JPH04180680A - Insulated-gate bipolar transistor - Google Patents

Insulated-gate bipolar transistor

Info

Publication number
JPH04180680A
JPH04180680A JP28012390A JP28012390A JPH04180680A JP H04180680 A JPH04180680 A JP H04180680A JP 28012390 A JP28012390 A JP 28012390A JP 28012390 A JP28012390 A JP 28012390A JP H04180680 A JPH04180680 A JP H04180680A
Authority
JP
Japan
Prior art keywords
region
layer
conductivity type
drain electrode
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28012390A
Other languages
Japanese (ja)
Other versions
JP2964609B2 (en
Inventor
Noriyuki Iwamuro
憲幸 岩室
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Publication of JPH04180680A publication Critical patent/JPH04180680A/en
Application granted granted Critical
Publication of JP2964609B2 publication Critical patent/JP2964609B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To shorten the switching time without raising an ON voltage by a method wherein a drain electrode which forms a Schottky barrier and which is composed of molybdenum is brought into contact with an n<+> layer and a p<+> layer. CONSTITUTION:An n<-> layer 3 (a first region) is laminated on an n<+> layer 4 (a fourth region) by, e.g. an epitaxial method; after that, a gate oxide film 6 and a gate electrode 7 are formed on its surface. Then, ions to form a p<+> layer 4 (a second region) are implanted by using a mask for patterning use at that time. Ions to form a p<+> layer 1 (a fifth region) are implanted from a face on the opposite side; the layer 1 and the layer 4 are formed simultaneously by a thermal diffusion operation and after that, an n<+> layer 5 (a third region) is formed. An insulating film 8 and a source electrode 9 are formed; after that, a drain electrode 11 which forms a Schottky barrier and which is composed of molybdenum is brought into contact with the layer 2 and the layer 1. Thereby, the switching time can be shortened without raising an ON current.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ワイドベースバイポーラトランジスタのベー
ス電流を内蔵するMOSFETによって供給する絶縁ゲ
ート型バイポーラトランジスタ(以下IGBTと記す)
に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an insulated gate bipolar transistor (hereinafter referred to as IGBT) in which the base current of a wide base bipolar transistor is supplied by a built-in MOSFET.
Regarding.

〔従来の技術〕[Conventional technology]

IGBTは、電圧駆動できる電力用スイッチング素子と
して一般に使われ始めている。そのうち多く使われてい
るのは、nチャネル型IGBTて1、これはnチャネル
縦型M OS F E T +;)ドレイン領域のドレ
イン電極側に p″層を付加したものと言うことができ
、第2図のような構造を有する。この構造は次のように
して形成できる。すなわち、p−基板21の上に低比抵
抗のn゛層2積層し、さらにその上に高比抵抗のn−層
3を積層する。 このn−層3の表面部に選択的にp゛
層4形成し、さらにこのp゛層4表面部に選択的にD”
5を形成する。そして、p°層4のうちのn−層3とn
−領域5ではさまれた領域をチャネル領域としてその上
にゲート絶縁膜6を介してゲート端子Gに接続されるゲ
ート電極7を形成する。このゲート電極7との間に絶縁
膜8を介してp′″層4とn゛層5接触するソース電極
9を形成し、また、p″基板lの表面にドレイン電極1
0を配置する。ソース電極9にはソース端子Sが、ドレ
イン電極10にはドレイン端子りが接続される。
IGBTs are beginning to be commonly used as power switching elements that can be driven by voltage. The most commonly used type is the n-channel type IGBT1, which can be said to be an n-channel vertical MOS FET +;) with a p'' layer added to the drain electrode side of the drain region. It has a structure as shown in Fig. 2.This structure can be formed as follows: 2 layers of low resistivity are laminated on a p-substrate 21, and a high resistivity n layer is further layered on top of that. - layer 3 is laminated. A p layer 4 is selectively formed on the surface of this n- layer 3, and a D" layer is selectively formed on the surface of this p layer 4.
form 5. Then, the n− layer 3 of the p° layer 4 and the n
- The region sandwiched between the regions 5 is used as a channel region, and a gate electrode 7 connected to the gate terminal G via the gate insulating film 6 is formed thereon. A source electrode 9 is formed between the gate electrode 7 and the p'' layer 4 and the n'' layer 5 through an insulating film 8, and a drain electrode 1 is formed on the surface of the p'' substrate l.
Place 0. A source terminal S is connected to the source electrode 9, and a drain terminal S is connected to the drain electrode 10.

この素子は、ソース電極9を接地しゲート電極7とドレ
イン電極】0に正の電圧を与えると、 n゛層2n−層
3をドレインとし、n“層5をソースとし、 p°層4
の上にゲート絶縁膜6を介してゲート電極7を設けるこ
とによって構成されるMOSFETがオンし、 p°層
の前記チャネル領域を介してn−層3に電子が流れ込む
。 この電子流入に対応してp゛基板21からn−層3
に正孔の注入がおこり、 n−層3で伝導度変調がおこ
ることにより、この領域の抵抗が低くなる。
In this device, when the source electrode 9 is grounded and a positive voltage is applied to the gate electrode 7 and the drain electrode 0, the n' layer 2 is the drain, the n' layer 5 is the source, and the p' layer 4 is the drain.
A MOSFET configured by providing a gate electrode 7 on the gate insulating film 6 via the gate insulating film 6 is turned on, and electrons flow into the n- layer 3 via the channel region of the p° layer. In response to this inflow of electrons, the p-substrate 21 to the n-layer 3
Holes are injected into the n-layer 3, causing conductivity modulation in the n-layer 3, thereby lowering the resistance in this region.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、上記した従来のI GBTは、オン電圧は小さ
くなるが、オフ時に電子をドレイン電極lO側へ掃き出
しても p゛層21から正孔の注入がおこるため、 n
−層3中に存在する少数キャリアである正孔の減少が進
まず、スイッチング時間が長いという問題がある。この
問題を解決するために、素子に電子線を照射したり、金
の拡散を行って電子と正札の再結合率を高める方法があ
る。しかし、これらの方法を実行すると、逆にIGBT
のオン電圧が高くなる。すなわち、オン電圧とスイッチ
ング時間はトレードオフの関係にあり、両特性を同時に
改善することは非常に難しい。
However, in the above-mentioned conventional IGBT, although the on-voltage is small, even if electrons are swept toward the drain electrode lO side during off-state, holes are injected from the p layer 21, so that n
- There is a problem that the reduction of holes, which are minority carriers, existing in the layer 3 does not progress, and the switching time is long. To solve this problem, there are methods to increase the recombination rate of electrons and genuine bills by irradiating the element with an electron beam or by diffusing gold. However, when these methods are executed, IGBT
The on-voltage becomes higher. That is, there is a trade-off relationship between on-voltage and switching time, and it is extremely difficult to improve both characteristics at the same time.

本発明の目的は、上記した従来技術め問題点に鑑み、オ
ン電圧を高めることな(スイッチング時間を短縮するこ
とが可能なI GBTを提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an IGBT that can shorten the switching time without increasing the on-voltage in view of the problems of the prior art described above.

〔課題を解決するための手段〕[Means to solve the problem]

上記の目的を達成するために、本発明は第一導電型の第
一領域、第一領域の一側の表面部に選択的に形成された
第二導電型の第二領域、第二領域の表面部に選択的に形
成された高不純物濃度の第一導電型の第三領域、第一領
域の他側に隣接する高不純物濃度の第一導電型の第四領
域、第四領域の表面部に選択的に形成された第二導電型
の第五領域、第二領域の表面の第一領域と第三領域には
さまれた部分の上にゲート絶縁膜を介して設けられたゲ
ート電極、第二領域表面と第三領域表面に同時に接触す
るソース電極ならびに第四領域表面と第五領域表面に同
時に接触し、第四領域との間にショットキーバリアを形
成するドレイン電極を備えたものとする。
In order to achieve the above objects, the present invention provides a first region of a first conductivity type, a second region of a second conductivity type selectively formed on the surface of one side of the first region, and a A third region of the first conductivity type with a high impurity concentration selectively formed on the surface portion, a fourth region of the first conductivity type with a high impurity concentration adjacent to the other side of the first region, and a surface portion of the fourth region. a fifth region of a second conductivity type selectively formed in the second conductivity type; a gate electrode provided on a portion of the surface of the second region sandwiched between the first region and the third region via a gate insulating film; A source electrode that simultaneously contacts the second region surface and the third region surface, and a drain electrode that simultaneously contacts the fourth region surface and the fifth region surface and forms a Schottky barrier between the fourth region. do.

〔作用〕[Effect]

第一導電型の第二領域の第二導電型の第一領域と第三領
域とにはさまれた部分をチャネル領域としてその上にゲ
ート絶縁膜を介してゲート電極を設けることによって構
成されたMOSFETがら供給されるキャリアは、第四
領域に入るが、ドレイン電極との間のンヨットキーハリ
アにさえキラれて第五領域との間に接合に沿って流れる
ことにより、第四領域と第五領域の間に電位差が生じ、
第五領域から第四領域を通って第一領域に少数キャリア
の注入が生じる。それによって、従来のIGBTと同様
に伝導度変調がおこり、オン電圧は低下する。一方、タ
ーンオフ時には、第一領域と第二領域の接合が逆バイア
スされることによって空乏層が拡がり、押し出された多
数キャリアはンヨットキーバリアに比してはるかに高い
電圧により第四領域から直接ドレイン電極へ掃き出され
る。
The channel region is formed by using the portion of the second region of the first conductivity type sandwiched between the first region and the third region of the second conductivity type as a channel region, and providing a gate electrode thereon via a gate insulating film. The carriers supplied from the MOSFET enter the fourth region, but they are even cut off by the Nyoyoto key carrier between the drain electrode and flow along the junction between the fourth region and the fifth region. A potential difference occurs between the five regions,
Minority carrier injection occurs from the fifth region through the fourth region into the first region. As a result, conductivity modulation occurs as in conventional IGBTs, and the on-state voltage decreases. On the other hand, at turn-off, the junction between the first region and the second region is reverse biased, which expands the depletion layer, and the extruded majority carriers are directly transferred from the fourth region by a much higher voltage than the Nyoyotky barrier. It is swept out to the drain electrode.

この際、ドレイン電極からの少数キャリアの注入はおこ
らず、それまで存在した少数キャリアはソース電極から
掃き出されるので、第一領域中のキャリアは減少し、ス
イッチング時間が短くなる。
At this time, minority carriers are not injected from the drain electrode, and the minority carriers that have been present are swept out of the source electrode, so the number of carriers in the first region decreases and the switching time becomes shorter.

〔実施例〕〔Example〕

第1図は本発明の一実施例のIGETの構造を示し、第
2図と共通の部分には同一の符号が付されている。第2
図と異なり、p゛基板21が存在せず、n4層2の表面
部にp゛層1形成されている。
FIG. 1 shows the structure of an IGET according to an embodiment of the present invention, and parts common to those in FIG. 2 are given the same reference numerals. Second
Unlike the figure, the P' substrate 21 is not present, and the P' layer 1 is formed on the surface of the N4 layer 2.

このIGBTは次の工程で製造される。This IGBT is manufactured in the following steps.

まず、n°基板2(第四領域)の上にn−層3(第一領
域)を、例えばエビタキンヤル法で積層する。
First, the n- layer 3 (first region) is laminated on the n° substrate 2 (fourth region) by, for example, the Evita Kinyal method.

次に、その上面に酸化膜6 (ゲート絶縁膜)を形成し
た後さらにゲート電極7を形成し、その際のバターニン
グ用マスクを用いてp−層4(第二領域)を形成するた
めのイオン注入を行う。また、反対側の面からp゛層1
第五領域)を形成するためのイオン注入を行う。そして
、熱拡散により同時にp゛層1p゛層4形成する。さら
に、ゲート電極7をマスクとしてのイオン注入と熱拡散
により、n゛層5第三領域)を形成する。つづいて絶縁
膜8を形成し、その表面からp゛層4よびn+層5の表
面にかけて、例えばアルミニウム(A!りによりソース
電極9を形成する。最後に、n°層2とショットキーバ
リアを形成するモリブデン(MO)からなるドレイン電
極11をn°層2とp゛層1接触させることによりこの
素子が完成する。
Next, after forming an oxide film 6 (gate insulating film) on the upper surface, a gate electrode 7 is further formed, and a patterning mask is used at that time to form a p- layer 4 (second region). Perform ion implantation. Also, from the opposite surface, p layer 1
Ion implantation is performed to form a fifth region). Then, p' layer 1 and p' layer 4 are simultaneously formed by thermal diffusion. Further, by ion implantation and thermal diffusion using the gate electrode 7 as a mask, a third region of the n layer 5) is formed. Next, an insulating film 8 is formed, and a source electrode 9 is formed from the surface of the insulating film 8 to the surfaces of the p layer 4 and the n+ layer 5 using, for example, aluminum (A!).Finally, the n layer 2 and the Schottky barrier are formed. This device is completed by bringing the formed drain electrode 11 made of molybdenum (MO) into contact with the n° layer 2 and the p′ layer 1.

なお、この実施例の素子には再結合率を高める目的で電
子線照射を行った。
Note that the device of this example was irradiated with an electron beam for the purpose of increasing the recombination rate.

このようにして製造されたIGBTのターンオフ時間を
測定したところ、07μsecであった。これに対し、
第2図に示す従来構造のIGBTに電子線を照射した場
合のターンオフ時間は079μsecであった。両者の
オン電圧はほぼ等しかった。また、第1図の構造に金を
拡散した別の実施例のI GBTのターンオフ時間は0
.67μsecであったのに対し、第2図の構造のI 
GBTに金を拡散したもののターンオフ時間は0.82
μsecであった。オン電圧は差はなかった。なお、タ
ーンオフ時間は、誘導負荷接続時にゲートがOvになっ
た時点から、ドレイン電流がオン定常状態の10%に低
下するまでの時間とした。
When the turn-off time of the IGBT manufactured in this way was measured, it was 07 μsec. On the other hand,
When the IGBT of the conventional structure shown in FIG. 2 was irradiated with an electron beam, the turn-off time was 079 μsec. The on-voltages of both were almost equal. Furthermore, the turn-off time of the IGBT of another embodiment in which gold is diffused in the structure shown in FIG. 1 is 0.
.. 67 μsec, whereas the I of the structure shown in Figure 2
Turn-off time of gold diffused into GBT is 0.82
It was μsec. There was no difference in on-voltage. Note that the turn-off time was defined as the time from when the gate became Ov when an inductive load was connected until the drain current decreased to 10% of the on steady state.

以上の実施例はnチャネル型IGBTであるが、n型と
p型をすべて入れ換えたpチャネル型IGBTについて
も同様に実施できる。
Although the above embodiment is an n-channel type IGBT, it can be implemented similarly to a p-channel type IGBT in which the n-type and p-type are completely replaced.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明によれば、従来
、のIGBTの第一導電型の層のMO3構造の設けられ
る側と反対のドレイン電極側の第二導電型の層を全面に
設けないで一部のみとし、その代わりにドレイン電極が
第一導電型の層とショットキーバリアを形成するように
したことにより、オン時には伝導度変調をおこすキャリ
アが注入されるが、オフ時にはそのキャリアの注入がお
きないようにすることができた。この結果、オン電圧の
上昇を伴うことなくスイッチング時間を短くしたIGB
Tを得ることができた。
As is clear from the above description, according to the present invention, a layer of the second conductivity type is provided on the entire surface of the drain electrode side opposite to the side where the MO3 structure is provided in the layer of the first conductivity type of the conventional IGBT. By forming a Schottky barrier between the drain electrode and the first conductivity type layer instead, carriers that cause conductivity modulation are injected when on, but when off, the carriers are injected. We were able to prevent this injection from occurring. As a result, the IGB has shortened switching time without increasing on-voltage.
I was able to get T.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例のIGBTの断面図、第2図
は従来構造のIGBTの断面図である。 1−P+層、2−n ”層、3−n−層、4−P゛層、
5−n+層、6 °ゲート酸化膜、?−ゲート電極、9
パソース電極、l l−Mo電極(ドレイン電極)。 第1図
FIG. 1 is a sectional view of an IGBT according to an embodiment of the present invention, and FIG. 2 is a sectional view of an IGBT having a conventional structure. 1-P+ layer, 2-n'' layer, 3-n- layer, 4-P'' layer,
5-n+ layer, 6° gate oxide film, ? - gate electrode, 9
source electrode, l l-Mo electrode (drain electrode). Figure 1

Claims (1)

【特許請求の範囲】 1)第一導電型の第一領域、第一領域の一側の表面部に
選択的に形成された第二導電型の第二領域、第二領域の
表面部に選択的に形成された高不純物濃度の第一導電型
の第三領域、第一領域の他側に隣接する高不純物濃度の
第一導電型の第四領域、第四領域の表面部に選択的に形
成された第二導電型の第五領域、第二領域の表面の第一
領域と第三領域にはさまれた部分の上にゲート絶縁膜を
介して設けられたゲート電極、第二領域表面と第三領域
表面に同時に接触するソース電極ならびに第四領域表面
と第五領域表面に同時に接触し、第四領域との間にショ
ットキーバリアを形成するドレイン電極を備えたことを
特徴とする絶縁ゲート型バイポーラトランジスタ。 2)請求項1に記載の絶縁ゲート型バイポーラトランジ
スタにおいて、ショットキーバリアを形成するドレイン
電極としてモリブデン金属膜を用いたことを特徴とする
絶縁ゲート型バイポーラトランジスタ。 3)請求項1または2に記載の絶縁ゲート型バイポーラ
トランジスタにおいて、第一導電型の第一領域のキャリ
アの再結合率を高めるために電子線照射を行うことを特
徴とする絶縁ゲート型バイポーラトランジスタの製造方
法。
[Claims] 1) A first region of the first conductivity type, a second region of the second conductivity type selectively formed on the surface of one side of the first region, and a second region of the second conductivity type selectively formed on the surface of the second region. a third region of the first conductivity type with a high impurity concentration formed on the other side of the first region; a fourth region of the first conductivity type with a high impurity concentration adjacent to the other side of the first region; a fifth region of the second conductivity type formed, a gate electrode provided via a gate insulating film on a portion of the surface of the second region sandwiched between the first region and the third region, and a surface of the second region. and a drain electrode that simultaneously contacts the surfaces of the fourth region and the fifth region and forms a Schottky barrier between the fourth region and the fourth region. Gate type bipolar transistor. 2) The insulated gate bipolar transistor according to claim 1, wherein a molybdenum metal film is used as a drain electrode forming a Schottky barrier. 3) The insulated gate bipolar transistor according to claim 1 or 2, wherein electron beam irradiation is performed to increase the recombination rate of carriers in the first region of the first conductivity type. manufacturing method.
JP2280123A 1990-02-15 1990-10-18 Insulated gate bipolar transistor and method of manufacturing the same Expired - Lifetime JP2964609B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP3448290 1990-02-15
JP2-34482 1990-02-15

Publications (2)

Publication Number Publication Date
JPH04180680A true JPH04180680A (en) 1992-06-26
JP2964609B2 JP2964609B2 (en) 1999-10-18

Family

ID=12415468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2280123A Expired - Lifetime JP2964609B2 (en) 1990-02-15 1990-10-18 Insulated gate bipolar transistor and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2964609B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102683404A (en) * 2012-05-22 2012-09-19 上海宏力半导体制造有限公司 Insulated gate bipolar transistor and preparation method thereof
CN103681811A (en) * 2012-09-01 2014-03-26 朱江 Insulated gate bipolar transistor at non-complete emitter region and preparation method thereof
EP3182463A1 (en) * 2015-12-17 2017-06-21 ABB Technology AG Reverse blocking power semiconductor device
CN106887467A (en) * 2017-03-09 2017-06-23 西安电子科技大学 Leakage half superjunction gallium nitride base vertical-type hetero-junctions power device of connection

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02126682A (en) * 1988-11-07 1990-05-15 Mitsubishi Electric Corp Semiconductor device and manufacture thereof
JPH02281660A (en) * 1989-04-21 1990-11-19 Nec Corp Vertical type insulated gate conductivity modulation type transistor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02126682A (en) * 1988-11-07 1990-05-15 Mitsubishi Electric Corp Semiconductor device and manufacture thereof
JPH02281660A (en) * 1989-04-21 1990-11-19 Nec Corp Vertical type insulated gate conductivity modulation type transistor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102683404A (en) * 2012-05-22 2012-09-19 上海宏力半导体制造有限公司 Insulated gate bipolar transistor and preparation method thereof
CN103681811A (en) * 2012-09-01 2014-03-26 朱江 Insulated gate bipolar transistor at non-complete emitter region and preparation method thereof
EP3182463A1 (en) * 2015-12-17 2017-06-21 ABB Technology AG Reverse blocking power semiconductor device
CN106887467A (en) * 2017-03-09 2017-06-23 西安电子科技大学 Leakage half superjunction gallium nitride base vertical-type hetero-junctions power device of connection
CN106887467B (en) * 2017-03-09 2019-07-16 西安电子科技大学 Leakage half superjunction gallium nitride base vertical-type hetero-junctions power device of connection and manufacturing method

Also Published As

Publication number Publication date
JP2964609B2 (en) 1999-10-18

Similar Documents

Publication Publication Date Title
JP5520215B2 (en) Improved power switching transistor
US4656493A (en) Bidirectional, high-speed power MOSFET devices with deep level recombination centers in base region
KR100854078B1 (en) MOS gated power semiconductor device and method for fabricating the same
JPH03238871A (en) Semiconductor device and manufacture thereof
JP3182262B2 (en) Semiconductor device
GB2303965A (en) Reverse blocking IGBT
JPH06196705A (en) Reverse-current carrying type insulated gate bipolar transistor and manufacture thereof
KR950014279B1 (en) Semiconductor device and its making method
JPH09186323A (en) Insulated-gate bipolar transistor for power use
JPH07101737B2 (en) Method for manufacturing semiconductor device
JPH04180680A (en) Insulated-gate bipolar transistor
JPS63186475A (en) Conductivity modulation type mosfet
JPH0888357A (en) Lateral igbt
JPH07193231A (en) Mis type semiconductor device
JP2808882B2 (en) Insulated gate bipolar transistor
JP4017763B2 (en) Static induction transistor
JP2629437B2 (en) Lateral insulated gate bipolar transistor
US6727527B1 (en) Reverse blocking IGBT
JP2856257B2 (en) P-channel insulated gate bipolar transistor
JPH06252386A (en) Semiconductor device
JPH07211894A (en) High-voltage driving type semiconductor device
JPH0758322A (en) Semiconductor device and its manufacture
JPH01144683A (en) Insulated-gate field-effect transistor
JP3247461B2 (en) Semiconductor device and manufacturing method thereof, MOS gate drive type thyristor
JPH03145163A (en) Thyristor