。
1 is a cross-sectional view of a horizontal IGBT according to an embodiment of the present invention, FIG. 2 is a cross-sectional view of a conventional horizontal IGBT, and FIG. 3 is a current-voltage characteristic diagram of the horizontal IGBT of the embodiment of the present invention and a conventional structure. 4 and 5 are graphs showing the relationship between the impurity concentration of the n-layer and the decrease in the on-voltage according to the present invention. 1 ... n - layer (first layer), 2 ... p substrate (second layer), 3 ...
... p + layer (first area), 4 ... p + layer (second area), 5 ...
n + layer (third region), 6 gate insulating film, 7 gate electrode, 8 source electrode, 9 drain electrode, 10
p ++ layer (fourth region), 12... n layer (third layer).

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】低不純物濃度の第一導電型の第一層の表面
部に選択的に形成された第二導電型の第一および第二領
域が所定の間隔を介して位置し、第一領域の表面部に選
択的に第一導電型の第三領域が形成され、第三領域と第
一層の間にはさまれた第一領域の表面には絶縁膜を介し
てゲート電極が設けられ、第一領域および第三領域に共
通に接触するソース電極ならびに第二領域に接触するド
レイン電極をそれぞれ一面上に備え、第一層の前記表面
と反対側に第一層より不純物濃度が高い第一導電型の第
三層を介して比較的低不純物濃度の第二導電型の第二層
が形成され、ソース電極に接触し第二層に達する高不純
物濃度の第四領域が形成されたことを特徴とする横型絶
縁ゲート型バイポーラトランジスタ。
The first and second regions of a second conductivity type selectively formed on a surface portion of a first layer of a first conductivity type having a low impurity concentration are located at a predetermined distance from each other. A third region of the first conductivity type is selectively formed on the surface of the region, and a gate electrode is provided via an insulating film on a surface of the first region sandwiched between the third region and the first layer. A source electrode in common contact with the first region and the third region, and a drain electrode in contact with the second region, respectively, on one surface, the impurity concentration is higher than the first layer on the opposite side to the surface of the first layer A second layer of the second conductivity type having a relatively low impurity concentration was formed through the third layer of the first conductivity type, and a fourth region having a high impurity concentration reaching the second layer in contact with the source electrode was formed. A lateral insulated gate bipolar transistor characterized by the above-mentioned.
JP28012590A 1990-07-16 1990-10-18 Lateral insulated gate bipolar transistor Expired - Lifetime JP2629437B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2-187451 1990-07-16
JP18745190 1990-07-16

Publications (2)

Publication Number Publication Date
JPH04174561A JPH04174561A (en) 1992-06-22
JP2629437B2 true JP2629437B2 (en) 1997-07-09

Family

ID=16206308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28012590A Expired - Lifetime JP2629437B2 (en) 1990-07-16 1990-10-18 Lateral insulated gate bipolar transistor

Country Status (1)

Country Link
JP (1) JP2629437B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7759696B2 (en) 2005-10-20 2010-07-20 Panasonic Corporation High-breakdown voltage semiconductor switching device and switched mode power supply apparatus using the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100204016B1 (en) * 1996-06-15 1999-06-15 김영환 Semiconductor device with double junction structure and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7759696B2 (en) 2005-10-20 2010-07-20 Panasonic Corporation High-breakdown voltage semiconductor switching device and switched mode power supply apparatus using the same

Also Published As

Publication number Publication date
JPH04174561A (en) 1992-06-22

Similar Documents

Publication Publication Date Title
US6091086A (en) Reverse blocking IGBT
JP3158738B2 (en) High breakdown voltage MIS field-effect transistor and semiconductor integrated circuit
JPH0357614B2 (en)
US5612564A (en) Semiconductor device with limiter diode
JPH0575110A (en) Semiconductor device
SE513284C3 (en) Semiconductor component with linear current-to-voltage characteristics
JPS6137796B2 (en)
JPH07120799B2 (en) Semiconductor device
JPH0786580A (en) High-voltage semiconductor device
JP3522887B2 (en) High voltage semiconductor device
JPS62150769A (en) Semiconductor device
JPH0855860A (en) Semiconductor device
JPH0888357A (en) Lateral igbt
US5912491A (en) MOS device
JP2629437B2 (en) Lateral insulated gate bipolar transistor
JP2808871B2 (en) Method for manufacturing MOS type semiconductor device
JP3249891B2 (en) Semiconductor device and method of using the same
JP2536122B2 (en) p-channel insulated gate bipolar transistor
JPH09246545A (en) Semiconductor element for power
JP2964609B2 (en) Insulated gate bipolar transistor and method of manufacturing the same
JP2768362B2 (en) MOS type semiconductor device
JP3376294B2 (en) Semiconductor device
JPH05190561A (en) Semiconductor device
JPS6373670A (en) Conductive modulation type mosfet
JP2650456B2 (en) MOS semiconductor device