JPH0786580A - High-voltage semiconductor device - Google Patents

High-voltage semiconductor device

Info

Publication number
JPH0786580A
JPH0786580A JP5231281A JP23128193A JPH0786580A JP H0786580 A JPH0786580 A JP H0786580A JP 5231281 A JP5231281 A JP 5231281A JP 23128193 A JP23128193 A JP 23128193A JP H0786580 A JPH0786580 A JP H0786580A
Authority
JP
Japan
Prior art keywords
layer
type
breakdown voltage
resistance
withstand voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5231281A
Other languages
Japanese (ja)
Other versions
JP3217554B2 (en
Inventor
Hideyuki Funaki
英之 舟木
Akio Nakagawa
明夫 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP23128193A priority Critical patent/JP3217554B2/en
Publication of JPH0786580A publication Critical patent/JPH0786580A/en
Priority to US08/425,246 priority patent/US5548150A/en
Application granted granted Critical
Publication of JP3217554B2 publication Critical patent/JP3217554B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • H01L29/7835Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with asymmetrical source and drain regions, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • H01L29/1041Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure with a non-uniform doping structure in the channel region surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7816Lateral DMOS transistors, i.e. LDMOS transistors
    • H01L29/7824Lateral DMOS transistors, i.e. LDMOS transistors with a substrate comprising an insulating layer, e.g. SOI-LDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • H01L29/42368Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity the thickness being non-uniform

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Thin Film Transistor (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To make it possible to improve insulation separation, withstand voltage and ON resistance at the same by forming elements on an insulating layer, and specifying the impurity concentration and the depth of a second-conductivity type offset layer. CONSTITUTION:In a high-withstand voltage MOSFET, an n<+>-type drain layer 6 is formed in an n-type offset layer 7. Therefore, of course, withstand voltage becomes high in comparison with an ordinary MOSFET. Elements are formed on a semiconductor 1 through an insulating layer 2, i.e., the elements are formed on an SOI substrate. Therefore, the separation between the elements becomes perfect. Furthermore, the diffusing depth of the n-type offset layer 7 is set at 1-2mum, and the dosing amount is set at 2-3X10<12>cm<-2>. Therefore, both withstand voltage and ON resistance can be improved. Thus, the high withstand voltage MOSFET, which can accomplish the high drain withstand voltage, is obtained without increasing the ON resistance even if the MOSFET is used for high-side switching by the adoption of the SOI substrate and the optimization of the n-type offset layer 7.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、MOSFETからなる
高耐圧半導体装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high breakdown voltage semiconductor device composed of a MOSFET.

【0002】[0002]

【従来の技術】近年、コンピュータや通信機器の重要部
分には、多数のトランジスタや抵抗等を電気回路を達成
するようにむすびつけ、1チップ上に集積化して形成し
た集積回路(IC)が多用されている。このようなIC
中で、高耐圧素子を含むものはパワーICと呼ばれてい
る。パワーICの中でも駆動回路と制御回路とが一体化
されたものは、ディスプレー駆動装置や車載用IC等、
多くの用途に用いることができる。この種のパワーIC
の出力段に用いられるMOSFETには、高いドレイン
耐圧と低いオン抵抗が要求される。
2. Description of the Related Art In recent years, an integrated circuit (IC) formed by integrating a large number of transistors, resistors and the like so as to achieve an electric circuit and forming them on one chip has been widely used in important parts of computers and communication equipment. ing. IC like this
Among them, a device including a high breakdown voltage element is called a power IC. Among the power ICs, the one in which the drive circuit and the control circuit are integrated is a display drive device, an in-vehicle IC, or the like.
It can be used for many purposes. This kind of power IC
In the MOSFET used in the output stage of, the high drain breakdown voltage and the low on resistance are required.

【0003】図8は、従来の出力段に用いられる高耐圧
MOSFETの構造を示す素子断面図である。図中、7
1はp型半導体基板を示しており、このp型半導体基板
71上には、高抵抗のn- 型活性層72がエピタキシャ
ル成長されている。このn- 型活性層72の表面には、
p型ベース層74aおよび低抵抗のp+ 型ベース層74
bが選択的に形成されており、これらベース層74a,
74bの表面には、n+ 型ソース層75が選択的に形成
されている。p+ 型ベース層74bおよびn+ 型ソース
層75にはソース電極78が設けられている。
FIG. 8 is a cross-sectional view of an element showing the structure of a high breakdown voltage MOSFET used in a conventional output stage. 7 in the figure
Reference numeral 1 denotes a p-type semiconductor substrate. On this p-type semiconductor substrate 71, a high-resistance n -type active layer 72 is epitaxially grown. On the surface of the n type active layer 72,
p-type base layer 74a and low-resistance p + -type base layer 74
b are selectively formed, and these base layers 74a,
An n + type source layer 75 is selectively formed on the surface of 74b. A source electrode 78 is provided on the p + type base layer 74 b and the n + type source layer 75.

【0004】また、n- 型活性層72の表面には、n型
オフセット層73が選択的に形成されており、このn型
オフセット層73の表面には、n+ 型ドレイン層76が
選択的に形成されている。このn+ 型ドレイン層76に
は、ドレイン電極79が設けられている。
An n-type offset layer 73 is selectively formed on the surface of the n -- type active layer 72, and an n + -type drain layer 76 is selectively formed on the surface of the n-type offset layer 73. Is formed in. A drain electrode 79 is provided on the n + type drain layer 76.

【0005】また、n+ 型ドレイン層76とn+ 型ソー
ス層75とで挟まれた領域上には、ゲート酸化膜81を
介して、フィールドプレートを有するゲート電極80が
設けられている。
A gate electrode 80 having a field plate is provided on a region sandwiched by the n + type drain layer 76 and the n + type source layer 75 with a gate oxide film 81 interposed therebetween.

【0006】このように構成された高耐圧MOSFET
によれば、n+ 型ドレイン層76がn型オフセット層7
3内に形成されているため、通常のMOSFETに比べ
て耐圧が高くなる。
High breakdown voltage MOSFET configured as described above
According to the description, the n + -type drain layer 76 is the n-type offset layer 7
Since it is formed inside 3, the breakdown voltage becomes higher than that of a normal MOSFET.

【0007】しかしながら、この種の高耐圧MOSFE
Tにあっては、p型半導体基板71とn- 型活性層72
とによるpn接合分離が行なわれているが、素子間を十
分に絶縁分離できず、ノイズに対して弱いなどの問題が
あった。
However, this type of high voltage MOSFE
In T, the p-type semiconductor substrate 71 and the n -type active layer 72
Although the pn junction isolation is performed by the method described above, there is a problem in that the elements cannot be sufficiently insulated and isolated and weak against noise.

【0008】更に、ハイサイド・スイッチとして用いた
場合、オン状態においては、p型半導体基板71とn+
ドレイン層76との間に電源電位が印加されるので、p
型半導体基板71とn- 型活性層72との接合部から上
下方向に空乏層が広がり、オン抵抗が高くなるという問
題があった。
Further, when used as a high side switch, in the ON state, the p type semiconductor substrate 71 and the n +
Since the power supply potential is applied between the drain layer 76 and the drain layer 76, p
There is a problem that a depletion layer spreads in the vertical direction from the junction between the type semiconductor substrate 71 and the n type active layer 72, and the on-resistance increases.

【0009】[0009]

【発明が解決しようとする課題】上述の如く、従来の高
耐圧MOSFETは、必要な耐圧は確保できたが、素子
間の絶縁分離が不十分であった。また、ハイサイド・ス
イッチとして用いた場合には、素子内に空乏層が広が
り、オン抵抗が高くなるという問題があった。
As described above, the conventional high breakdown voltage MOSFET can secure the required breakdown voltage, but the insulation isolation between elements is insufficient. Further, when used as a high-side switch, there is a problem that a depletion layer spreads in the element and the on-resistance increases.

【0010】本発明は、上記事情を考慮してなされたも
ので、その目的とするところは、耐圧、絶縁分離および
オン抵抗を同時に改善できる高耐圧半導体装置を提供す
ることにある。
The present invention has been made in view of the above circumstances, and an object thereof is to provide a high breakdown voltage semiconductor device capable of simultaneously improving breakdown voltage, insulation isolation, and on-resistance.

【0011】[0011]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明の高耐圧半導体装置は、表面が絶縁層であ
る基板上に高抵抗半導体層と、この高抵抗半導体層の表
面に選択的に形成された第1導電型ベース層と、この第
1導電型ベース層の表面に選択的に形成された第1の第
2導電型半導体層と、前記高抵抗半導体層の表面に選択
的に形成され、前記絶縁層に達しない第2導電型オフセ
ット層と、この第2導電型オフセット層の表面に選択的
に形成された第2の第2導電型半導体層と、前記第1の
第2導電型半導体層と前記第2の第2導電型半導体層と
の間の領域上にゲート絶縁膜を介して設けられたゲート
電極とを備え、前記第2導電型オフセット層は、その拡
散深さが1〜2μmで、そのドーズ量が2〜3×1012
cm-2であることを特徴とする。
In order to achieve the above object, a high breakdown voltage semiconductor device of the present invention has a high resistance semiconductor layer on a substrate whose surface is an insulating layer, and a high resistance semiconductor layer formed on the surface of the high resistance semiconductor layer. A first conductive type base layer selectively formed, a first second conductive type semiconductor layer selectively formed on the surface of the first conductive type base layer, and a surface of the high resistance semiconductor layer Second conductive type offset layer that is formed selectively and does not reach the insulating layer, a second second conductive type semiconductor layer selectively formed on the surface of the second conductive type offset layer, and the first A gate electrode provided via a gate insulating film on a region between the second conductive type semiconductor layer and the second second conductive type semiconductor layer, wherein the second conductive type offset layer is a diffusion layer thereof. The depth is 1-2 μm and the dose is 2-3 × 10 12.
It is characterized by being cm −2 .

【0012】[0012]

【作用】本発明によれば、絶縁層上に素子を形成してい
るので、従来のpn接合分離よりも確実に素子間を分離
できる。更に、本発明者等の研究によれば、上記の如き
に第2導電型オフセット層の不純物濃度および深さを選
べば、耐圧およびオン抵抗について良好な結果が得られ
ることが分かった。したがって、本発明によれば、絶縁
分離、耐圧およびオン抵抗を同時に改善できる。
According to the present invention, since the elements are formed on the insulating layer, the elements can be separated more reliably than the conventional pn junction separation. Further, according to the research conducted by the present inventors, it has been found that, when the impurity concentration and the depth of the second conductivity type offset layer are selected as described above, good results can be obtained with respect to the breakdown voltage and the on-resistance. Therefore, according to the present invention, the insulation isolation, the breakdown voltage and the on-resistance can be improved at the same time.

【0013】[0013]

【実施例】以下、図面を参照しながら実施例を説明す
る。図1は、本発明の第1の実施例に係わる高耐圧MO
SFETの素子構造を示す素子断面図である。
Embodiments will be described below with reference to the drawings. FIG. 1 shows a high breakdown voltage MO according to the first embodiment of the present invention.
It is an element sectional view showing an element structure of SFET.

【0014】図中、1は半導体基板を示しており、この
半導体基板1上には、絶縁層2を介して、高抵抗のp-
型活性層3が設けられている。このp- 型活性層3は、
例えば、エピタキシャル成長法により形成する。このp
- 型活性層3の表面には、パンチスールー防止用の低抵
抗のp+ 型ベース層4a、およびpチャネル形成用のp
型ベース層4bが選択的に形成されており、これらベー
ス層4a,4bの表面には、n+ 型ソース層5が選択的
に形成されている。p+ 型ベース層4bおよびn+ 型ソ
ース層5にはソース電極8が設けられている。
In the figure, reference numeral 1 denotes a semiconductor substrate, on which a high resistance p is provided via an insulating layer 2.
A mold active layer 3 is provided. The p type active layer 3 is
For example, it is formed by an epitaxial growth method. This p
- The surface of the mold active layer 3, p for low resistance p + -type base layer 4a, and p-channel formation for preventing punch Sulu
The type base layer 4b is selectively formed, and the n + type source layer 5 is selectively formed on the surfaces of these base layers 4a and 4b. A source electrode 8 is provided on the p + type base layer 4b and the n + type source layer 5.

【0015】また、p- 型活性層3の表面には、n型オ
フセット層7が選択的に形成されている。このn型オフ
セット層7は、例えば、ドーズ量2〜5×1012cm-2
の条件でドナーとなるイオンを注入した後、熱処理によ
って浅い拡散を行なって形成する。このn型オフセット
層7の表面には、n+ 型ドレイン層6が選択的に形成さ
れている。このn+ 型ドレイン層6にはドレイン電極9
が設けられている。
An n-type offset layer 7 is selectively formed on the surface of the p -- type active layer 3. The n-type offset layer 7 has a dose amount of 2 to 5 × 10 12 cm −2 , for example.
After implanting the ion serving as the donor under the condition of 1., shallow diffusion is performed by heat treatment. The n + type drain layer 6 is selectively formed on the surface of the n type offset layer 7. A drain electrode 9 is formed on the n + -type drain layer 6.
Is provided.

【0016】また、n+ 型ソース層5とn- 型ドレイン
層6とで挟まれた領域上には、厚さ15nm程度のゲー
ト酸化膜11を介してゲート電極10が設けられてい
る。このゲート電極10はフィールドプレートを有し、
このフィールドプレートはゲート部のドレイン端におけ
る電界を弱める働きを行なっている。
A gate electrode 10 is provided on a region sandwiched by the n + type source layer 5 and the n type drain layer 6 with a gate oxide film 11 having a thickness of about 15 nm interposed therebetween. This gate electrode 10 has a field plate,
This field plate serves to weaken the electric field at the drain end of the gate portion.

【0017】このように構成された高耐圧MOSFET
によれば、n+ 型ドレイン層6がn型オフセット層7内
に形成されているため、通常のMOSFETに比べて耐
圧が高くなるのは勿論のこと、半導体基板1上に絶縁層
2を介して素子が形成され、つまり、SOI基板上に素
子が形成されているので、従来に比べて、素子間の分離
が完全なものになる。
High breakdown voltage MOSFET configured as described above
According to the above, since the n + -type drain layer 6 is formed in the n-type offset layer 7, the breakdown voltage is higher than that of a normal MOSFET, and the insulating layer 2 is formed on the semiconductor substrate 1 via the insulating layer 2. Since the elements are formed by using the SOI substrate, that is, the elements are formed on the SOI substrate, the isolation between the elements becomes more complete than in the conventional case.

【0018】更に、上記の如きにn型オフセット層7の
不純物濃度および深さを選んでいるので、耐圧およびオ
ン抵抗の両方を改善できる。図5,図6は、そのことを
示す実験データである。
Furthermore, since the impurity concentration and the depth of the n-type offset layer 7 are selected as described above, both the breakdown voltage and the on-resistance can be improved. 5 and 6 are experimental data showing this.

【0019】図5は、拡散深さをパラメータとしたとき
のオフセット領域へのドーズ量と耐圧との関係を示す特
性図である。この図5からドーズ量が3×1012cm-2
以上になると耐圧は拡散深さによらずに急激に低下す
る。また、拡散深さが1μm以下だと耐圧のピークも低
く、最適なドーズ量の領域も狭い。したがって、必要な
耐圧を得るためには少なくとも1μm,より好ましくは
1.5μm以上の拡散深さが必要である。そして、ドー
ズ量が2〜3×1012cm-2の範囲にあれば、十分な耐
圧を得ることが可能である。
FIG. 5 is a characteristic diagram showing the relationship between the dose amount to the offset region and the breakdown voltage when the diffusion depth is used as a parameter. From FIG. 5, the dose amount is 3 × 10 12 cm -2
With the above conditions, the breakdown voltage sharply decreases regardless of the diffusion depth. Further, when the diffusion depth is 1 μm or less, the peak of breakdown voltage is low and the region of the optimum dose amount is narrow. Therefore, a diffusion depth of at least 1 μm, more preferably 1.5 μm or more is required to obtain the required breakdown voltage. If the dose amount is in the range of 2 × 3 × 10 12 cm −2 , it is possible to obtain a sufficient breakdown voltage.

【0020】図6はドーズ量を2.7×1012cm-2
したときの拡散深さとオン抵抗との関係を示す特性図で
ある。この図6より拡散深さ1.5〜2μmまでは深く
なるにつれてオン抵抗が減少するがそれ以上になるとオ
ン抵抗は増加することが分かる。
FIG. 6 is a characteristic diagram showing the relationship between the diffusion depth and the on-resistance when the dose amount is 2.7 × 10 12 cm -2 . It can be seen from FIG. 6 that the on-resistance decreases as the diffusion depth increases to 1.5 to 2 μm, but increases above that.

【0021】以上の結果をまとめると、n型オフセット
層7は、拡散深さが1〜2μm、ドーズ量が2〜3×1
12cm-2であれば、オン抵抗および耐圧の改善につい
て両立できる。
To summarize the above results, the n-type offset layer 7 has a diffusion depth of 1 to 2 μm and a dose of 2 to 3 × 1.
If it is 0 12 cm -2, it is possible to achieve both improvement in on-resistance and breakdown voltage.

【0022】図7に、p型基板の濃度をパラメータとし
たきのドーズ量と耐圧との関係を示す特性図を示してお
く。ドーズ量を増やしていくと、大体2×1012cm-2
を越えると急速に耐圧は低下する。p型基板の濃度を上
げていくと、耐圧が低下するドーズ量を増やすことがで
き、オン抵抗の低減が図れる。しかし、p型基板の濃度
が1×1016cm-2を越えると耐圧が低下するので、p
型基板の濃度は1×1016cm-2付近が良い。
FIG. 7 is a characteristic diagram showing the relationship between the dose amount and the breakdown voltage when the concentration of the p-type substrate is used as a parameter. When the dose is increased, it is about 2 × 10 12 cm -2
If the voltage exceeds, the breakdown voltage will drop rapidly. When the concentration of the p-type substrate is increased, the dose amount at which the breakdown voltage decreases can be increased, and the on-resistance can be reduced. However, when the concentration of the p-type substrate exceeds 1 × 10 16 cm -2 , the breakdown voltage decreases, so p
The concentration of the mold substrate is preferably around 1 × 10 16 cm -2 .

【0023】以上述べたように本実施例によれば、SO
I基板の採用と、n型オフセット層7の最適化により、
ハイサイド・スイッチングに用いても、オン抵抗を上げ
ること無く、高いドレイン耐圧を達成できる高耐圧MO
SFETが得られる。
As described above, according to this embodiment, the SO
By adopting the I substrate and optimizing the n-type offset layer 7,
High breakdown voltage MO that can achieve high drain breakdown voltage without increasing the on-resistance even when used for high-side switching.
SFET is obtained.

【0024】図2は、本発明の第2の実施例に係わる高
耐圧MOSFETの素子構造を示す素子断面図である。
本実施例の高耐圧MOSFETが先の実施例のそれと異
なる点は、n型オフセット層7aがp+ 型ベース層4b
の下部にまで延びていることにある。このようなn型オ
フセット層7aは、基板全面に対してイオン注入を行な
うことにより、容易に作成できる。このように構成され
た高耐圧MOSFETでも、先の実施例のそれと同様な
効果が得られる。
FIG. 2 is an element cross-sectional view showing the element structure of the high breakdown voltage MOSFET according to the second embodiment of the present invention.
The high-voltage MOSFET of this embodiment differs from that of the previous embodiments in that the n-type offset layer 7a is a p + -type base layer 4b.
It extends to the bottom of the. Such an n-type offset layer 7a can be easily formed by implanting ions on the entire surface of the substrate. The high withstand voltage MOSFET configured as described above can also obtain the same effect as that of the above-described embodiment.

【0025】図3は、本発明の第3の実施例に係わる高
耐圧MOSFETの素子構造を示す素子断面図である。
本実施例の高耐圧MOSFETが第1の実施例のそれと
異なる点は、n型オフセット層7bの濃度プロファイル
にある。すなわち、n型オフセット層7bの濃度ピーク
が表面よりも深い位置にある。このようなn型オフセッ
ト層7bは、加速エネルギーを高くしてイオン注入すれ
ば形成できる。また、n型オフセット層7bの濃度ピー
クが深くなるので、n+ ドレイン層6aも深く形成して
ある。
FIG. 3 is a device sectional view showing a device structure of a high breakdown voltage MOSFET according to a third embodiment of the present invention.
The high withstand voltage MOSFET of this embodiment is different from that of the first embodiment in the concentration profile of the n-type offset layer 7b. That is, the concentration peak of the n-type offset layer 7b is located deeper than the surface. Such an n-type offset layer 7b can be formed by increasing the acceleration energy and implanting ions. Since the concentration peak of the n-type offset layer 7b becomes deep, the n + drain layer 6a is also deeply formed.

【0026】本実施例によれば、表面よりも深い領域に
電流が流れるため、表面抵抗の影響を受けなくなり、耐
圧を保ったまま更にオン抵抗を低くできる。図4は、本
発明の第4の実施例に係わる高耐圧MOSFETの素子
構造を示す素子断面図である。
According to the present embodiment, since the current flows in a region deeper than the surface, the influence of the surface resistance is eliminated, and the on-resistance can be further reduced while maintaining the breakdown voltage. FIG. 4 is a device sectional view showing the device structure of a high breakdown voltage MOSFET according to the fourth embodiment of the present invention.

【0027】本実施例の高耐圧MOSFETが第1の実
施例のそれと異なる点は、ゲートおよびフィールドプレ
ートのエッジ部のn型オフセット層7cのn型不純物濃
度が、他の部分のn型オフセット層7のそれよりも低く
なっていることにある。このようなn型オフセット層7
は、例えば、n型オフセット層7cの部分にマスクをつ
けてイオン注入を行なえば形成できる。
The high withstand voltage MOSFET of this embodiment is different from that of the first embodiment in that the n-type offset concentration of the n-type offset layer 7c at the edge portions of the gate and field plate is different from that of the other portions. It is lower than that of 7. Such an n-type offset layer 7
Can be formed, for example, by applying a mask to the portion of the n-type offset layer 7c and performing ion implantation.

【0028】本実施例によれば、n型オフセット層7c
がガードリングとして機能するので、オフセット層7の
n型不純物の濃度を高くできる。このため、オフセット
層7の総ドーズ量を増加できるので、耐圧を保ったまま
更にオン抵抗を低くできる。
According to this embodiment, the n-type offset layer 7c
Function as a guard ring, the n-type impurity concentration of the offset layer 7 can be increased. Therefore, the total dose of the offset layer 7 can be increased, and the on-resistance can be further reduced while maintaining the breakdown voltage.

【0029】なお、n型オフセット層7cの代わりに、
低濃度のp- 型半導体層を用いても良い。以上四つの実
施例について説明したが、本発明は上述した実施例に限
定されるものではない。
In place of the n-type offset layer 7c,
A low concentration p type semiconductor layer may be used. Although the four embodiments have been described above, the present invention is not limited to the above embodiments.

【0030】例えば、ソース層,ドレイン層その他の半
導体層の導電型を全て逆導電型にしても良い。なお、活
性層の導電型は、他の半導体層の導電型に関係なく、p
型およびn型のどちらでも良い。また、上記実施例を組
み合わせても良い。その他、本発明の要旨を逸脱しない
範囲で、種々変形して実施できる。
For example, all the conductivity types of the source layer, the drain layer and the other semiconductor layers may be reverse conductivity types. The conductivity type of the active layer is p regardless of the conductivity types of other semiconductor layers.
Either type or n-type may be used. Further, the above embodiments may be combined. In addition, various modifications can be made without departing from the scope of the present invention.

【0031】[0031]

【発明の効果】以上詳述したように本発明によれば、耐
圧を保ったまま、絶縁分離およびオン抵抗を改善できる
高耐圧MOSFETが得られる。
As described in detail above, according to the present invention, it is possible to obtain a high breakdown voltage MOSFET capable of improving insulation isolation and ON resistance while maintaining the breakdown voltage.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例に係わる高耐圧MOSF
ETの素子構造を示す素子断面図
FIG. 1 is a high breakdown voltage MOSF according to a first embodiment of the present invention.
Element sectional view showing the element structure of ET

【図2】本発明の第1の実施例に係わる高耐圧MOSF
ETの素子構造を示す素子断面図
FIG. 2 is a high breakdown voltage MOSF according to the first embodiment of the present invention.
Element sectional view showing the element structure of ET

【図3】本発明の第1の実施例に係わる高耐圧MOSF
ETの素子構造を示す素子断面図
FIG. 3 is a high breakdown voltage MOSF according to the first embodiment of the present invention.
Element sectional view showing the element structure of ET

【図4】本発明の第1の実施例に係わる高耐圧MOSF
ETの素子構造を示す素子断面図
FIG. 4 is a high breakdown voltage MOSF according to the first embodiment of the present invention.
Element sectional view showing the element structure of ET

【図5】ドーズ量と耐圧との関係を示す特性図FIG. 5 is a characteristic diagram showing the relationship between the dose amount and the breakdown voltage.

【図6】拡散深さとオン抵抗との関係を示す特性図FIG. 6 is a characteristic diagram showing a relationship between diffusion depth and ON resistance.

【図7】p型基板の濃度をパラメータとしたきのドーズ
量と耐圧との関係を示す特性図
FIG. 7 is a characteristic diagram showing the relationship between the dose amount and the breakdown voltage of the mushroom with the concentration of the p-type substrate as a parameter.

【図8】従来の出力段に用いられる高耐圧MOSFET
の構造を示す素子断面図
FIG. 8: High breakdown voltage MOSFET used in a conventional output stage
Element cross-sectional view showing the structure of

【符号の説明】[Explanation of symbols]

1…半導体基板 2…絶縁層 3…p- 型活性層(高抵抗半導体層) 4a…p+ 型ベース層(第1導電型ベース層) 4b…p型ベース層(第1導電型ベース層) 5…n+ 型ソース層(第1の第2導電型半導体層) 6,6a…n+ 型ドレイン層(第2の第2導電型半導体
層) 7,7a,7b,7c…n型オフセット層(第2導電型
オフセット層) 8…ソース電極 9…ドレイン電極 10…ゲート電極 11…ゲート酸化膜
DESCRIPTION OF SYMBOLS 1 ... Semiconductor substrate 2 ... Insulating layer 3 ... P - type active layer (high resistance semiconductor layer) 4a ... P + type base layer (first conductivity type base layer) 4b ... P type base layer (first conductivity type base layer) 5 ... N + type source layer (first second conductivity type semiconductor layer) 6, 6a ... N + type drain layer (second second conductivity type semiconductor layer) 7, 7a, 7b, 7c ... N type offset layer (Second conductivity type offset layer) 8 ... Source electrode 9 ... Drain electrode 10 ... Gate electrode 11 ... Gate oxide film

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】表面が絶縁層である基板上に高抵抗半導体
層と、 この高抵抗半導体層の表面に選択的に形成された第1導
電型ベース層と、 この第1導電型ベース層の表面に選択的に形成された第
1の第2導電型半導体層と、 前記高抵抗半導体層の表面に選択的に形成され、前記絶
縁層に達しない第2導電型オフセット層と、 この第2導電型オフセット層の表面に選択的に形成され
た第2の第2導電型半導体層と、 前記第1の第2導電型半導体層と前記第2の第2導電型
半導体層との間の領域上にゲート絶縁膜を介して設けら
れたゲート電極とを具備してなり、 前記第2導電型オフセット層は、その拡散深さが1〜2
μmで、そのドーズ量が2〜3×1012cm-2であるこ
とを特徴とする高耐圧半導体装置。
1. A high resistance semiconductor layer on a substrate whose surface is an insulating layer, a first conductivity type base layer selectively formed on the surface of the high resistance semiconductor layer, and a first conductivity type base layer. A first second conductivity type semiconductor layer selectively formed on the surface; a second conductivity type offset layer selectively formed on the surface of the high resistance semiconductor layer and not reaching the insulating layer; A second second conductivity type semiconductor layer selectively formed on the surface of the conductivity type offset layer, and a region between the first second conductivity type semiconductor layer and the second second conductivity type semiconductor layer. A second conductive type offset layer having a diffusion depth of 1 to 2;
A high breakdown voltage semiconductor device, characterized in that the dose amount is 2 to 3 × 10 12 cm −2 in μm.
JP23128193A 1993-03-10 1993-09-17 High voltage semiconductor device Expired - Fee Related JP3217554B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP23128193A JP3217554B2 (en) 1993-09-17 1993-09-17 High voltage semiconductor device
US08/425,246 US5548150A (en) 1993-03-10 1995-04-17 Field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23128193A JP3217554B2 (en) 1993-09-17 1993-09-17 High voltage semiconductor device

Publications (2)

Publication Number Publication Date
JPH0786580A true JPH0786580A (en) 1995-03-31
JP3217554B2 JP3217554B2 (en) 2001-10-09

Family

ID=16921150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23128193A Expired - Fee Related JP3217554B2 (en) 1993-03-10 1993-09-17 High voltage semiconductor device

Country Status (1)

Country Link
JP (1) JP3217554B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100249290B1 (en) * 1996-01-26 2000-03-15 이마이 기요스케 Silicon-on-insulator(soi) type thin film transistor
JP2001044431A (en) * 1999-05-27 2001-02-16 Fuji Electric Co Ltd Semiconductor device
JP2001102586A (en) * 1999-09-28 2001-04-13 Toshiba Corp High breakdown voltage semiconductor device
US6294818B1 (en) 1996-01-22 2001-09-25 Fuji Electric Co., Ltd. Parallel-stripe type semiconductor device
KR100342804B1 (en) * 1999-10-29 2002-07-03 다카노 야스아키 Semiconductor device and method of manufacturing the same
US6566709B2 (en) 1996-01-22 2003-05-20 Fuji Electric Co., Ltd. Semiconductor device
US6943406B2 (en) 2003-06-30 2005-09-13 Kabushiki Kaisha Toshiba Semiconductor device
US7067878B2 (en) 2001-03-08 2006-06-27 Hitachi, Ltd. Field effect transistor
JP2006245517A (en) * 2005-03-07 2006-09-14 Oki Electric Ind Co Ltd Semiconductor device and manufacturing method thereof
JP2015056472A (en) * 2013-09-11 2015-03-23 株式会社東芝 Semiconductor device
WO2019202350A1 (en) * 2018-04-19 2019-10-24 日産自動車株式会社 Semiconductor device and method of manufacturing semiconductor device

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6734496B2 (en) 1996-01-22 2004-05-11 Fuji Electric Co., Ltd. Semiconductor device
US6294818B1 (en) 1996-01-22 2001-09-25 Fuji Electric Co., Ltd. Parallel-stripe type semiconductor device
US6566709B2 (en) 1996-01-22 2003-05-20 Fuji Electric Co., Ltd. Semiconductor device
US6627948B1 (en) 1996-01-22 2003-09-30 Fuji Electric Co., Ltd. Vertical layer type semiconductor device
US6700157B2 (en) 1996-01-22 2004-03-02 Fuji Electric Co., Ltd. Semiconductor device
US6720615B2 (en) 1996-01-22 2004-04-13 Fuji Electric Co., Ltd. Vertical-type MIS semiconductor device
US6724040B2 (en) 1996-01-22 2004-04-20 Fuji Electric Co., Ltd. Semiconductor device
KR100249290B1 (en) * 1996-01-26 2000-03-15 이마이 기요스케 Silicon-on-insulator(soi) type thin film transistor
JP2001044431A (en) * 1999-05-27 2001-02-16 Fuji Electric Co Ltd Semiconductor device
JP2001102586A (en) * 1999-09-28 2001-04-13 Toshiba Corp High breakdown voltage semiconductor device
KR100342804B1 (en) * 1999-10-29 2002-07-03 다카노 야스아키 Semiconductor device and method of manufacturing the same
US7067878B2 (en) 2001-03-08 2006-06-27 Hitachi, Ltd. Field effect transistor
US6943406B2 (en) 2003-06-30 2005-09-13 Kabushiki Kaisha Toshiba Semiconductor device
JP2006245517A (en) * 2005-03-07 2006-09-14 Oki Electric Ind Co Ltd Semiconductor device and manufacturing method thereof
JP2015056472A (en) * 2013-09-11 2015-03-23 株式会社東芝 Semiconductor device
WO2019202350A1 (en) * 2018-04-19 2019-10-24 日産自動車株式会社 Semiconductor device and method of manufacturing semiconductor device
JPWO2019202350A1 (en) * 2018-04-19 2021-04-22 日産自動車株式会社 Semiconductor devices and methods for manufacturing semiconductor devices

Also Published As

Publication number Publication date
JP3217554B2 (en) 2001-10-09

Similar Documents

Publication Publication Date Title
JP4403366B2 (en) Semiconductor device and manufacturing method thereof
US6091086A (en) Reverse blocking IGBT
JP3114592B2 (en) Semiconductor device and manufacturing method thereof
JP3217554B2 (en) High voltage semiconductor device
JP3863926B2 (en) Three-terminal power insulated gate transistor and manufacturing method thereof
JP3485491B2 (en) Insulated gate semiconductor device and method of manufacturing the same
JP3400301B2 (en) High voltage semiconductor device
JP2003338624A (en) Semiconductor device
JP2005347771A (en) Mos semiconductor device
JP3543508B2 (en) Semiconductor device
US10600898B2 (en) Vertical bidirectional insulated gate turn-off device
JPH0555594A (en) Vertical field-effect transistor
JPH09153609A (en) Vertical insulated gate field-effect transistor
JP2561963B2 (en) Insulated gate bipolar transistor and manufacturing method thereof
JPH01132167A (en) Semiconductor device
JPH06275818A (en) Power semiconductor device
JPS6373670A (en) Conductive modulation type mosfet
JP3217552B2 (en) Horizontal high voltage semiconductor device
US20030080380A1 (en) Field effect transistor on insulating layer and manufacturing method
JPH07245410A (en) High breakdown voltage field effect transistor
JPH10242456A (en) Horizontal insulating gate bipolar transistor
JP2629437B2 (en) Lateral insulated gate bipolar transistor
JP2917945B2 (en) Vertical field-effect transistor
JP2988047B2 (en) Semiconductor device
JPH02296342A (en) Manufacture of mosfet

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070803

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080803

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090803

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090803

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees