JPH0244776A - Insulated gate type bipolar transistor - Google Patents

Insulated gate type bipolar transistor

Info

Publication number
JPH0244776A
JPH0244776A JP19548888A JP19548888A JPH0244776A JP H0244776 A JPH0244776 A JP H0244776A JP 19548888 A JP19548888 A JP 19548888A JP 19548888 A JP19548888 A JP 19548888A JP H0244776 A JPH0244776 A JP H0244776A
Authority
JP
Japan
Prior art keywords
layer
conductivity type
channel
emitter
impurity concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19548888A
Other languages
Japanese (ja)
Inventor
Shunji Miura
俊二 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP19548888A priority Critical patent/JPH0244776A/en
Publication of JPH0244776A publication Critical patent/JPH0244776A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To secure breakdown strength in the reverse direction by providing low impurity concentration which is determined by the desired breakdown strength in the reverse direction in a region into which carriers flow from an emitter electrode through a channel, forming a direct junction between said region and a reverse conductivity type collector layer, extending the collector layer to the surface at the opposite side, and providing a planar structure. CONSTITUTION:A low impurity concentration N-type Si substrate 2 corresponding to expected withstand voltage is used. A P<+> layer 1 is formed by impurity diffusion from one surface. A P<+> layer 11 is formed at a peripheral part other than an area based on the current capacity of an element by impurity diffusion using a mask from the other surface. Then, a P<+> layer 32 is thinly formed on the surface layer of the N<-> layer 2 at the lower parts of parts where an emitter layer and a channel layer are formed. An N<-> layer 20 is further laminated on said substrate. Thereafter, a P<+> layer 31 which reaches the P<+> layer 32 and whose lateral expansion is smaller and a P<+> layer 12 reaching the P<+> layer 11 are formed at the same time by impurity diffusion. A P-channel layer 3 is formed on the surface part. An N<+> emitter layer 4 is formed on a part of the layer 3. Thus the desired value of breakdown strength can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、バイポーラトランジスタのベース電流をMO
SFETより供給する絶縁ゲート形バイポーラトランジ
スタにおいて、逆方向に電流が流れないようにした絶縁
ゲートバイポーラトランジスタに関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a method for converting the base current of a bipolar transistor into MO
The present invention relates to an insulated gate bipolar transistor supplied from an SFET in which current does not flow in the reverse direction.

〔従来の技術〕[Conventional technology]

近年絶縁ゲート形バイポーラトランジスタ (以下I 
GBTと略す)が、MOS F ETに比較して高電圧
で使用される場合に電圧降下が小さ(することが可能で
あること、またバイポーラトランジスタに比較して電圧
による制御が可能で実質増幅率を大きくとれること等に
より高電圧でのスイッチングデバイスとして実用化され
つつある。NチャネルのI GBTは、第2図に示すよ
うにP0基板1の上に高不純物濃度のN゛層21を介し
て低不純物濃度のN−層2を形成し、このN−層2の表
面部に選択的に2層3を、さらにこの表面部に選択的に
N″″″エミッタ層4成し、2層3のN−層2とN゛層
4挟まれた表面領域をチャネル形成領域として、この上
にゲート酸化wj!5を介してゲート電極6を形成する
。そして、2層3のゲート電極6より遠い側に形成され
た深いP′″層31とN+エミフタ層4にまたがってエ
ミッタ電極7を、またP゛層1コレクタ電極8を接触さ
せたものである。
In recent years, insulated gate bipolar transistors (I
GBT (abbreviated as GBT) has a small voltage drop when used at high voltage (compared to MOS FET), and can be controlled by voltage compared to bipolar transistors, and has a substantial amplification factor. The N-channel IGBT is being put into practical use as a high-voltage switching device due to its ability to increase the An N-layer 2 with a low impurity concentration is formed, a second layer 3 is selectively formed on the surface of this N-layer 2, an N'''' emitter layer 4 is further selectively formed on this surface, and the second layer 3 is formed. The surface region sandwiched between the N− layer 2 and the N′ layer 4 is used as a channel formation region, and a gate electrode 6 is formed thereon via gate oxidation wj!5. An emitter electrode 7 is placed across the deep P'' layer 31 formed on the side and the N+ emitter layer 4, and the collector electrode 8 of the P'' layer 1 is brought into contact with the emitter electrode 7.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

一般に報告されているIGBTでは、ある電流以上でラ
ッチング現象を起こしやすいため、ラッチング防止のた
め種々の方法が提案されている。
Generally reported IGBTs tend to cause latching when the current exceeds a certain level, so various methods have been proposed to prevent latching.

例えば第2図において、P゛コレクタ層1エミッタ電極
の接触するP゛層31.N”エミッタ層4との中間のN
−層2は耐電圧を大きく左右する眉であるが、ラッチン
グを防止するためにN−層2のP゛コレクタ111接す
る一部分の濃度を高くしてN0層21を形成する。これ
は、導通時に20層1からの正孔の注入を少なくするこ
とにより、ラッチングを防止することにを効であり、一
般に実用化されている。
For example, in FIG. 2, the P' collector layer 1 and the emitter electrode contact the P' layer 31. N” between the emitter layer 4 and
The - layer 2 has a large effect on the withstand voltage, but in order to prevent latching, the N0 layer 21 is formed by increasing the concentration of the part of the N- layer 2 that is in contact with the P collector 111. This is effective in preventing latching by reducing the injection of holes from the 20 layer 1 during conduction, and is generally put into practical use.

しかし、このような構造では、コレクタ電位がエミッタ
電位に対して負となりエミッタ・コレクタが逆電圧状態
になったとき、N” P”層に逆方向電圧が印加される
状態になり、N゛層21の濃度が高いほど逆方向耐電圧
は低くなる。一般のIGBTの応用回路には逆電圧が印
加されても電流を阻止したい応用例が多く、逆耐電圧の
高いIGBTが要望されていた。
However, in such a structure, when the collector potential is negative with respect to the emitter potential and the emitter-collector is in a reverse voltage state, a reverse voltage is applied to the N"P" layer, and the N"layer The higher the concentration of 21, the lower the reverse withstand voltage. In general IGBT application circuits, there are many applications in which it is desired to block current even when a reverse voltage is applied, and there has been a demand for IGBTs with high reverse withstand voltage.

本発明の課題は、このような市場の要望に応じて高い逆
方向耐電圧を有し、同時にラッチング現象を防止したI
GBTを提供することにある。
The object of the present invention is to meet the demands of the market by creating an I/O device that has a high reverse withstand voltage and at the same time prevents the latching phenomenon.
The goal is to provide GBT.

〔課題を解決するための手段〕[Means to solve the problem]

上記の問題の解決のために、本発明のI GBTは、低
不純物濃度の第一導電形の層の一面および側面が第二導
電形のコレクタ層に囲まれ、前記第一導電形の層の他面
の表面層の一部に第二導電形のチャネル層、そのチャネ
ル層の表面層に第一導電形のエミッタ層が形成され、チ
ャネル層のエミッタ層と外側の第一導電形の層の間のチ
ャネル形成領域の上にゲート絶縁膜を介してゲート電極
が設けられ、エミッタ層およびその間に介在しチャネル
層と同導電形の高不純物濃度領域にエミッタ電極が接触
し、さらにエミッタ電極が、チャネル層の下に前記第一
導電形の層を介して存在するチャネル層と同程度の広が
りの第二導電形の高不純物濃度領域と、エミッタ層の間
に介在する前記第二導電形の高不純物濃度領域によって
接続されたものとする。
In order to solve the above problems, the IGBT of the present invention includes a first conductivity type layer having a low impurity concentration, one surface and a side surface of which are surrounded by a second conductivity type collector layer, and a first conductivity type layer having a low impurity concentration. A channel layer of the second conductivity type is formed on a part of the surface layer of the other side, an emitter layer of the first conductivity type is formed on the surface layer of the channel layer, and the emitter layer of the channel layer and the outer layer of the first conductivity type are formed. A gate electrode is provided on a channel forming region between the two via a gate insulating film, the emitter electrode is in contact with the emitter layer and a high impurity concentration region of the same conductivity type as the channel layer interposed therebetween, and the emitter electrode is a high impurity concentration region of a second conductivity type with the same extent as the channel layer existing under the channel layer via the layer of the first conductivity type; and a high impurity concentration region of the second conductivity type interposed between the emitter layer. It is assumed that they are connected by an impurity concentration region.

〔作用〕[Effect]

エミッタ電極と第二導電形のコレクタ層の間には低不純
物濃度の第一導電形の層のみが存在し、さらにコレクタ
層がその第一導電形の層の側面で表面に達してプレーナ
型構造となっているので逆耐電圧が高い、そしてコレク
タ層からのキャリアの注入を少なくする高不純物濃度の
第一導電形の層の代わりに、コレクタ層から注入したキ
ャリアがチャネル層の下に存在する高不純物濃度の第二
導電形の中間領域からチャネル層中の高不純物濃度の領
域を通じてエミッタ電極に吸収されるので、チャネル層
にはコレクタ層からのキャリアが注入されず、チャネル
層での横方同抵抗と注入キャリアによる電流の積がエミ
ッタ層とチャネル層の間の拡散電位を超えることにより
起こるラッチング現象が防止される。
Only the first conductivity type layer with a low impurity concentration exists between the emitter electrode and the second conductivity type collector layer, and the collector layer reaches the surface on the side of the first conductivity type layer, resulting in a planar structure. Therefore, the reverse withstand voltage is high, and instead of the first conductivity type layer with high impurity concentration that reduces carrier injection from the collector layer, carriers injected from the collector layer exist under the channel layer. Carriers are absorbed into the emitter electrode from the intermediate region of the second conductivity type with a high impurity concentration through the region with a high impurity concentration in the channel layer, so carriers from the collector layer are not injected into the channel layer and lateral A latching phenomenon caused by the product of the resistance and the current due to injected carriers exceeding the diffusion potential between the emitter layer and the channel layer is prevented.

〔実施例〕〔Example〕

第1図(al、(blは本発明の一実施例を断面図およ
び平面図で示し、第2図と共通の部分には同一の符号が
付されている。第2図と比較すれば明らかなように、こ
の実施例ではラッチング防止用のN。
Figure 1 (al, (bl) shows an embodiment of the present invention in a cross-sectional view and a plan view, and the same parts as in Figure 2 are given the same reference numerals. In this embodiment, N is used to prevent latching.

層21がなく、P゛コレクタ層1、P゛層11,12に
よりN−層2を囲んでエミッタ電極7の設けられる表面
まで達し、PN接合が表面に露出したブレーナ型構造と
なっている。またチャネルJi3の下方にN−層2をは
さんで横方向の広がりがチャネル層と同等またはそれ以
上のP”1i32が設けられ、P″N31を介してエミ
ッタti7に接続される。
There is no layer 21, and the P' collector layer 1 and P' layers 11 and 12 surround the N- layer 2 and reach the surface where the emitter electrode 7 is provided, forming a Brenna type structure in which the PN junction is exposed on the surface. Further, below the channel Ji3, a P''1i32 having a lateral extent equal to or larger than that of the channel layer is provided across the N- layer 2, and is connected to the emitter ti7 via the P''N31.

第3図fa+、(bl、第4図fa+、(b)は第1図
に示すIGBTの製作工程の説明図である。先ず所期の
耐電圧に対応した低不純物濃度のN形Si基板2を用い
、−面(図では下面)全面からの不純物拡散により29
層1を、他面[1では上面)からのフォトリソグラフィ
工程によるマスクを用いての不純物拡散により素子の電
流容量に基づく面積を除いて周辺部に20層11を形成
する。この場合N−層2の厚さは不純物濃度と空乏層の
広がりから耐電圧に応じて設計すればよい0次にエミッ
タ層、チャネル層を形成する部分の下部にあたる部分の
N−層2の表面層に29層32を薄く形成する。この2
4層32の厚さは、コレクタ層Plから注入されここに
集められる正孔の量から定められるが、−船釣には数−
以上程度にされる0以上の工程を終えた状態を第3図(
al、(blに示す。
3 fa+, (bl) and FIG. 4 fa+, (b) are explanatory diagrams of the manufacturing process of the IGBT shown in FIG. 29 by diffusion of impurities from the entire − surface (lower surface in the figure).
20 layers 11 are formed in the periphery of layer 1 except for an area based on the current capacity of the element by diffusing impurities using a mask in a photolithography process from the other surface (top surface in 1). In this case, the thickness of the N-layer 2 can be designed according to the impurity concentration and the spread of the depletion layer depending on the withstand voltage. 29 layers 32 are formed thinly. This 2
The thickness of the fourth layer 32 is determined from the amount of holes injected from the collector layer Pl and collected here, but - for boat fishing -
Figure 3 (
al, (shown in bl.

さらにこの基板上にN−層20をエピタキシャル法等に
より積層したのち、不純物拡散によりP゛眉32に達し
それより横方向の広がりの小さいP。
Furthermore, after laminating an N- layer 20 on this substrate by an epitaxial method or the like, impurity diffusion reaches a P layer 32 with a smaller width in the lateral direction.

層31およびP゛層11に達する20層12を同時に形
成する0以上の工程を終えた状態を第4図(al、(b
)に示す、このあと、表面部にP形チャネル層3を、さ
らにその一部にN゛エミフフ層4形成する。
Figure 4 (al, (b)
), thereafter, a P-type channel layer 3 is formed on the surface portion, and a N-type channel layer 4 is further formed on a portion thereof.

この状態の平面図が第1図(blである0次いで、−般
のMOSFETと同様にチャネル層上にゲート酸化膜5
を形成し、その上にゲート電極6を設け、またゲート酸
化膜5の開口部でエミッタ電極7を、コレクタ層lの下
面でコレクタ電極8を接触させて第1図+6)の状態を
完成する。この場合チャネル層3の不純物濃度、チャネ
ル長等は一般のMOSFETと同様の設計でよ(、必要
に応じて適切なゲート感度等の電気的特性を付与するこ
とができる。
A plan view of this state is shown in FIG.
A gate electrode 6 is formed thereon, and an emitter electrode 7 is brought into contact with the opening of the gate oxide film 5, and a collector electrode 8 is brought into contact with the lower surface of the collector layer l, thereby completing the state shown in Figure 1+6). . In this case, the impurity concentration, channel length, etc. of the channel layer 3 can be designed in the same way as a general MOSFET (and appropriate electrical characteristics such as gate sensitivity can be provided as necessary).

このようなI GBTで重要なことは、P°コレル フタ層1から注入される正孔がN″″″エミンタ層4の
チャネル層3に入る確率をできるだけ小さくしてP゛層
32に集めることである。従って20層32をチャネル
層3と横方向に同等かあるいはそれより少し広くするこ
とが好ましい、またNチャネルを通して注入される電子
lOがコレクタ層1に到達する確率を大きくするように
設計することも必要である。逆方向耐圧は、一般のプレ
ーナダイオードと同様な構造なので所望の耐圧値とする
ことができる。
What is important in such an IGBT is to collect the holes in the P layer 32 while minimizing the probability that the holes injected from the P° corelfta layer 1 will enter the channel layer 3 of the N'''' emitter layer 4. Therefore, it is preferable that the 20 layer 32 be made laterally equal to or slightly wider than the channel layer 3, and designed to increase the probability that electrons IO injected through the N channel will reach the collector layer 1. Since the structure is similar to that of a general planar diode, the reverse breakdown voltage can be set to a desired breakdown voltage value.

このI GBTのラッチング防止の動作原理は以下の通
りである。今、エミッタ端子Eとコレクタ端子Cの間に
コレクタを正とする電圧が印加されている場合、ゲート
端子Gにエミッタ端子Eに対しチャネルを形成して導通
状態にするに必要な正電位を与えることにより、N゛エ
ミフタ層4ら電子10がチャネル層3の上部のチャネル
を通してN−暦20に流れ込む、流れ込んだ電子10は
N−層2を経てP゛コレクタlilある確率で到達する
と同時に、P°層1から正6くN−層2に注入されるよ
うになり、壱る確率で29層32を通してエミッタ電極
7に到達する。一部の正孔は、チャネル層3に到達はす
るが、エミッタ層4の下のチャネル層中の横方向抵抗と
注入正孔により発生する電位が、N°エミッタ層4とP
形チャネル層3との間のPN接合の拡散抵抗より小さい
場合はラッチングは起こらない0以上の効果はPチャネ
ル■GBTでも全く同様である。
The principle of operation of this IGBT to prevent latching is as follows. Now, if a voltage that makes the collector positive is applied between the emitter terminal E and the collector terminal C, give the gate terminal G the positive potential necessary to form a channel with the emitter terminal E and make it conductive. As a result, electrons 10 from the N emitter layer 4 flow into the N-calendar 20 through the upper channel of the channel layer 3.The flowing electrons 10 pass through the N-layer 2 and reach the P collector with a certain probability, and at the same time It is injected from the layer 1 into the N- layer 2, and reaches the emitter electrode 7 through the layer 32 with a high probability. Some of the holes reach the channel layer 3, but the potential generated by the lateral resistance in the channel layer below the emitter layer 4 and the injected holes is
If the resistance is smaller than the diffusion resistance of the PN junction with the channel layer 3, latching does not occur.The effect of 0 or more is exactly the same in the P-channel ■GBT.

〔発明の効果〕〔Effect of the invention〕

本発明は、I GBTのエミッタ電極からチャネルを通
じてキャリアの流れ込む領域を所期の逆方向耐圧によっ
て定まる低不純物濃度とし、それと逆導電形のコレクタ
層と直接接合を形成し、かつコレクタ層を反対側の表面
まで延ばしてブレーナ型構造にすることにより逆方向耐
圧を確保し、−方前記低不純物濃度層にコレクタ層から
注入されるキャリアの増加は、チャネル層のコレクタ側
にキャリアを流入させてエミッタ電極に導くコレクタ層
と同一導電形の層を形成することによって、チャネル層
への注入を少なくすることにより対応し、ラッチング現
象の発生を防止する。これによりキャリア注入防止のた
めの高不純物濃度層をコレクタ層の上に設ける場合に比
し逆方向耐圧を高くでき、コレクタ側からのキャリア注
入量を多くされることがら導通時の電圧降下を小さくす
ることも可能である。
The present invention makes the region into which carriers flow from the emitter electrode of the IGBT through the channel a low impurity concentration determined by the desired reverse breakdown voltage, forms a direct junction with the collector layer of the opposite conductivity type, and connects the collector layer to the opposite side. By extending it to the surface of the channel layer to form a Brehner type structure, a reverse breakdown voltage is ensured. By forming a layer of the same conductivity type as the collector layer leading to the electrode, the injection into the channel layer is reduced and the latching phenomenon is prevented from occurring. This allows the reverse breakdown voltage to be higher than when a high impurity concentration layer is provided on the collector layer to prevent carrier injection, and because the amount of carrier injection from the collector side is increased, the voltage drop during conduction is reduced. It is also possible to do so.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(al、(blは本発明の一実施例のI GBT
を示し、ialは断面図、山)は酸化膜および電極形成
前の平面図、第2図は従来のIGBTの断面図、第3図
(al、11.第4図+a+、(blは第1図に示した
実施例の製造工程の中間段階を順次示し、fa+は断面
図中)は平面図である。 1 、11.12: P” コレクタ層、2.20:N
−層、3:P形チャネル層、31.32二P−層、4:
N・エミッタ層、5:ゲート酸化膜、6:ゲート電極、
第4図 第1 第2図
FIG. 1 (al, (bl) is an IGBT of one embodiment of the present invention.
, ial is a cross-sectional view, mountain) is a plan view before forming an oxide film and an electrode, FIG. 2 is a cross-sectional view of a conventional IGBT, FIG. 3 (al, 11. Intermediate stages of the manufacturing process of the embodiment shown in the figures are sequentially shown, and fa+ (in the cross-sectional view) is a plan view. 1, 11.12: P" collector layer, 2.20: N
-layer, 3: P-type channel layer, 31.32 two P-layers, 4:
N emitter layer, 5: gate oxide film, 6: gate electrode,
Figure 4 Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 1)低不純物濃度の第一導電形の層の一面および側面が
第二導電形のコレクタ層に囲まれ、前記第一導電形の層
の他面の表面層の一部に第二導電形のチャネル層、その
チャネル層の表面層に第一導電形のエミッタ層が形成さ
れ、チャネル層のエミッタ層と外側の第一導電形の層の
間のチャネル形成領域の上にゲート絶縁膜を介してゲー
ト電極が設けられ、エミッタ層およびその間に介在しチ
ャネル層と同導電形の高不純物濃度領域にエミッタ電極
が接触し、さらにエミッタ電極が、チャネル層の下に前
記第一導電形の層を介して存在するチャネル層と同程度
の広がりの第二導電形の高不純物濃度領域と、エミッタ
層の間に介在する前記第二導電形の高不純物濃度領域に
よって接続されたことを特徴とする絶縁ゲートバイポー
ラトランジスタ。
1) One and side surfaces of the layer of the first conductivity type with a low impurity concentration are surrounded by a collector layer of the second conductivity type, and a part of the surface layer on the other side of the layer of the first conductivity type is surrounded by a collector layer of the second conductivity type. A channel layer, an emitter layer of a first conductivity type is formed on the surface layer of the channel layer, and a gate insulating film is formed on the channel forming region between the emitter layer of the channel layer and the outer layer of the first conductivity type. A gate electrode is provided, the emitter electrode is in contact with the emitter layer and a high impurity concentration region of the same conductivity type as the channel layer interposed therebetween, and the emitter electrode is further disposed below the channel layer through the layer of the first conductivity type. an insulated gate connected by a second conductivity type high impurity concentration region having the same extent as a channel layer existing in the emitter layer and a second conductivity type high impurity concentration region interposed between the emitter layer. bipolar transistor.
JP19548888A 1988-08-05 1988-08-05 Insulated gate type bipolar transistor Pending JPH0244776A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19548888A JPH0244776A (en) 1988-08-05 1988-08-05 Insulated gate type bipolar transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19548888A JPH0244776A (en) 1988-08-05 1988-08-05 Insulated gate type bipolar transistor

Publications (1)

Publication Number Publication Date
JPH0244776A true JPH0244776A (en) 1990-02-14

Family

ID=16341921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19548888A Pending JPH0244776A (en) 1988-08-05 1988-08-05 Insulated gate type bipolar transistor

Country Status (1)

Country Link
JP (1) JPH0244776A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991017570A1 (en) * 1990-04-27 1991-11-14 Lucas Industries Public Limited Company Insulated gate bipolar transistor
US5289019A (en) * 1991-07-24 1994-02-22 Mitsubishi Denki Kabushiki Kaisha Insulated gate bipolar transistor
EP0616369A1 (en) * 1993-02-16 1994-09-21 Fuji Electric Co., Ltd. MOS-type semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991017570A1 (en) * 1990-04-27 1991-11-14 Lucas Industries Public Limited Company Insulated gate bipolar transistor
US5289019A (en) * 1991-07-24 1994-02-22 Mitsubishi Denki Kabushiki Kaisha Insulated gate bipolar transistor
EP0616369A1 (en) * 1993-02-16 1994-09-21 Fuji Electric Co., Ltd. MOS-type semiconductor device
US5397905A (en) * 1993-02-16 1995-03-14 Fuji Electric Co., Ltd. Power semiconductor device having an insulated gate field effect transistor and a bipolar transistor

Similar Documents

Publication Publication Date Title
KR920005513B1 (en) Semiconductor device having a structure which makes parasitic transistor hard to operate and its manufacturing method
JPH0465878A (en) Semiconductor device
JPH02275675A (en) Mos type semiconductor device
JPH0575110A (en) Semiconductor device
JPH02307274A (en) Semiconductor device
JPH07312370A (en) Semiconductor device
JP2946750B2 (en) Semiconductor device
JPH11274516A (en) Power semiconductor device
JPS62176168A (en) Vertical mos transistor
JPH04261065A (en) Semiconductor device
JP3201213B2 (en) Semiconductor device and control method thereof
JP3185292B2 (en) Semiconductor device
JPS6180860A (en) Power mosfet
US4935799A (en) Composite semiconductor device
JPH07245398A (en) Lateral mosfet
JPS63186475A (en) Conductivity modulation type mosfet
JPH0244776A (en) Insulated gate type bipolar transistor
JPH03129764A (en) Semiconductor device
JPH04125972A (en) Mos semiconductor element and manufacture thereof
JPH08130312A (en) Lateral semiconductor device and its use
JPH05190561A (en) Semiconductor device
JPH04180680A (en) Insulated-gate bipolar transistor
JP2629437B2 (en) Lateral insulated gate bipolar transistor
JP2856257B2 (en) P-channel insulated gate bipolar transistor
JPH05121425A (en) Bipolar electrostatic-induction transistor