JPH0758783B2 - Conduction modulation type MOSFET - Google Patents

Conduction modulation type MOSFET

Info

Publication number
JPH0758783B2
JPH0758783B2 JP61081675A JP8167586A JPH0758783B2 JP H0758783 B2 JPH0758783 B2 JP H0758783B2 JP 61081675 A JP61081675 A JP 61081675A JP 8167586 A JP8167586 A JP 8167586A JP H0758783 B2 JPH0758783 B2 JP H0758783B2
Authority
JP
Japan
Prior art keywords
layer
region
source
conductivity type
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61081675A
Other languages
Japanese (ja)
Other versions
JPS62238668A (en
Inventor
彰 西浦
文明 桐畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP61081675A priority Critical patent/JPH0758783B2/en
Publication of JPS62238668A publication Critical patent/JPS62238668A/en
Publication of JPH0758783B2 publication Critical patent/JPH0758783B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は電力用スイツチング素子として用いる導電変調
型の半導体装置に関する。
Description: TECHNICAL FIELD The present invention relates to a conductive modulation type semiconductor device used as a power switching element.

〔従来技術とその問題点〕[Prior art and its problems]

近年、電力用スイツチング素子として、絶縁ゲート型ト
ランジスタまたは導電変調型MOSFETなどと呼ばれる素子
が注目されている。この素子の基本構成を第3図に示
す。
In recent years, an element called an insulated gate transistor or a conductive modulation type MOSFET has attracted attention as a power switching element. The basic structure of this element is shown in FIG.

この構造は縦型DMOSといわれるパワーMOSFETのドレイン
領域となるn+層をp+層に置き換えたものということがで
きる。即ち、p+基板1(第1層)の上に低不純物濃度の
n-層2を形成し、このn-層2の表面部に選択的にp層領
域3を、さらにこのp層領域3の表面部に選択的にn+
領域4を形成し、p層領域3のn-層2とn+層領域4で挾
まれた表面領域をチヤンネル形成領域11として、この上
にゲート絶縁膜5を介してゲート電極6を形成する。そ
してp層領域3とn+層領域4にまたがるように短絡する
ソース電極7を形成し、p+基板(第1層)1の表面にド
レイン電極8を形成する。この素子の動作は次のとおり
である。
It can be said that this structure replaces the n + layer, which is the drain region of the power MOSFET called vertical DMOS, with the p + layer. That is, a low impurity concentration on the p + substrate 1 (first layer)
An n layer 2 is formed, a p layer region 3 is selectively formed on the surface of the n layer 2, and an n + layer region 4 is selectively formed on the surface of the p layer 3 to form ap layer. A surface region sandwiched by the n layer 2 and the n + layer region 4 in the region 3 is used as a channel forming region 11, and a gate electrode 6 is formed on the surface forming region 11 via a gate insulating film 5. Then, the short-circuited source electrode 7 is formed so as to straddle the p layer region 3 and the n + layer region 4, and the drain electrode 8 is formed on the surface of the p + substrate (first layer) 1. The operation of this element is as follows.

ソース電極7をアースし、ゲート電極6およびドレイン
電極8に正の電圧を加えると、ゲート電極6の直下のp
層領域3の表面部が反転してn型のチヤンネル(図示せ
ず)ができるためにこのチヤンネルを介してソースから
ドレインへ電子電流が流れる。このときにドレイン側p+
層1からn-層2に少数キヤリアである正孔の注入が起こ
ることで生じる、いわゆる導電変調の効果によりn-層2
の領域の抵抗を低くする。この素子はオン状態でこのよ
うに低いオン抵抗を提供するが、反面その寄生pnpn構造
からラツチングという現象が起こり易いので、従来から
もn+ソース領域4とp層領域3とを表面の電極で短絡し
てラツチングを起きにくくしていたが、なお特にターン
オフ時にn-層2に蓄積された正孔がp層領域3を横方向
に流れてn+ソース領域4から電子の注入を促し、寄生サ
イリスタがラツチングしてしまう問題があつた。以下に
その理由を説明する。
When the source electrode 7 is grounded and a positive voltage is applied to the gate electrode 6 and the drain electrode 8, p just below the gate electrode 6
Since the surface portion of the layer region 3 is inverted to form an n-type channel (not shown), an electron current flows from the source to the drain through this channel. At this time, drain side p +
Due to the so-called conductivity modulation effect caused by the injection of holes, which is a minority carrier, from the layer 1 to the n - layer 2, the n - layer 2
Lower the resistance in the area. Although this element provides such a low on-resistance in the on state, on the other hand, since the phenomenon of latching is likely to occur due to its parasitic pnpn structure, the n + source region 4 and the p-layer region 3 are conventionally used as electrodes on the surface. Although a short circuit was made to prevent latching from occurring, the holes accumulated in the n layer 2 flow laterally in the p layer region 3 particularly at turn-off to promote injection of electrons from the n + source region 4 and parasitic effect. There was a problem that the thyristor was latched. The reason will be described below.

第4図にこの素子の等価回路を示す。FIG. 4 shows an equivalent circuit of this element.

この素子中には2つの寄生トランジスタTr1,Tr2が存在
する。Tr1,Tr2によりできるサイリスタは、Tr1の電流増
幅率αとTr2の電流増幅率αの和がα+α≧1
となつたときにラツチングしてしまう。寄生のサイリス
タがラツチングしてしまうと電流はチヤンネル領域以外
のp+n-pn+層部分のp層領域3の領域中を通つてドレイ
ンからソースに流れるのでゲート電圧による電流制御が
できなくなる。このような現象を起きにくくするために
は第4図における抵抗Rbを小さくすることが有効であ
る。抵抗Rbを下げることで前記αを小さくできラツチ
ングしにくい素子にすることが可能となる。そのために
はp層領域3を高不純物濃度にして横方向電流の抵抗を
下げることが有効であるが、チヤンネル領域まで高不純
物濃度にしてしまうと、ゲート閾値電圧の上昇やオン抵
抗の上昇などデメリツトも大きい。これを解決する方法
として第5図のような構造のものがすでに提案されてい
る。これによるとチヤンネル形成領域11を被わないよう
にp+層領域9を形成することでチヤンネル形成領域11の
不純物濃度を上げることなく抵抗Rbすなわちn+層領域4
の下のp層領域の横方向抵抗を低減することができる。
There are two parasitic transistors Tr1 and Tr2 in this element. In the thyristor made up of Tr1 and Tr2, the sum of the current amplification factor α 1 of Tr1 and the current amplification factor α 2 of Tr2 is α 1 + α 2 ≧ 1
When it hits, it will be latched. When the parasitic thyristor will be Ratsuchingu current p + n other than channel region - can not current controlled by the gate voltage flows through the in the region of the p layer region 3 of the pn + layer portion from the through connexion the drain to the source. In order to prevent such a phenomenon from occurring easily, it is effective to reduce the resistance Rb in FIG. By lowering the resistance Rb, it is possible to make α 2 small and to make the device hard to be latched. For that purpose, it is effective to make the p-layer region 3 have a high impurity concentration to reduce the resistance of the lateral current. However, if the channel region is made to have a high impurity concentration, the gate threshold voltage rises and the on-resistance rises. Is also big. As a method for solving this, a structure shown in FIG. 5 has already been proposed. According to this, by forming the p + layer region 9 so as not to cover the channel forming region 11, the resistance Rb, that is, the n + layer region 4 without increasing the impurity concentration of the channel forming region 11.
The lateral resistance of the underlying p-layer region can be reduced.

しかし、この方法ではフオトエツチングの精度によつて
p層領域3とp+層領域9との間隔が制限されてしまうの
であまり小さくできず、横方向抵抗Rbの低減には限界が
あつた。
However, with this method, the distance between the p layer region 3 and the p + layer region 9 is limited due to the precision of photoetching, and therefore it cannot be made so small, and there is a limit to the reduction of the lateral resistance Rb.

〔発明の目的〕[Object of the Invention]

本発明は上記欠点を除去して低いゲート閾値電圧と低い
オン電圧を維持しながら十分に大きなラツチング電流を
可能にした導電変調型MOSFETを提供することを目的とす
る。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a conduction modulation type MOSFET which eliminates the above-mentioned drawbacks and enables a sufficiently large latching current while maintaining a low gate threshold voltage and a low ON voltage.

〔発明の要点〕[Main points of the invention]

本発明は導電変調型MOSFETの等価回路において、横方向
抵抗Rbを低くすれば、寄生サイリスタのラツチングを起
きにくくするような高いラツチング電流が得られること
に着目し、特にラツチングしやすいターンオフ時に、チ
ヤンネル近傍のn-高抵抗層中に蓄積された正孔をチャン
ネル周辺から均等に排除することにより、この正孔がソ
ース領域下のp領域を通つて流れるはずであつた電流密
度を小さくし、それにより前記横方向抵抗Rbを小さくし
て寄生サイリスタのラツチングを起こりにくくするもの
である。
The present invention focuses on the fact that, in the equivalent circuit of the conductivity modulation type MOSFET, if the lateral resistance Rb is lowered, a high latching current that makes it difficult for the parasitic thyristor to ratchet occurs can be obtained. By evenly eliminating the holes accumulated in the nearby n - high resistance layer from the periphery of the channel, the current density at which these holes would have flowed through the p region under the source region is reduced, which Thus, the lateral resistance Rb is reduced to prevent the parasitic thyristor from being latched.

そのために本発明は導電変調型MOSFETを、高不純物濃度
で一方の導電型の第1層と、この第1層の一方の表面に
接する低不純物濃度で他導電型の第2層と、この第2層
の表面に選択的に形成された一方の導電型のベース層領
域と、このベース層領域の表面に選択的に形成される他
導電型のソース層領域を有し、第1層の他表面にはドレ
イン電極が形成され、前記ベース層領域に隣接する第2
層表面と前記ソース層領域とで挾まれるベース層領域の
表面近傍にはチヤンネル領域を形成するために、この領
域上に絶縁膜を介して、ゲート電極が設けられ、ベース
層領域とソース層領域上には互を短絡接触するソース電
極が設けられ、さらに前記チヤンネル領域を等間隔で取
り囲む一方の導電型の高不純物濃度領域を設け、かつこ
の一方の導電型の高不純物濃度領域上に前記ソース電極
と同電位の電極を設けることにより前記目的を達成する
ものである。
To this end, the present invention provides a conductivity modulation type MOSFET including a first layer of one conductivity type with a high impurity concentration, a second layer of another conductivity type with a low impurity concentration in contact with one surface of the first layer, and a second layer of the other conductivity type. It has a base layer region of one conductivity type selectively formed on the surfaces of the two layers and a source layer region of another conductivity type selectively formed on the surface of the base layer region. A drain electrode is formed on the surface and a second electrode is formed adjacent to the base layer region.
In order to form a channel region near the surface of the base layer region sandwiched between the layer surface and the source layer region, a gate electrode is provided on this region via an insulating film, and the base layer region and the source layer region are formed. A source electrode short-circuited to each other is provided on the region, one conductivity type high impurity concentration region surrounding the channel region at equal intervals is provided, and the one conductivity type high impurity concentration region is provided on the one conductivity type high impurity concentration region. The above object is achieved by providing an electrode having the same potential as the source electrode.

〔発明の実施例〕Example of Invention

以下、本発明の一実施例について図面を用いて詳細に説
明する。それぞれの図面の同符号は互いに共通の個所を
示す。
An embodiment of the present invention will be described in detail below with reference to the drawings. The same reference numerals in the respective drawings indicate common points.

第1図は本発明の同電変調型MOSFETの一実施例の要部断
面図、第2図は第1図の等価回路である。本発明は前記
第3図に示した素子の構造と同様にp+層1にこの層1に
接する高抵抗n-層2と、p層領域3,n+ソース領域4を設
ける。さらに第5図に示すものと同様にp層領域3にチ
ヤンネル形成領域11を除く部分に重ねて形成される高濃
度p+領域9と、チヤンネル形成領域11の外側の高抵抗n-
層2の表面に、領域11から等間隔でかつ取り囲むp+領域
10を設けることにより、第2図に示す等価回路における
トランジスタTr3が形成される。トランジスタTr3は、第
1図ではp+層1,n-層2,p+層10で構成される。このトラン
ジスタTr3はソースからチヤンネル形成領域11を通つてn
-層2に流れる電子電流をベース電流として、p+層1か
ら注入された正孔電流がp+領域10に流れることで動作す
る。
FIG. 1 is a sectional view of an essential part of an embodiment of the same electric modulation type MOSFET of the present invention, and FIG. 2 is an equivalent circuit of FIG. In the present invention, similar to the structure of the device shown in FIG. 3, the p + layer 1 is provided with a high resistance n layer 2 in contact with the layer 1 and p layer regions 3 and n + source regions 4. Further, as in the case shown in FIG. 5, a high concentration p + region 9 formed to overlap the p-layer region 3 except the channel forming region 11 and a high resistance n outside the channel forming region 11.
On the surface of layer 2, the p + region is equally spaced from and surrounds region 11.
By providing 10, the transistor Tr3 in the equivalent circuit shown in FIG. 2 is formed. The transistor Tr3 is composed of the p + layer 1, the n layer 2 and the p + layer 10 in FIG. This transistor Tr3 passes from the source through the channel forming region 11 to n
- electron current flowing through the layer 2 as a base current, hole current injected from the p + layer 1 is operated by flowing through the p + region 10.

このようなトランジスタTr3が存在するために、ターン
オフ時にn-層2に蓄積される正孔をp+層10を経て排除す
ることにより、チヤンネル形成領域11近傍の正孔電流密
度が低減する。その結果、p層3およびp+層9を横方向
に流れる正孔電流が少なくなり、その横方向抵抗Rbによ
る電圧降下を減らすことができる。このような理由によ
り、ラツチング現象が起こりにくくなるものと考えられ
る。
Due to the existence of such a transistor Tr3, the holes accumulated in the n layer 2 at the time of turn-off are eliminated through the p + layer 10, so that the hole current density in the vicinity of the channel forming region 11 is reduced. As a result, the hole current flowing in the p layer 3 and the p + layer 9 in the lateral direction is reduced, and the voltage drop due to the lateral resistance Rb can be reduced. For this reason, it is considered that the latching phenomenon is unlikely to occur.

第1図に示すこのような素子構造はそのチヤンネル形成
領域11部分の構造は従来と同じなので、ゲート閾値電圧
の上昇などのデメリツトは生じない。またp+領域10にも
ドレイン電流が流れることによりオン電圧の一そうの低
減が可能になる。またこのp+領域10はn-層2に蓄積され
た正孔をチヤンネル周辺から均等に排除する目的でチヤ
ンネル領域11から等距離でそれを取り囲むように配置さ
れる。さらにこのp+領域10はソース電極7とは電極上で
同電位接続されることがその効果を発揮する上で必要で
ある。
Since the structure of the channel forming region 11 of the device structure shown in FIG. 1 is the same as the conventional structure, no demerit such as increase of the gate threshold voltage occurs. Further, since the drain current also flows in the p + region 10, the on-state voltage can be further reduced. Further, the p + region 10 is arranged so as to surround the hole at the same distance from the channel region 11 for the purpose of uniformly eliminating the holes accumulated in the n layer 2 from the periphery of the channel. Further, the p + region 10 is required to be connected to the source electrode 7 at the same potential on the electrode in order to exert its effect.

〔発明の効果〕〔The invention's effect〕

本発明によれば導電変調型MOSFETの構造において、さら
にチヤンネル領域を等間隔で取り囲む高不純物濃度領域
を形成し、その領域上の電極をソース電極と同電位に接
続したので、ラッチングしやすいターンオフ時に、チャ
ンネル近傍のn-高抵抗層中に蓄積された正孔をチャネル
周辺から均等に排除することにより、低いゲート閾値電
圧と低いオン電圧を維持しながら十分に大きなラツチン
グ電流を可能に、すなわち寄生サイリスタのラツチング
を起こりにくくすることができる。
According to the present invention, in the structure of the conductivity modulation type MOSFET, the high impurity concentration region surrounding the channel region is formed at equal intervals, and the electrode on the region is connected to the same potential as the source electrode. , Evenly eliminating holes accumulated in the n - high resistance layer near the channel from the periphery of the channel enables a sufficiently large latching current while maintaining a low gate threshold voltage and a low on-voltage, that is, parasitic It is possible to make the thyristor latch less likely to occur.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例を示す導電変調型MOSFETの要
部断面図、第2図は第1図の等価回路を示す図、第3図
は従来の導電変調型MOSFETの要部断面図、第4図は第3
図の等価回路図、第5図は従来の異なる導電変調型MOSF
ETの要部断面図である。 1……第1層(p+基板)、2……第2層(n-層)、3…
…pベース層領域、4……n+ソース層領域、5……絶縁
膜、6……ゲート電極、7……ソース電極、8……ドレ
イン電極、9……p+領域、10……p+領域、11……チヤン
ネル形成領域。
FIG. 1 is a sectional view of a main part of a conductivity modulation type MOSFET showing an embodiment of the present invention, FIG. 2 is a view showing an equivalent circuit of FIG. 1, and FIG. 3 is a cross section of a main part of a conventional conductivity modulation type MOSFET. Fig. 4 and Fig. 3
Fig. 5 is an equivalent circuit diagram, and Fig. 5 is a conventional different conductivity modulation type MOSF.
FIG. 3 is a cross-sectional view of a main part of ET. 1 ... First layer (p + substrate), 2 ... Second layer (n - layer), 3 ...
… P base layer region, 4 …… n + source layer region, 5 …… insulating film, 6 …… gate electrode, 7 …… source electrode, 8 …… drain electrode, 9 …… p + region, 10 …… p + Region, 11 …… Channel formation region.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】高不純物濃度で一方の導電型の第1層と、
この第1層の一方の表面に接する低不純物濃度で他導電
型の第2層と、この第2層の表面に選択的に形成された
一方の導電型のベース層領域と、このベース層領域の表
面に選択的に形成される他導電型のソース層領域を有
し、第1層の他表面にはドレイン電極が形成され、前記
ベース層領域に隣接する第2層表面と前記ソース層領域
とで挟まれるベース層領域の表面近傍には、チャンネル
領域を形成するために、この領域上に絶縁膜を介して、
ゲート電極が設けられ、ベース層領域とソース層領域上
には互に短絡接触されるソース電極が設けられ、さらに
前記チャンネル領域を等間隔で取り囲む一方の導電型の
高不純物濃度領域を設け、かつこの一方の導電型の高不
純物濃度領域上に前記ソース電極と同電位の電極を設け
たことを特徴とする導電変調型MOSFET。
1. A first layer of one conductivity type having a high impurity concentration,
A second layer of low conductivity and another conductivity type in contact with one surface of the first layer, one conductivity type base layer region selectively formed on the surface of the second layer, and the base layer region A source layer region of another conductivity type selectively formed on the surface of the first layer, a drain electrode is formed on the other surface of the first layer, and the second layer surface adjacent to the base layer region and the source layer region. In the vicinity of the surface of the base layer region sandwiched between and, in order to form a channel region, an insulating film is formed on this region,
A gate electrode is provided, source electrodes that are in short-circuit contact with each other are provided on the base layer region and the source layer region, and one conductivity type high impurity concentration region that surrounds the channel region at equal intervals is provided, and A conductivity modulation type MOSFET characterized in that an electrode having the same potential as the source electrode is provided on one of the conductivity type high impurity concentration regions.
JP61081675A 1986-04-09 1986-04-09 Conduction modulation type MOSFET Expired - Lifetime JPH0758783B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61081675A JPH0758783B2 (en) 1986-04-09 1986-04-09 Conduction modulation type MOSFET

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61081675A JPH0758783B2 (en) 1986-04-09 1986-04-09 Conduction modulation type MOSFET

Publications (2)

Publication Number Publication Date
JPS62238668A JPS62238668A (en) 1987-10-19
JPH0758783B2 true JPH0758783B2 (en) 1995-06-21

Family

ID=13752924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61081675A Expired - Lifetime JPH0758783B2 (en) 1986-04-09 1986-04-09 Conduction modulation type MOSFET

Country Status (1)

Country Link
JP (1) JPH0758783B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9009328D0 (en) * 1990-04-26 1990-06-20 Lucas Ind Plc Semiconductor device
JPH05283702A (en) * 1992-04-03 1993-10-29 Hitachi Ltd Composite control type semiconductor device and power converter using thereof
WO2019080618A1 (en) * 2017-10-24 2019-05-02 全球能源互联网研究院有限公司 Insulated gate bipolar transistor structure and manufacturing method therefor
CN108022973A (en) * 2017-10-24 2018-05-11 全球能源互联网研究院 A kind of integrated transoid MOS insulated gate bipolar transistor structures and preparation method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4779123A (en) * 1985-12-13 1988-10-18 Siliconix Incorporated Insulated gate transistor array

Also Published As

Publication number Publication date
JPS62238668A (en) 1987-10-19

Similar Documents

Publication Publication Date Title
US5621234A (en) Vertical semiconductor device with breakdown voltage improvement region
US5489787A (en) Semiconductor device having an insulated gate field effect transistor and exhibiting thyristor action
JP2606404B2 (en) Semiconductor device
JP2950688B2 (en) Power semiconductor device
US6303410B1 (en) Methods of forming power semiconductor devices having T-shaped gate electrodes
KR100275756B1 (en) Trench insulated gate bipolar transistor
EP0697739B1 (en) Insulated gate bipolar transistor
JP3417013B2 (en) Insulated gate bipolar transistor
JPH04146674A (en) Semiconductor device and manufacture thereof
JPH0467343B2 (en)
JPH0758784B2 (en) Lateral insulated gate bipolar transistor with improved latch-up prevention performance
JPH09283754A (en) High withstand voltage semiconductor device
JPH0457111B2 (en)
JPH0457110B2 (en)
JP2590863B2 (en) Conduction modulation type MOSFET
US5079607A (en) Mos type semiconductor device
EP0338312B1 (en) Insulated gate bipolar transistor
JPS63266882A (en) Vertical-type insulated-gate field-effect transistor
JP3489404B2 (en) Insulated gate semiconductor device
JP2000164859A (en) Semiconductor device and method for manufacturing the same
CA1279409C (en) Composite semiconductor device
US4584593A (en) Insulated-gate field-effect transistor (IGFET) with charge carrier injection
JPH07101737B2 (en) Method for manufacturing semiconductor device
JPH0758783B2 (en) Conduction modulation type MOSFET
JPH0888357A (en) Lateral igbt