JPS6381861A - Conductivity modulation mosfet - Google Patents

Conductivity modulation mosfet

Info

Publication number
JPS6381861A
JPS6381861A JP22677086A JP22677086A JPS6381861A JP S6381861 A JPS6381861 A JP S6381861A JP 22677086 A JP22677086 A JP 22677086A JP 22677086 A JP22677086 A JP 22677086A JP S6381861 A JPS6381861 A JP S6381861A
Authority
JP
Japan
Prior art keywords
region
type
drain region
conductivity type
type semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22677086A
Other languages
Japanese (ja)
Inventor
Goro Mitarai
御手洗 五郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP22677086A priority Critical patent/JPS6381861A/en
Publication of JPS6381861A publication Critical patent/JPS6381861A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7398Vertical transistors, e.g. vertical IGBT with both emitter and collector contacts in the same substrate side

Abstract

PURPOSE:To prevent the latch-up of a parasitic thyristor and to obtain a great current, by forming the n<+> drain region directly under a p-type base thickly and the n<+>-type drain region directly under a flow path thinly, and by connecting the n<+> drain region to the first drain electrode by means of an n<+>- type well region. CONSTITUTION:A high impurity concentration thick n<+> drain region 11 is formed directly under a p-type base region 4. The n<+>-type drain region 12 directly under the n drain region 16 of a current path is also formed thinner than the thickness of the n<+>type drain region 11 directly under the p-type base region 4. This enables the effective pouring of a hole from a p-type drain region 1 to the n<->-type drain region 16 of the current path and the flow of a great current due to conductivity modulation. Further, the n<+>-type drain regions 11 and 12 are connected to the first drain electrode 10 via an n<+>-type well region 13, the second drain electrode 14 and a wire 18 for leading out an electrode. An electron poured into the current path 16 after a gate signal is made OFF flows in the first drain electrode 10 so the turn-off characteristics are made good.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は伝導度変調形MOS F ET (以下■G
BTと称す)に関し、特に寄生トランジスタのラフチア
ツブ現象が発生しにくく、かつ大電流が得られる構造を
有するI GBTに関するものである。
[Detailed description of the invention] [Industrial field of application] This invention relates to a conductivity modulated MOS FET (hereinafter referred to as ■G
The present invention relates to IGBTs (referred to as BTs), and particularly IGBTs having a structure in which the ruff-up phenomenon of parasitic transistors is less likely to occur and a large current can be obtained.

〔従来の技術〕[Conventional technology]

従来より大電力高速半導体装置として、縦形MO8電界
効果トランジスタのドレイン領域に少数キャリヤーを注
入して伝導度変調を起こし、これにより大電流を得るよ
うにしたI CRTが堤写されており、以下従来のI 
GBTについて第2図を使って簡単に説明する。
Conventionally, as a high-power, high-speed semiconductor device, there has been developed an ICRT, in which minority carriers are injected into the drain region of a vertical MO8 field effect transistor to cause conductivity modulation, thereby obtaining a large current. I of
GBT will be briefly explained using FIG.

まず第2図(alに示す如くドレイン領域となるp形半
導体基板1」二に高不純物濃度n゛形トドレイン領域を
形成した後、さらにその上に低不純物濃度n−形トドレ
イン領域を形成する。続いて第2図(blに示す如く該
n−形トドレイン領域3内p形のベース領域4を形成し
、さらに該ベース領域4内に高不純物7壱度のn形ソー
ス領域5を形成した後、上記p形ベース領域4のチャネ
ル領域となる部分の上にゲート酸化膜6を介してポリシ
リコンゲート1栂7を形成する。続いて第2図(C1に
示す如く上記チャネル領域から離れた部分においてn゛
形ソース頌域5とp形ベース領域4とを電気的に接続す
る如くにソース電極8を形成するとともにドレイン電極
10をp形ドレイン領域1の裏面に被着して目的とする
I GBTを得る。又第3図はこのI GBTの等価回
路を示す。
First, as shown in FIG. 2 (al), a high impurity concentration n-type drain region is formed on a p-type semiconductor substrate 1 which will become a drain region, and then a low impurity concentration n-type drain region is further formed thereon. Subsequently, as shown in FIG. 2 (bl), a p-type base region 4 is formed in the n-type drain region 3, and an n-type source region 5 with a high impurity concentration of 7% is formed in the base region 4. , a polysilicon gate 1 is formed on the portion of the p-type base region 4 that will become the channel region with a gate oxide film 6 interposed therebetween.Subsequently, as shown in FIG. In the process, a source electrode 8 is formed to electrically connect the n-type source region 5 and the p-type base region 4, and a drain electrode 10 is deposited on the back surface of the p-type drain region 1 to obtain the desired I. A GBT is obtained. FIG. 3 shows an equivalent circuit of this IGBT.

第2図及び第3図かられかるようにこの構造の素子は基
本的にはnpnp4槽のサイリスク構造をもっているが
、係る構造の素子においてはp形ドレイン領域1からn
−形ドレイン領域3へ少数キャリヤーを注入しn−形ド
レイン領域3の伝導度変調を起こさせることにより大き
な電流を有効に得ようとするものである。
As can be seen from FIGS. 2 and 3, the element with this structure basically has a silice structure of npnp4 tank, but in the element with this structure, the p-type drain region 1 to n
The purpose is to effectively obtain a large current by injecting minority carriers into the n-type drain region 3 to cause conductivity modulation of the n-type drain region 3.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながらこの構造の素子は前述の通り基本的にnp
npの4槽構造サイリスクとなっているため、サイリス
タのラッチアップ現象が発生しゃす<IGETの動作領
域が狭くて、使用しにくいという不都合を有している。
However, as mentioned above, devices with this structure are basically np
Since the thyristor has a four-tank structure, the latch-up phenomenon of the thyristor occurs.The operating range of the IGET is narrow, making it difficult to use.

従ってI GBTは、いかにしてサイリスタのランチア
ップ現象をおさえるかが開発の最大のポイントであり、
上記従来例のように高湯度n“形ドレイン領域2をp形
ドレイン領域1とn−形ドレイン領域3間に形成し、こ
れにより寄生pnp )ランリスクのゲインを小さくし
てサイリスタのラフチアツブ現象を押さえる方法もある
が、この方法ではp形ドレイン領域1からn−形ドレイ
ン領域3への少数キャリヤーの注入がおさえられるため
、大電流が得られるというこの素子の特徴が損なわれる
という欠点があり、またI GBTの特徴の1つである
高速特性も)員なわれる。つまりI GBTではゲート
信号を切ることによりオフ状態にスイッチされるが、n
−形ドレイン領域3に注入されたキャリヤーが取り除か
れて始めてオフ状態となるため、上述のように高濃度n
゛形ドレイン領域2をp形ドレイン領域1とn−形ドレ
イン領域3間に形成した場合このn−′形ドレイン領域
3に注入された電子がp形ドレイン領域1を通して流れ
出しにくくなり、オフ状態になるまでの時間が遅い、す
なわちターンオフ特性が悪いという欠点も有している。
Therefore, the most important point in the development of IGBTs was how to suppress the thyristor launch-up phenomenon.
As in the conventional example above, the high-temperature n'' type drain region 2 is formed between the p type drain region 1 and the n- type drain region 3, thereby reducing the gain of the parasitic pnp) run risk and suppressing the thyristor's rift swelling phenomenon. There is a method of suppressing this, but this method suppresses the injection of minority carriers from the p-type drain region 1 to the n-type drain region 3, which has the disadvantage that the feature of this device, which is the ability to obtain a large current, is lost. In addition, the high-speed characteristic, which is one of the characteristics of IGBTs, is also affected.In other words, IGBTs are switched to the off state by cutting off the gate signal, but n
- Since the off state is reached only after the carriers injected into the -type drain region 3 are removed, the high concentration n
When the ''-type drain region 2 is formed between the p-type drain region 1 and the n-type drain region 3, electrons injected into the n-'-type drain region 3 are difficult to flow out through the p-type drain region 1, and the state is turned off. It also has the disadvantage that it takes a long time to turn off, that is, its turn-off characteristics are poor.

本発明はかかる問題点に鑑みてなされたもので、低い素
子抵抗を維持しながら寄生サイリスクのラッチアップを
おさえることができる安全動作領域の広いかつターンオ
フ特性の良好なI GBTを提供することを目的とする
The present invention has been made in view of the above problems, and an object of the present invention is to provide an IGBT with a wide safe operating range and good turn-off characteristics, which can suppress latch-up of parasitic silicon risks while maintaining low element resistance. shall be.

〔問題点を解決するための手段〕[Means for solving problems]

本発明に係るIGBTはp形ベース領域直下の高不純物
濃度n゛ ドレイン領域を厚く形成し、かつp形ベース
領域間でp形ドレイン領域からホールが注入されるn−
ドレイン領域の直下の高不純物濃度n゛ ドレイン領域
を薄く形成し、さらに上記n゛ ドレイン領域を高不純
物濃度n゛形ウェル。
In the IGBT according to the present invention, the drain region is formed thick with a high impurity concentration immediately below the p-type base region, and holes are injected from the p-type drain region between the p-type base regions.
A high impurity concentration n' drain region immediately below the drain region is formed thinly, and the n' drain region is further formed into a high impurity concentration n' type well.

第2のドレイン電極を介して第1のドレイン1掘と電気
的に接続したものである。
It is electrically connected to the first drain 1 via the second drain electrode.

〔作用〕[Effect]

本発明においては、p形ベース直下領域の寄生PNP 
トランジスタのベース領域に相当するn3ドレイン領域
が厚く形成されているため、寄生PNP−THのゲイン
は小さく、寄生サイリスタのラッチアップをおさえるこ
とができ、またp形ベース領域直下以外のno ドレイ
ン領域は薄く形成されているのでp形ドレイン領域から
n−形ドレイン領域へのホールの注入は制限されること
なくn−形ドレイン領域では大きな伝導度変調を起こす
ことができ、その結果大電流を得ることができ、さらに
n−形ドレイン領域に注入された電子は、ゲート信号が
オフされた後、n゛形ウェルを通じてドレイン1!極へ
流れ出る構造となっているためターンオフ時間を短くす
ることができる。
In the present invention, parasitic PNP in the region directly under the p-type base
Since the n3 drain region, which corresponds to the base region of the transistor, is formed thickly, the gain of the parasitic PNP-TH is small, and latch-up of the parasitic thyristor can be suppressed. Since it is formed thinly, hole injection from the p-type drain region to the n-type drain region is not restricted, and large conductivity modulation can occur in the n-type drain region, resulting in a large current. After the gate signal is turned off, the electrons injected into the n-type drain region pass through the n-type well to the drain 1! Since the structure is such that the flow flows toward the pole, the turn-off time can be shortened.

〔実施例〕〔Example〕

以下この発明の一実施例を図について説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図(a)〜(e)は本発明の一実施例によるIGB
Tを工程順に示す断面図であり、図において、1゜3〜
10は第2図と同一のもであり、11はp形半導体基板
1の所定の領域に形成された厚いn゛形トドレイン領域
第1の第2導電型半導体領域)、12は咳n“形ドレイ
ン領域11間にこれらを電気的に接続するよう形成され
た薄いn゛形トドレイン領域第2の第2導電型半導体領
域)、13はn9形ドレイン領域11.12上のn−形
ドレイン領域(第3の第2導電型半導体領域)3を貫通
してn+形トドレイン領域11達するよう形成された高
不純物濃度n゛形ウェル領域(第4の第2導電型半導体
領域)である、また17は外部リード線上に!3!置さ
れたI GBTチップ、14は上記n9形ウエル領域1
3上に形成された第2のドレイン電極で、これは上記外
部リードに接続された電極取出ワイヤ18により第1の
ドレインWailOと接続されている。
FIGS. 1(a) to 1(e) show an IGB according to an embodiment of the present invention.
It is a sectional view showing T in process order, and in the figure, 1°3~
Reference numeral 10 is the same as that in FIG. A thin n-type drain region (a second semiconductor region of the second conductivity type) formed between the drain regions 11 and electrically connecting them; 17 is a high impurity concentration n-type well region (fourth second-conductivity type semiconductor region) formed to penetrate through the third second-conductivity-type semiconductor region 3 and reach the n+-type drain region 11; IGBT chip !3 placed on the external lead wire, 14 is the above n9 type well region 1
3, which is connected to the first drain WailO by an electrode lead wire 18 connected to the external lead.

次に製造方法について説明する。Next, the manufacturing method will be explained.

まず第1図(a)に示す如(ドレイン領域となるp形半
導体基板1上の所定の部分に高不純物濃度n゛形ドレイ
ン領域11を形成し、gl n +形ドレイン領域11
と電気的に接続されるよう上記n゛形トドレイン領域1
よりもあさく高不純物濃度のn゛形ドレイン領域12を
形成する。
First, as shown in FIG. 1(a), a high impurity concentration n-type drain region 11 is formed in a predetermined portion of the p-type semiconductor substrate 1 that will become a drain region, and a gl n +-type drain region 11 is formed.
The n-type drain region 1 is electrically connected to
An n-type drain region 12 with a high impurity concentration is formed earlier than the first step.

続いて第1図中)に示す如(n+  ドレイン領域11
及び12を埋込むようにp形半導体基板1上全面に低不
純物濃度n−形ドレイン領域3を形成した後、n−形ド
レイン領域3を貫通してn゛形ドレイン領域11に達す
るよう高不純物濃度n゛形ウェル領域13を形成する。
Next, as shown in FIG.
After forming an n-type drain region 3 with a low impurity concentration on the entire surface of the p-type semiconductor substrate 1 so as to bury the regions 12 and 12, a high impurity dopant is formed so as to penetrate through the n-type drain region 3 and reach the n-type drain region 11. A concentration n-type well region 13 is formed.

次に第1図(C1に示す如くn−形ドレイン領域3内で
上記厚いn゛ ドレイン領域11上方にp形ペース領域
4を形成し、さらにp形ベース領域4内に高不純物濃度
のn形ソース領域5を形成した後チャネル領域15とな
るp形ベース領域4の上にゲート酸化膜6を介してポリ
シリコンゲート電極7を形成する。
Next, as shown in FIG. 1 (C1), a p-type space region 4 is formed above the thick n-type drain region 11 in the n-type drain region 3, and a high impurity concentration n-type is formed in the p-type base region 4. After forming source region 5, polysilicon gate electrode 7 is formed on p-type base region 4, which will become channel region 15, with gate oxide film 6 interposed therebetween.

続いて第1図+d)に示す如(n +形ソース領域5と
p形ベース顛域4とが電気的につながるようにこれらの
領域上にソース電極8を形成し、さらに第2のドレイン
電極14をn+形ウェル領域13上に、第1のドレイン
電極10をp形半導体基板1の裏面にそれぞれ形成して
本発明のI GETのチップを得る。
Next, as shown in FIG. 1+d), a source electrode 8 is formed on the n + type source region 5 and the p type base region 4 so that they are electrically connected, and a second drain electrode 14 is formed on the n+ type well region 13, and the first drain electrode 10 is formed on the back surface of the p type semiconductor substrate 1, thereby obtaining the IGET chip of the present invention.

次に第1図(e)に示す如く該IGBTチップ17を組
立工程で外部リード上に搭載し、さらにワイヤボンド技
術により電極取出ワイヤ18の一端を外部リードに他端
を上記第2のドレイン電極14に接続して第1のドレイ
ン電極10と第2のドレイン電極14とを電気的に接続
して本発明のIGBTを得る。
Next, as shown in FIG. 1(e), the IGBT chip 17 is mounted on the external lead in an assembly process, and one end of the electrode lead wire 18 is connected to the external lead using wire bonding technology, and the other end is connected to the second drain electrode. 14 to electrically connect the first drain electrode 10 and the second drain electrode 14 to obtain the IGBT of the present invention.

次に作用効果について説明する。Next, the effects will be explained.

このような構造のI GBTにおいてはp形ベース領域
4直下に高不純物濃度の厚いn゛ ドレイン領域11が
形成されているため寄生PNP )ランリスクのゲイン
を大幅に低くおさえることができる。従って、通常はサ
イリスタを構成するNPN及びPNP )ランリスクの
ゲインの和が1以上になれば寄生サイリスクがラッチア
ップ現象を起こすが、本実施例のI GBTでは、ラン
チアンプの発生を抑えることができる。
In the IGBT having such a structure, since the thick n-type drain region 11 with high impurity concentration is formed directly under the p-type base region 4, the gain of the parasitic PNP run risk can be suppressed significantly. Therefore, normally, if the sum of the gains of the NPN and PNP run risks constituting a thyristor becomes 1 or more, the parasitic thyristors will cause a latch-up phenomenon, but in the IGBT of this embodiment, it is possible to suppress the occurrence of the launch amplifier. can.

また、通常IGBTでは主電流である電子電流は、ソー
ス電極8からn+形ソース領域5を通り、チャネル領域
15を横方向に流れn−ドレイン領域3へ流れ込み、さ
らにn−形ドレイン領域3からn+形トドレイン領域1
2p形ドレイン領域lを通りドレインi%10へ流れて
おり、このn−形ドレイン領域3の電流通路16へp形
ドレイン領域1からの正孔を注入することにより電流通
路16の伝導度変調を起こし大きな電流を得ることがで
きるが、本実施例では、上記電流通路のn−ドレイン領
域16の直下のn+形トドレイン領域12p形ベース領
域4直下のn゛形ドレイン領域11の厚みより薄く形成
しており、このためp形ドレイン領域1からの電流通路
のn−形ドレイン領域16への正孔の注入が効果的に行
なわれる。
Further, in a normal IGBT, an electron current, which is the main current, flows from the source electrode 8 through the n+ type source region 5, flows laterally through the channel region 15, flows into the n- drain region 3, and further flows from the n- type drain region 3 to the n+ type source region 5. shaped drain region 1
The current flows through the 2p type drain region l to the drain i%10, and by injecting holes from the p type drain region 1 into the current path 16 of the n-type drain region 3, the conductivity of the current path 16 is modulated. However, in this embodiment, the n+ type drain region 12 directly under the n- drain region 16 of the current path is formed thinner than the thickness of the n-type drain region 11 directly under the p-type base region 4. Therefore, holes are effectively injected from the p-type drain region 1 into the n-type drain region 16 of the current path.

その結果n−形トドレイン領域6では伝導度変調が起こ
り実効的に比抵抗が低下し効果的に大電流を流すことが
できる。
As a result, conductivity modulation occurs in the n-type drain region 6, effectively lowering the resistivity and allowing a large current to flow effectively.

さらに本実施例のI GBTにおいては、nゝ形トドレ
イン領域11び12はn゛形ウェル領域13、第2のド
レイン電掘14及び電極取り出しワイヤ18を介して第
1のドレイン電!ff1lOへ接続されているので、ゲ
ート信号をオフした後電流通路16に注入されていた電
子は、上記n゛形ウェル領域13.第2のドレイン電極
14、さらに電極取出しワイヤ18を通じて第1のドレ
イン電極10へ流れ出るためターンオフ特性が良好とな
る。
Furthermore, in the IGBT of this embodiment, the n-type drain regions 11 and 12 are connected to the first drain electrode via the n-type well region 13, the second drain hole 14, and the electrode extraction wire 18. ff11O, the electrons injected into the current path 16 after the gate signal is turned off are transferred to the n-type well region 13. Since it flows out to the first drain electrode 10 through the second drain electrode 14 and further through the electrode lead wire 18, the turn-off characteristics are improved.

このように本実施例によればp形ドレイン領域1からの
正孔の注入が有効に行なわれると共に寄生サイリスタの
ランチアップ現象の発生も押さえることができ、さらに
高速特性を良好なものとできる。
As described above, according to this embodiment, holes are effectively injected from the p-type drain region 1, and the launch-up phenomenon of the parasitic thyristor can be suppressed, and furthermore, high-speed characteristics can be improved.

なお上記実施例ではnチャネルのI GBTの場合につ
いて述べたが、これはpチャネルのIGBTでもよく、
この場合も上記実施例と同じ効果が得られる。
In the above embodiment, the case of an n-channel IGBT was described, but it may also be a p-channel IGBT.
In this case as well, the same effects as in the above embodiment can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明にかかる伝導度変調形MO3FET
によればp形ベース直下のn′″ ドレイン領域を厚く
形成したので寄生サイリスタのラッチアップ現象の発生
をおさえることができ、また電流通路直下のn“形ドレ
イン領域の厚みを薄くしたので半導体基板からの上記電
流通路への正札の注入を有効に行うことができ、さらに
n゛ ドレイン領域をn゛形ウェル領域により第1のド
レイン電極と接続するようにしたのでゲート信号をオフ
した場合、n+ ドレイン領域上のn−形ドレイン領域
に注入された電子を低抵抗のn゛形ウェル領域等を通し
て短時間で第1のドレイン電極へ流し出すことができ、
もって寄生サイリスタのランチアップを抑えることがで
きるとともに、大電流を得ることができる。
As described above, the conductivity modulated MO3FET according to the present invention
According to the authors, by forming the n''' drain region directly under the p-type base thick, it is possible to suppress the occurrence of the latch-up phenomenon of the parasitic thyristor, and by reducing the thickness of the n''' type drain region directly under the current path, it is possible to reduce the thickness of the semiconductor substrate. In addition, since the n゛ drain region is connected to the first drain electrode by the n゛ type well region, when the gate signal is turned off, the n+ Electrons injected into the n-type drain region on the drain region can be flowed out to the first drain electrode in a short time through a low-resistance n-type well region, etc.
As a result, launch-up of the parasitic thyristor can be suppressed, and a large current can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例による伝導度変調形MO3
FETの主要な製造工程を示す断面図、第2図は従来の
伝導度変調形M OS F E Tの製造工程を示す断
面図、第3図は伝導度変調形MO3FETの等価回路図
である。 1・・・p型半導体基板、3・・・n−形ドレイン領域
、4・・・p形ベース領域、5・・・n゛形ソース領域
、6・・・ゲート酸化膜、7・・・ポリシリコンゲート
電極、8・・・ソース電極、10・・・第1のドレイン
電極、11・・・厚いn゛形トドレイン領域12・・・
薄いn°形トドレイン領域13・・・n°形ウェル領域
、14・・・第2のドレイン電極、15・・・チャネル
領域、16・・・電流通路、17・・・伝導度変調形M
OS F ETチップ。 なお図中同一符号は同−又は相当部分を示す。
FIG. 1 shows a conductivity modulated MO3 according to an embodiment of the present invention.
FIG. 2 is a sectional view showing the main manufacturing process of a FET, FIG. 2 is a sectional view showing the manufacturing process of a conventional conductivity modulation MOSFET, and FIG. 3 is an equivalent circuit diagram of a conductivity modulation MO3FET. DESCRIPTION OF SYMBOLS 1...p-type semiconductor substrate, 3...n-type drain region, 4...p-type base region, 5...n-type source region, 6...gate oxide film, 7... Polysilicon gate electrode, 8... Source electrode, 10... First drain electrode, 11... Thick n-type drain region 12...
Thin n°-type drain region 13...n°-type well region, 14... second drain electrode, 15... channel region, 16... current path, 17... conductivity modulation type M
OS FET chip. Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] (1)ドレイン領域となる第1導電形半導体基板の表面
の所定の領域に選択的に形成された高不純物濃度の第1
の第2導電形半導体領域と、 前記第1導電型半導体基板上に、前記第1の第2導電形
半導体領域に隣接してこの領域より浅く形成された第2
の第2導電形半導体領域と、前記第1導電型半導体基板
上に前記第1及び第2の第2導電形半導体領域を埋込む
如くに形成された第3の第2導電型半導体領域と、 前記第3の第2導電型半導体領域を貫通して前記第1あ
るいは第2の第2導電型半導体領域に到達するよう形成
された第4の第2導電形半導体領域と、 前記第3の第2導電型半導体領域中に形成された第1導
電形ベース領域及び該ベース領域内に形成された第2導
電形ソース領域と、 前記ベース領域内のチャネル部分の上にゲート絶縁膜を
介して形成されたゲート電極と、 前記ソース領域及びベース領域上に形成されこれらを前
記チャネル部分から離れた部分において電気的に接続す
るソース電極と、 前記第1導電型半導体基板の裏面に被着された第1のド
レイン電極と、 前記第4の第2導電型半導体領域上に形成され該第1の
ドレイン電極に電気的に接続された第2のドレイン電極
とを備えたことを特徴とする伝導度変調形MOSFET
(1) A first conductive layer with a high impurity concentration selectively formed in a predetermined region on the surface of the first conductivity type semiconductor substrate, which becomes a drain region.
a second conductivity type semiconductor region formed on the first conductivity type semiconductor substrate, adjacent to the first second conductivity type semiconductor region and shallower than the second conductivity type semiconductor region;
a third second conductivity type semiconductor region formed on the first conductivity type semiconductor substrate so as to embed the first and second second conductivity type semiconductor regions; a fourth second conductivity type semiconductor region formed to penetrate the third second conductivity type semiconductor region and reach the first or second second conductivity type semiconductor region; a first conductivity type base region formed in a second conductivity type semiconductor region, a second conductivity type source region formed in the base region, and a gate insulating film formed over a channel portion in the base region; a source electrode formed on the source region and the base region and electrically connecting them in a portion away from the channel portion; 1 drain electrode; and a second drain electrode formed on the fourth semiconductor region of the second conductivity type and electrically connected to the first drain electrode. type MOSFET
.
JP22677086A 1986-09-25 1986-09-25 Conductivity modulation mosfet Pending JPS6381861A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22677086A JPS6381861A (en) 1986-09-25 1986-09-25 Conductivity modulation mosfet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22677086A JPS6381861A (en) 1986-09-25 1986-09-25 Conductivity modulation mosfet

Publications (1)

Publication Number Publication Date
JPS6381861A true JPS6381861A (en) 1988-04-12

Family

ID=16850337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22677086A Pending JPS6381861A (en) 1986-09-25 1986-09-25 Conductivity modulation mosfet

Country Status (1)

Country Link
JP (1) JPS6381861A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0450082A1 (en) * 1989-08-31 1991-10-09 Nippondenso Co., Ltd. Insulated gate bipolar transistor
WO2000049662A1 (en) * 1999-02-16 2000-08-24 Infineon Technologies Ag Igbt with pn insulation
JP2012134542A (en) * 2012-03-06 2012-07-12 Toshiba Corp Power semiconductor device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0450082A1 (en) * 1989-08-31 1991-10-09 Nippondenso Co., Ltd. Insulated gate bipolar transistor
US5519245A (en) * 1989-08-31 1996-05-21 Nippondenso Co., Ltd. Insulated gate bipolar transistor with reverse conducting current
WO2000049662A1 (en) * 1999-02-16 2000-08-24 Infineon Technologies Ag Igbt with pn insulation
US6914270B2 (en) 1999-02-16 2005-07-05 Infineon Technologies Ag IGBT with PN insulation and production method
JP2012134542A (en) * 2012-03-06 2012-07-12 Toshiba Corp Power semiconductor device

Similar Documents

Publication Publication Date Title
KR920005513B1 (en) Semiconductor device having a structure which makes parasitic transistor hard to operate and its manufacturing method
JPH02275675A (en) Mos type semiconductor device
JPH01125979A (en) Insulated gate bipolar transistor
JP3163850B2 (en) Semiconductor device
CN106129110A (en) A kind of dual pathways RC IGBT device and preparation method thereof
JPS605568A (en) Vertical insulated gate field effect transistor
JPH10321859A (en) Power semiconductor device containing discontinuous emitter area for preventing parasitic thyristor latch up
JPS6381861A (en) Conductivity modulation mosfet
JP2003174168A (en) Insulating gate bipolar transistor and its manufacturing method
JPH04125972A (en) Mos semiconductor element and manufacture thereof
JPH08130312A (en) Lateral semiconductor device and its use
JP3293603B2 (en) Power semiconductor device
JP2808882B2 (en) Insulated gate bipolar transistor
JP2728453B2 (en) Output circuit
JP3144585B2 (en) Semiconductor device
JP2000223695A (en) Semiconductor device
JPH0283982A (en) Field effect transistor
JPH01238172A (en) Manufacture of mos type semiconductor device
JPH0416443Y2 (en)
JPS6258678A (en) Transistor
JP3289880B2 (en) MOS control thyristor
JP2973633B2 (en) Conductivity modulation type MOSFET and manufacturing method thereof
JPH0244776A (en) Insulated gate type bipolar transistor
JP2004356215A (en) Discrete device
JPH0479376A (en) Horizontal conductivity modulation type-semiconductor device and manufacture thereof