JP2536122B2 - p-channel insulated gate bipolar transistor - Google Patents

p-channel insulated gate bipolar transistor

Info

Publication number
JP2536122B2
JP2536122B2 JP1026946A JP2694689A JP2536122B2 JP 2536122 B2 JP2536122 B2 JP 2536122B2 JP 1026946 A JP1026946 A JP 1026946A JP 2694689 A JP2694689 A JP 2694689A JP 2536122 B2 JP2536122 B2 JP 2536122B2
Authority
JP
Japan
Prior art keywords
layer
region
type
bipolar transistor
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1026946A
Other languages
Japanese (ja)
Other versions
JPH02206174A (en
Inventor
弘 春木
憲幸 岩室
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP1026946A priority Critical patent/JP2536122B2/en
Publication of JPH02206174A publication Critical patent/JPH02206174A/en
Application granted granted Critical
Publication of JP2536122B2 publication Critical patent/JP2536122B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66325Bipolar junction transistors [BJT] controlled by field-effect, e.g. insulated gate bipolar transistors [IGBT]
    • H01L29/66333Vertical insulated gate bipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、npnバイポーラトランジスタのベース電流
をpチャネルMOSFETによって供給するpチャネル絶縁ゲ
ート型バイポーラトランジスタに関する。
Description: TECHNICAL FIELD The present invention relates to a p-channel insulated gate bipolar transistor in which a base current of an npn bipolar transistor is supplied by a p-channel MOSFET.

〔従来の技術〕[Conventional technology]

電力用スイッチング素子としてnチャネル型絶縁ゲー
ト型バイポーラトランジスタ(IGBT)が一般に使われ始
めている。これは、nチャネル縦型MOSFETのドレイン領
域のドレイン電極側にp+層を付加したものと言うことが
できる。しかし近年、pチャネル型IGBTが制御回路の簡
略化が可能及び制御回路と一緒に集積することが容易と
いうことで開発がさかんに行われている。pチャネル型
IGBTはnチャネル型IGBTの導電型をすべて逆にしたもの
である。
An n-channel insulated gate bipolar transistor (IGBT) is generally used as a power switching element. It can be said that a p + layer is added to the drain electrode side of the drain region of the n-channel vertical MOSFET. However, in recent years, the p-channel IGBT has been vigorously developed because the control circuit can be simplified and can be easily integrated with the control circuit. p-channel type
The IGBT is an n-channel IGBT with all conductivity types reversed.

すなわち、第2図に示すようにn+基板1(第一層)に
バッファ層としての低抵抗のp+層2(第二層)を形成
し、その表面に高抵抗層のp-層3(第三層)を形成し、
このp-層3の表面部に選択的にn+層4(第一領域)を、
さらにn+層4の表面部に選択的にp+層5(第二領域)
を、さらにこのn+層4のp-層3とP+層5で挟まれた表面
領域をチャネル領域として、この上にゲート絶縁膜6を
介してゲート電極7を形成する。そして、n+層4とp+
5にソース電極8を、またn+基板1の表面にドレイン電
極9を接触させる。
That is, as shown in FIG. 2, a low resistance p + layer 2 (second layer) as a buffer layer is formed on an n + substrate 1 (first layer), and a high resistance p layer 3 is formed on the surface thereof. (Third layer) is formed,
An n + layer 4 (first region) is selectively formed on the surface of the p layer 3.
Further, the p + layer 5 (second region) is selectively formed on the surface of the n + layer 4.
Further, with the surface region of the n + layer 4 sandwiched by the p layer 3 and the P + layer 5 as a channel region, a gate electrode 7 is formed thereon with a gate insulating film 6 interposed therebetween. Then, the source electrode 8 is brought into contact with the n + layer 4 and the p + layer 5, and the drain electrode 9 is brought into contact with the surface of the n + substrate 1.

この電子は、ソース電極8を接地し、ゲート電極7と
ドレイン電極9に負の電圧を与えると、MOSFETがオンし
てp-層3に正孔が流れ込む。これに対応してn+基板1か
らp-層3に電子の注入が起こり、p-層3では伝導度変調
が生じることにより、この領域の抵抗が低くなる。
When the source electrode 8 is grounded and a negative voltage is applied to the gate electrode 7 and the drain electrode 9, the electrons turn on the MOSFET and holes flow into the p layer 3. Occurs layers 3 electron injection into, p - - This p of n + substrate 1 in correspondence by the layer 3 conductivity modulation occurs, the resistance of this region is low.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

pチャネル型IGBTをL負荷でターンオフする際、数百
VのL負荷逆起電力分と例えば200Vの電源電圧分の電圧
が、p-層とn+層4の接合部に逆バイアスの形で加わる。
そのため、上記接合部には大きな電界が発生する。さら
に、n+基板1,p+層,p-層3,n+層4のnpnトランジスタで一
定電流を流し続けようとするため、その主電流は電子電
流となる。高電界(約105 V/cm)印加時の電子の衝撃イ
オン化率は、正孔のそれに比べ約100〜1,000倍大きいた
め、pチャネルIGBTはnチャネルIGBTに比べ、ターンオ
フ時にアバランシェ破壊を起こしやすい。
When a p-channel IGBT is turned off with an L load, a voltage of several hundred V of the L load back electromotive force and, for example, a power supply voltage of 200 V are applied to the junction of the p layer and the n + layer 4 in the form of reverse bias. Join.
Therefore, a large electric field is generated at the junction. Further, since the npn transistors of the n + substrate 1, p + layer, p layer 3, and n + layer 4 try to keep a constant current flowing, the main current becomes an electron current. High electric field (about 10 5 V / cm) electron impact ionization ratio when applied, for about 100 to 1,000 times than that of the hole larger, p-channel IGBT compared to n-channel IGBT, susceptible to avalanche breakdown during turn-off .

本発明は、緊急の問題である上述の欠点を解消して、
ターンオフ時にアバランシェ破壊を起こしにくいpチャ
ネルIGBTを提供することを目的とする。
The present invention solves the above-mentioned drawbacks which are urgent problems,
It is an object of the present invention to provide a p-channel IGBT that is unlikely to cause avalanche breakdown at turn-off.

〔課題を解決するための手段〕[Means for solving the problem]

上記の目的の達成のために、本発明は、高不純物濃度
でn形の第一層、高不純物濃度でp形の第二層および低
不純物濃度でp形の第三層が順に隣接し、その第三層の
表面部に選択的にn形の第一領域が、さらにその第一領
域の表面部に選択的にp形の第二領域が形成され、第三
層と第二領域にはさまれた第一領域の上に絶縁膜を介し
てゲート電極が設けられるpチャネル絶縁ゲート型バイ
ポーラトランジスタにおいて、第三層の第二層に接する
部分が第三層の比抵抗と第二層の比抵抗の中間の比抵抗
を有する層よりなるものとする。
In order to achieve the above-mentioned object, the present invention provides a high impurity concentration n-type first layer, a high impurity concentration p-type second layer, and a low impurity concentration p-type third layer in order, An n-type first region is selectively formed on the surface portion of the third layer, and a p-type second region is selectively formed on the surface portion of the first region. The third layer and the second region are formed. In a p-channel insulated gate bipolar transistor in which a gate electrode is provided on the sandwiched first region via an insulating film, a portion in contact with the second layer of the third layer has a specific resistance of the third layer and a second layer. A layer having a resistivity in the middle of the resistivity is used.

〔作用〕[Action]

第三層の第二層に接する部分に中間の比抵抗を有する
層を設けることにより、第二層と第一領域の接合部に大
きな電界が発生した場合でも、第一層,第二,第三層お
よび第一領域からなるnpnバイポーラトランジスタの第
一層から第二層への電子の注入が少なくなり、主電流が
電子電流となったそのトランジスタの電流増幅率hFE
小さくなることによってコレクタ電流への正帰還がかか
りにくくなるため、アバランシェ破壊が生じにくい。
By providing a layer having an intermediate specific resistance in the portion of the third layer which is in contact with the second layer, even when a large electric field is generated at the junction between the second layer and the first region, The injection of electrons from the first layer to the second layer of an npn bipolar transistor consisting of three layers and the first region is reduced, and the current amplification factor h FE of the transistor whose main current becomes an electron current is reduced, thereby reducing the collector. Avalanche breakdown is less likely to occur because positive feedback to the current is less likely to occur.

〔実施例〕〔Example〕

第1図は本発明の一実施例のpチャネル型IGBTで、第
2図と共通の部分には同一の符号が付されているが、第
2図と異なる点はp層3とp層2の間に比抵抗が中間の
p層10が挿入されている点である。このようなIGBTは次
の工程で製造される。
FIG. 1 shows a p-channel IGBT according to an embodiment of the present invention. The parts common to those in FIG. 2 are designated by the same reference numerals, but different from FIG. 2 are the p-layer 3 and the p-layer 2. The point is that the p-layer 10 having an intermediate specific resistance is inserted between. Such an IGBT is manufactured in the following steps.

比抵抗0.07Ωcm以下、厚さ500μmのn+基板1の表面
に比抵抗0.4Ωcm,厚さ10μmのp+バッファ層、比抵抗2
Ωcm,厚さ20μmのp層10,比抵抗90Ωcm,厚さ35μmのp
-層3を積層する。p層10とp-層3の和55μmは第2図
のp-層3の厚さに等しい。次いで、1000Åの厚さの酸化
膜と不純物濃度1017/cm3,厚さ1μmの多結晶シリコン
層で表面を覆い、ゲート酸化膜6およびゲート電極7を
パターニングする。このゲート電極をマスクとして、n+
層4を形成するためのイオン注入と熱拡散を行う。生じ
たn+層4の不純物濃度は10×1018/cm3であり、深さは10
μmである。さらに、同じくゲート酸化膜7をマスクと
してp+層5を形成するための浅いイオン注入と熱拡散を
行う。生じたp+層5の不純物濃度は3.0×1020/cm3,深さ
は0.2μmである。このあと、PSGなどの絶縁膜11を被覆
し、明けられた接触孔でp+層5およびn+層4に接触する
ソース電極8を、またn+基板1の裏面に接触するドレイ
ン電極9を形成する。
A specific resistance of 0.07 Ωcm or less, a thickness of 500 μm, and a p + buffer layer of a specific resistance of 0.4 Ωcm and a thickness of 10 μm on the surface of the n + substrate 1, a specific resistance of 2
Ωcm, p layer 10 with a thickness of 20 μm, specific resistance 90 Ωcm, p with a thickness of 35 μm
-Laminate Layer 3. The sum of the p layer 10 and the p layer 3 of 55 μm is equal to the thickness of the p layer 3 in FIG. Then, the surface is covered with an oxide film having a thickness of 1000Å and a polycrystalline silicon layer having an impurity concentration of 10 17 / cm 3 and a thickness of 1 μm, and the gate oxide film 6 and the gate electrode 7 are patterned. Using this gate electrode as a mask, n +
Ion implantation and thermal diffusion to form layer 4 are performed. The impurity concentration of the generated n + layer 4 is 10 × 10 18 / cm 3 and the depth is 10
μm. Further, shallow ion implantation and thermal diffusion for forming the p + layer 5 are also performed using the gate oxide film 7 as a mask. The resulting p + layer 5 has an impurity concentration of 3.0 × 10 20 / cm 3 and a depth of 0.2 μm. After that, an insulating film 11 such as PSG is covered, and the source electrode 8 that contacts the p + layer 5 and the n + layer 4 through the opened contact hole and the drain electrode 9 that contacts the back surface of the n + substrate 1 are formed. Form.

このような構造のIGBTおよびp層10のない第2図に示
したIGBTの二次降伏電位VDSXをポアソンの方程式等で計
算した。電源電圧は200Vとした。第3図はその計算結果
でオフするときの電流IDとVDSXの関係を示し、線31は第
1図に示した本発明の一実施例の素子、線32は第2図に
示した従来型の素子に対する値である。この図より本発
明に基づくIGBTの方がVDSXが大きい。実際の素子で得ら
れたVDSXもこの計算結果にほぼ一致した。すなわち、本
発明に基づくIGBTは従来型に比してアバランシェ破壊し
にくい。
The secondary breakdown potential V DSX of the IGBT having such a structure and the IGBT shown in FIG. 2 without the p-layer 10 was calculated by Poisson's equation or the like. The power supply voltage was 200V. FIG. 3 shows the relationship between the current ID and V DSX at the time of turning off according to the calculation result, the line 31 is the element of the embodiment of the present invention shown in FIG. 1, and the line 32 is shown in FIG. It is a value for a conventional device. From this figure, the IGBT according to the present invention has a larger V DSX . The V DSX obtained with the actual device almost agreed with this calculation result. That is, the IGBT according to the present invention is less likely to be avalanche destroyed than the conventional type.

〔発明の効果〕〔The invention's effect〕

本発明によれば、pチャネルIGBTの低不純物濃度とバ
ッファ層との間に中間の比抵抗の層を配置することのみ
により、ターンオフ時にnpnバイポーラトランジスタの
第一層(ドレイン側)から第二層への電子の注入が少な
くなり、コレクタ電流への正帰還がかかりにくくなって
L負荷ターンオフ時のアバランシェ破壊が起こりにくく
なるので得られる効果は極めて大きい。
According to the present invention, by only disposing the intermediate resistance layer between the low impurity concentration of the p-channel IGBT and the buffer layer, the first layer (drain side) to the second layer of the npn bipolar transistor are turned off at the time of turn-off. The number of electrons injected into the collector is reduced, positive feedback to the collector current is less likely to occur, and avalanche breakdown at the time of L load turn-off is less likely to occur, so the obtained effect is extremely large.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例のpチャネルIGBTの断面図、
第2図は従来のpチャネルIGBTの断面図、第3図は本発
明の一実施例と従来例のpチャネルIGBTのオフ時のドレ
イン電流と二次降伏電圧との関係を計算により求めた線
図である。 1:n+基板(第一層)、2:p+バッファ層(第二層)、3:p-
第三層、4:n+第一領域、5:p+第二領域、6:ゲート絶縁
膜、7:ゲート電極、8:ソース電極、9:ドレイン電極、1
0:p中間比抵抗層。
FIG. 1 is a sectional view of a p-channel IGBT according to an embodiment of the present invention,
FIG. 2 is a cross-sectional view of a conventional p-channel IGBT, and FIG. 3 is a line obtained by calculation of the relationship between the off-state drain current and the secondary breakdown voltage of the p-channel IGBT according to the embodiment of the present invention and the conventional example. It is a figure. 1: n + substrate (first layer), 2: p + buffer layer (second layer), 3: p -
Third layer, 4: n + first region, 5: p + second region, 6: gate insulating film, 7: gate electrode, 8: source electrode, 9: drain electrode, 1
0: p intermediate resistivity layer.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】高不純物濃度でn形の第一層、高不純物濃
度でp形の第二層および低不純物濃度でp形の第三層が
順に隣接し、この第三層の表面部に選択的にn形の第一
領域が、さらにその第一領域の表面部に選択的にp形の
第二領域が形成され、第三層と第二領域にはさまれた第
一領域の上に絶縁膜を介してゲート電極が設けられるも
のにおいて、第三層の第二層に接する部分が第三層の比
抵抗と第二層の比抵抗の中間の比抵抗を有し、かつ第二
層より厚い層からなることを特徴とするpチャネル絶縁
ゲート型バイポーラトランジスタ。
1. A n-type first layer having a high impurity concentration, a p-type second layer having a high impurity concentration, and a p-type third layer having a low impurity concentration are adjacent in this order, and a surface portion of the third layer is provided. An n-type first region is selectively formed, and a p-type second region is selectively formed on the surface of the first region, and the p-type second region is sandwiched between the third layer and the second region. In the one in which the gate electrode is provided via the insulating film, the portion of the third layer in contact with the second layer has a resistivity intermediate between the resistivity of the third layer and the resistivity of the second layer, and A p-channel insulated gate bipolar transistor comprising a layer thicker than the layer.
JP1026946A 1989-02-06 1989-02-06 p-channel insulated gate bipolar transistor Expired - Lifetime JP2536122B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1026946A JP2536122B2 (en) 1989-02-06 1989-02-06 p-channel insulated gate bipolar transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1026946A JP2536122B2 (en) 1989-02-06 1989-02-06 p-channel insulated gate bipolar transistor

Publications (2)

Publication Number Publication Date
JPH02206174A JPH02206174A (en) 1990-08-15
JP2536122B2 true JP2536122B2 (en) 1996-09-18

Family

ID=12207322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1026946A Expired - Lifetime JP2536122B2 (en) 1989-02-06 1989-02-06 p-channel insulated gate bipolar transistor

Country Status (1)

Country Link
JP (1) JP2536122B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5262336A (en) * 1986-03-21 1993-11-16 Advanced Power Technology, Inc. IGBT process to produce platinum lifetime control
JP2689047B2 (en) * 1991-07-24 1997-12-10 三菱電機株式会社 Insulated gate bipolar transistor and manufacturing method
JP2918399B2 (en) * 1992-08-05 1999-07-12 三菱電機株式会社 Semiconductor device and manufacturing method thereof
JP2647611B2 (en) * 1993-05-13 1997-08-27 日本電気株式会社 Semiconductor device
JP6383971B2 (en) * 2013-12-27 2018-09-05 良孝 菅原 Semiconductor device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6482563A (en) * 1987-09-24 1989-03-28 Mitsubishi Electric Corp Semiconductor device

Also Published As

Publication number Publication date
JPH02206174A (en) 1990-08-15

Similar Documents

Publication Publication Date Title
US5014102A (en) MOSFET-gated bipolar transistors and thyristors with both turn-on and turn-off capability having single-polarity gate input signal
JPH0467343B2 (en)
JPH0671079B2 (en) Bidirectionally conductive monolithic integrated semiconductor device and manufacturing method thereof
JPH0575110A (en) Semiconductor device
JPH02307274A (en) Semiconductor device
JPH0732249B2 (en) High Speed Switching Horizontal Insulated Gate Transistor
JP2536122B2 (en) p-channel insulated gate bipolar transistor
JPH0786580A (en) High-voltage semiconductor device
JP3249891B2 (en) Semiconductor device and method of using the same
JP3063278B2 (en) Vertical field-effect transistor
JPH0620141B2 (en) Conduction modulation type MOSFET
JP2513665B2 (en) Insulated gate type thyristor
JPH0888357A (en) Lateral igbt
JP2551152B2 (en) MOS control thyristor
JP2964609B2 (en) Insulated gate bipolar transistor and method of manufacturing the same
JP3369862B2 (en) Method for manufacturing semiconductor device
JP2808882B2 (en) Insulated gate bipolar transistor
JP2629437B2 (en) Lateral insulated gate bipolar transistor
JP3489426B2 (en) Semiconductor device
JP2751113B2 (en) P-channel insulated gate bipolar transistor
JP2526960B2 (en) Conduction modulation type MOSFET
JPS6276557A (en) Insulated gate type self-turn-off element
JPH05121425A (en) Bipolar electrostatic-induction transistor
JP2856257B2 (en) P-channel insulated gate bipolar transistor
JP2917945B2 (en) Vertical field-effect transistor