JPH06349852A - Mos type field-effect transistor - Google Patents

Mos type field-effect transistor

Info

Publication number
JPH06349852A
JPH06349852A JP13630393A JP13630393A JPH06349852A JP H06349852 A JPH06349852 A JP H06349852A JP 13630393 A JP13630393 A JP 13630393A JP 13630393 A JP13630393 A JP 13630393A JP H06349852 A JPH06349852 A JP H06349852A
Authority
JP
Japan
Prior art keywords
drain
layer
region
source
impurity concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13630393A
Other languages
Japanese (ja)
Inventor
Takumi Fujimoto
卓巳 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP13630393A priority Critical patent/JPH06349852A/en
Publication of JPH06349852A publication Critical patent/JPH06349852A/en
Pending legal-status Critical Current

Links

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To acquire a device having high electrostatic breakdown strength wherein junction breakdown caused by a current due to static electricity in a low doped drain region is prevented without increasing an occupied area by making a breakdown strength of a junction between a base layer and a drain layer where-with a drain electrode is in contact lower than a drain-to- source breakdown strength. CONSTITUTION:A source/drain layer of an LDD structure which is composed of high doped first regions 81, 82 wherewith an electrode 10 is in contact with a channel region immediately below a gate electrode 5 between and a second region of a low doped region 6 extending immediately below the gate electrode 5 is provided in a surface layer of a base layer 2. A breakdown strength of a lane-type junction formed between the first region 81 of one source/drain layer and the base layer 2 is made lower than a drain-to-source breakdown strength and the source/drain layer is used as a drain. For example, impurity concentration of a layer part 21 of the base layer 2 in proximity to a plane type junction with the drain layer of the first region 81 is made higher than that of other parts of the base layer 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、LDD (Lightly dope
d dvain)構造をもつMOS型電界効果トランジスタ (以
下MOSFETと記す) に関する。
The present invention relates to an LDD (Lightly dope).
The present invention relates to a MOS type field effect transistor (hereinafter referred to as MOSFET) having a d dvain structure.

【0002】[0002]

【従来の技術】MOSFETでは、近年、素子の微細化
に伴い、ドレイン領域近傍でのチャネル領域における強
電界のためのホットキャリアの発生に伴う素子の劣化が
問題となっている。この問題を解決するため、ドレイン
領域に近接して低不純物濃度領域を設けて電界を緩和す
るLDD構造が提案されている。
2. Description of the Related Art In recent years, with the miniaturization of devices, deterioration of the device due to the generation of hot carriers due to a strong electric field in the channel region near the drain region has become a problem with MOSFETs. In order to solve this problem, an LDD structure has been proposed in which a low impurity concentration region is provided near the drain region to relax the electric field.

【0003】図2(a) 〜(c) は、そのようなLDD構造
をもつMOSFETの製造工程を示し、n形シリコン基
板1の一面側にpウエル2を形成したのち、薄いゲート
酸化膜3と厚い選択酸化膜4で表面を覆い、ゲート酸化
膜3の上に多結晶シリコンからなるゲート5を形成す
る。そして、このゲート5と選択酸化膜4をマスクとし
て低不純物濃度のn領域6を形成する〔図2(a) 〕。次
に表面上にSiO2 膜を堆積したのち、反応性イオンエッ
チング (RIE) によりゲート5の側面にスペーサ7を
残し、このあと、このSiO2 スペーサ7と選択酸化膜4
をマスクとして、ドレイン電極あるいはソース電極の接
触する高不純物濃度のn++ソース・ドレイン領域81、82
を形成する〔図2(b) 〕。このあと、層間絶縁膜9によ
り被覆し、コンタクトホールを明けてAl電極配線10を接
触させる〔図2(c) 〕。
2 (a) to 2 (c) show a manufacturing process of a MOSFET having such an LDD structure. A p well 2 is formed on one surface of an n-type silicon substrate 1 and then a thin gate oxide film 3 is formed. The surface is covered with a thick selective oxide film 4, and a gate 5 made of polycrystalline silicon is formed on the gate oxide film 3. Then, using the gate 5 and the selective oxide film 4 as a mask, an n region 6 having a low impurity concentration is formed [FIG. 2 (a)]. Next, after depositing a SiO 2 film on the surface, spacers 7 are left on the side surfaces of the gate 5 by reactive ion etching (RIE), and then the SiO 2 spacer 7 and the selective oxide film 4 are formed.
With the mask as a mask, the n ++ source / drain regions 81, 82 of high impurity concentration in contact with the drain electrode or the source electrode are contacted.
Are formed [Fig. 2 (b)]. After that, the interlayer insulating film 9 is covered, the contact hole is opened, and the Al electrode wiring 10 is brought into contact [FIG. 2 (c)].

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記従
来のLDD構造のMOSFETでは、静電気に対する耐
量が大幅に低下する問題がある。耐量低下の原因は、ド
レインの一部を形成しているn領域6に静電気による電
流が流れると、低不純物濃度であるため熱暴走がおこり
やすく、n++領域81をドレインとして用いる場合、図に
Aで示す個所の接合が破壊され易いためである。
However, the conventional MOSFET having the LDD structure has a problem that the resistance to static electricity is significantly lowered. The cause of the decrease in withstand voltage is that when a current due to static electricity flows through the n region 6 forming a part of the drain, thermal runaway is likely to occur due to the low impurity concentration, and when the n ++ region 81 is used as the drain, This is because the joint at the portion indicated by A is easily broken.

【0005】これに対して、LDD構造を有するMOS
FETの静電破壊耐量を高めるために、半導体集積回路
の出力素子のみLDD構造を用いないシングルドレイン
構造を用いる方法、面積を大きくする方法あるいは出力
保護ダイオードを作り込む等の方法があるが、素子の占
有面積の増加となり、半導体装置の高集積度化には反す
る結果となる。
On the other hand, a MOS having an LDD structure
In order to increase the electrostatic discharge withstand capability of the FET, there are a method of using a single drain structure without using the LDD structure only for the output element of the semiconductor integrated circuit, a method of increasing the area, or a method of forming an output protection diode. Therefore, the occupied area is increased, which is contrary to the high integration of the semiconductor device.

【0006】本発明の目的は、LDD構造の低不純物濃
度ドレイン領域に静電気により電流が流れるために起こ
る接合破壊を占有面積を増加させないで防止した静電破
壊耐量の高いMOSFETを提供することにある。
An object of the present invention is to provide a MOSFET having a high electrostatic breakdown resistance, which prevents a junction breakdown caused by a current flowing by static electricity in a low impurity concentration drain region of an LDD structure without increasing an occupied area. .

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明は、第一導電形のベース層の表面層にゲー
ト電極直下のチャネル領域をはさんで電極の接触する高
不純物濃度の第一領域とケース電極の直下に延びる低不
純物濃度の第二領域とからなるLDD構造のソース・ド
レイン層が設けられるMOSFETにおいて、一方のソ
ース・ドレイン層の第一領域とベース層との間に形成さ
れる平面型接合の耐圧がドレイン・ソース間耐圧より低
く、このソース・ドレイン層がドレインとして使用され
るものとする。そして、ベース層のドレインとして使用
されるソース・ドレイン層の第一領域との平面型接合に
近接する層部分が、ベース層の他の部分より不純物濃度
の高いことが有効であり、ドレインとして使用されるソ
ース・ドレイン層とベース層との間の耐圧が、ベース層
のそのソース・ドレイン層の第一領域との接合に近接し
た層部分の不純物濃度により調整されたことが有効であ
る。さらに本発明は、第一導電形のベース層の表面層に
ゲート電極直下のチャネル領域をはさんで設けられる帯
状のソース・ドレイン層が、少なくともソース・ドレイ
ン電極の接触する高不純物濃度の領域と、ゲート電極の
直下に延びる低不純物濃度の領域とからなるLDD構造
のソース・ドレイン層であり、半導体基体の外周部に方
形の内周辺をもってベース層の高不純物濃度をもつ表面
層が露出するMOSFETにおいて、ベース層の高不純
物濃度表面層の内周の三辺と外周の三辺で対向するソー
ス・ドレイン層がドレイン領域として使用され、そのド
レイン領域の外周の各辺と対向するベース層の高不純物
濃度表面層の内周の各辺との距離が実質的に等しいもの
とする。
In order to achieve the above object, the present invention provides a high impurity concentration in which an electrode is in contact with a surface layer of a base layer of the first conductivity type across a channel region directly below a gate electrode. Between a first region of one source / drain layer and a base layer in a MOSFET provided with a source / drain layer of an LDD structure consisting of a first region of the The withstand voltage of the planar junction formed in 1) is lower than the withstand voltage between the drain and the source, and this source / drain layer is used as the drain. Further, it is effective that the layer portion near the planar junction with the first region of the source / drain layer used as the drain of the base layer has a higher impurity concentration than the other portions of the base layer. It is effective that the breakdown voltage between the source / drain layer and the base layer is adjusted by the impurity concentration of the layer portion of the base layer close to the junction with the first region of the source / drain layer. Further, according to the present invention, the strip-shaped source / drain layer provided on the surface layer of the base layer of the first conductivity type with the channel region immediately below the gate electrode interposed between at least the region of high impurity concentration in contact with the source / drain electrode. , A source / drain layer having an LDD structure consisting of a region of low impurity concentration extending directly under the gate electrode, and a surface layer having a high impurity concentration of the base layer is exposed at the outer periphery of the semiconductor substrate with a rectangular inner periphery. In the above, the source / drain layers facing each other on the inner three sides and the outer three sides of the high-impurity concentration surface layer of the base layer are used as drain regions, and the height of the base layer facing each outer side of the drain region is opposite. The distance from each side of the inner circumference of the impurity concentration surface layer is substantially equal.

【0008】[0008]

【作用】MOSFETのドレイン・ソース間の耐圧よ
り、ドレイン電極の接触するドレイン層とチャネル領域
の設けられるベース層との間の接合の耐圧をベース層表
面層の不純物濃度を高くすることによって低くすること
により、静電気がドレインに入った場合、その接合を電
流経路とし、LDD構造のドレイン層のゲート電極直下
に延びた低不純物濃度拡散領域に静電気による電流を流
れにくくして、低不純物濃度拡散領域の接合破壊を防止
するものである。さらに、電流経路が1点に集中しない
ように、耐圧を決める場所が平面型接合であり、接合に
流せる電流容量を大きくするものである。
The breakdown voltage of the junction between the drain layer in contact with the drain electrode and the base layer provided with the channel region is made lower than the breakdown voltage between the drain and source of the MOSFET by increasing the impurity concentration of the base layer surface layer. As a result, when static electricity enters the drain, the junction is used as a current path, and the current due to static electricity is made difficult to flow in the low impurity concentration diffusion region extending directly below the gate electrode of the drain layer of the LDD structure, and the low impurity concentration diffusion region is formed. It is intended to prevent the joint destruction. Further, the place where the breakdown voltage is determined is a planar junction so that the current path is not concentrated at one point, and the current capacity that can be passed through the junction is increased.

【0009】また、ドレインとソースの間の一辺だけで
対向する周辺長より、ドレインとベース層の露出表面層
とを三辺等距離で対向させて対向周辺長を長くすること
により、電流経路をドレイン・ベース層間にとりやすく
なり、低不純物濃度拡散領域の接合破壊を防止する。こ
のようにして低不純物濃度領域接合に電流が集中しにく
くすることにより、静電気によって素子内に電流が注入
する場合、その接合に流せる電流容量が増加する。
In addition, the drain and the source are opposed to each other only on one side, and the drain and the exposed surface layer of the base layer are opposed to each other at equal distances on three sides to increase the opposed peripheral length, thereby making the current path longer. It becomes easier to connect between the drain and base layers, and prevents junction breakdown in the low impurity concentration diffusion region. In this way, by making it difficult for the current to concentrate in the low impurity concentration region junction, when the current is injected into the element by static electricity, the current capacity that can flow in the junction increases.

【0010】[0010]

【実施例】以下、図2を含めて共通の部分には同一の符
号が付されている図を引用して本発明の実施例について
説明する。図1に示した本発明の一実施例のMOSFE
Tは次のようにして作製した。まず、n形シリコン基板
1の表面からの拡散により表面不純物濃度2×1016c
m-3、拡散深さ6μmのpウエル2を形成したあと、表
面不純物濃度2×1017cm-3、拡散深さ0.5μmのpウエ
ルより高不純物濃度のp+ 拡散領域21を形成する。次い
で250 Åの薄いゲート酸化膜3と厚い選択酸化膜4で表
面を覆う〔図1(a) 〕。次に、ゲート酸化膜3の上に多
結晶シリコン層を積層し、その多結晶シリコン層をパタ
ーニングしてゲート5とし、そのゲート5と選択酸化膜
4をマスクとして2×1013 atoms・cm-2程度のドーズ量
でAsイオンを注入し、LDD構造用の低不純物濃度のn
領域6を形成する〔図1(b) 〕。さらに、表面上にSiO
2 膜を0.8μmの厚さに堆積し、RIEによりエッチン
グしてゲート5の側面に形成したスペーサ7をマスクと
して高ドーズ量でAs+ を注入し、高不純物濃度のn++
域81、82を形成する〔図1(c) 〕。p+ 領域21と平面型
接合をつくるn++領域81がドレイン領域であり、他方の
++領域82がソース領域である。このあと、層間絶縁膜
9により被覆し、コンタクトホールをあけてAl電極配線
10を接触させることによりMOSFETを完成する〔図
1(d) 〕。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings in which the same reference numerals are given to common portions including FIG. MOSFE of one embodiment of the present invention shown in FIG.
T was produced as follows. First, the surface impurity concentration is 2 × 10 16 c due to diffusion from the surface of the n-type silicon substrate 1.
After forming the p well 2 having m −3 and a diffusion depth of 6 μm, a p + diffusion region 21 having a higher impurity concentration than the p well having a surface impurity concentration of 2 × 10 17 cm −3 and a diffusion depth of 0.5 μm is formed. . Next, the surface is covered with a thin gate oxide film 3 of 250 Å and a thick selective oxide film 4 [FIG. 1 (a)]. Next, a polycrystalline silicon layer is laminated on the gate oxide film 3, and the polycrystalline silicon layer is patterned to form a gate 5. Using the gate 5 and the selective oxide film 4 as a mask, 2 × 10 13 atoms · cm As ions are implanted at a dose of about 2 and n with a low impurity concentration for LDD structure is used.
Region 6 is formed [FIG. 1 (b)]. Furthermore, on the surface
2 films were deposited to a thickness of 0.8 μm, As + was implanted at a high dose using the spacer 7 formed on the side surface of the gate 5 as a mask by etching by RIE, and a high impurity concentration n + + region 81, 82 is formed [Fig. 1 (c)]. p + region 21 and the n ++ region 81 to create a planar junction is the drain region, it is a source region other n ++ region 82. After that, the interlayer insulating film 9 is covered, contact holes are opened, and Al electrode wiring is formed.
A MOSFET is completed by bringing 10 into contact [Fig. 1 (d)].

【0011】作製されたMOSFETの素子特性は、ド
レイン・ソース間耐圧が20Vとなり、n++ドレイン領域
81とベース層のp+ 領域21との平面型の接合耐圧は10V
となる。これにより、ドレインに正の静電気が入った場
合、電流はn領域6へ流れず、耐圧の低いn++領域21と
p領域82とで形成された平面型接合を通って流れ、n領
域6の静電気による破壊から防止できる。この結果、20
0PF /0Ω試験法で、従来150 Vであった耐量を500 V
に上げることができた。
The device characteristics of the manufactured MOSFET are that the drain-source breakdown voltage is 20 V, and the n ++ drain region is
The planar junction breakdown voltage between 81 and the p + region 21 of the base layer is 10V.
Becomes As a result, when positive static electricity enters the drain, the current does not flow into the n region 6, but flows through the planar junction formed by the n + + region 21 and the p region 82 having a low breakdown voltage, and the n region 6 It can be prevented from being damaged by static electricity. As a result, 20
With the 0PF / 0Ω test method, the withstand capacity of the conventional 150 V is 500 V
I was able to raise it to.

【0012】この実施例では、nチャネルMOSFET
を示したが、pチャネルMOSFETにおいても同様の
効果を得ることができた。本発明はまた、素子の配置を
規定することにより、さらに静電破壊耐量を上げること
ができる。図3に本発明の素子配置を示す。pウエル2
と接続するためにpウエル2の外周部の表面層に設けら
れるp++拡散領域22がMOSFETの周囲を囲ってあ
り、コンタクト11が設けられている。これはCMOS素
子で重要なラッチアップ防止のための拡散領域も兼用す
る。ゲート5は2本配置してある。p ++領域22の内側に
近接して設けられたn++領域81がドレイン領域として、
またゲート5の中間にあるn++領域82がソース領域とし
て外部回路と接続され、p++領域22とn++領域81との間
の距離、aおよびbは等しい。この構造を用いることに
より、三方でp++領域22に近接しているドレイン領域81
の対向している周辺長が、ドレイン領域81とソース領域
82との対向している一辺だけの周辺長より長いため、ド
レインからソースへ流れる電流は多くならずに、ドレイ
ンからpウエルへ流れる電流が支配的となり、静電気に
対して弱い接合である低不純物濃度拡散領域6の保護が
できる。この実施例のMOSFETは、図4に示すソー
ス領域82が外側にある従来構造のMOSFETよりも20
0 V耐量を向上することが可能となった。
In this embodiment, an n-channel MOSFET is used.
However, the same applies to p-channel MOSFETs.
I was able to get the effect. The present invention also arranges the elements.
Further increase the electrostatic breakdown resistance by specifying
You can FIG. 3 shows the element arrangement of the present invention. p well 2
Is provided on the surface layer of the outer peripheral portion of the p-well 2 for connection with
P++A diffusion region 22 surrounds the MOSFET.
A contact 11 is provided. This is a CMOS element
Also serves as a diffusion area for important latch-up prevention in the child
It Two gates 5 are arranged. p ++Inside area 22
N provided in close proximity++Region 81 is the drain region,
Also, n in the middle of the gate 5++Region 82 is the source region
Connected to an external circuit, p++Region 22 and n++Between area 81
, A and b are equal. To use this structure
Than p on three sides++Drain region 81 adjacent to region 22
The peripheral lengths facing each other are the drain region 81 and the source region.
Since it is longer than the perimeter of only one side facing 82,
The current flowing from the rain to the source does not increase, and the drain
Current flowing from the drain to the p-well becomes dominant
On the other hand, the low impurity concentration diffusion region 6 which is a weak junction is protected.
it can. The MOSFET of this embodiment is the saw shown in FIG.
20 compared to conventional MOSFETs with outer region 82 outside
It has become possible to improve the 0 V tolerance.

【0013】[0013]

【発明の効果】本発明によれば、LDD構造のドレイン
層とチャネルの形成されるベース層との間の耐圧をドレ
イン・ソース間耐圧より低くすることにより、あるいは
ドレイン層と半導体基体外周のベース層露出領域との対
向周辺長をドレイン・ソース対向周辺長より長くするこ
とにより、低不純物濃度領域に静電気により流れる電流
を抑制し、低不純物濃度領域の接合破壊を防止する。こ
れにより、LDD構造と高い静電破壊耐量とを両立させ
ることができるMOSFETを得ることができた。
According to the present invention, the breakdown voltage between the drain layer of the LDD structure and the base layer in which the channel is formed is made lower than the breakdown voltage between the drain and the source, or the drain layer and the base of the outer periphery of the semiconductor substrate. By making the peripheral length facing the layer exposed region longer than the drain / source facing peripheral length, the current flowing due to static electricity in the low impurity concentration region is suppressed, and the junction breakdown of the low impurity concentration region is prevented. As a result, it was possible to obtain a MOSFET capable of achieving both an LDD structure and a high electrostatic breakdown resistance.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例のMOSFETの製造工程を
(a) から(d) への順に示す断面図
FIG. 1 shows a manufacturing process of a MOSFET according to an embodiment of the present invention.
Sectional views shown in order from (a) to (d)

【図2】従来のLDD型MOSFETの製造工程を(a)
から(c) への順に示す断面図
FIG. 2 (a) shows a manufacturing process of a conventional LDD type MOSFET.
To (c) cross section

【図3】別の本発明の一実施例のMOSFET半導体素
体の平面図
FIG. 3 is a plan view of a MOSFET semiconductor element body according to another embodiment of the present invention.

【図4】従来のMOSFET半導体素体の平面図FIG. 4 is a plan view of a conventional MOSFET semiconductor element body.

【符号の説明】[Explanation of symbols]

1 n形シリコン基板 2 pウエル 21 pウエル高不純物濃度領域 3 ゲート酸化膜 5 ゲート 6 ソース・ドレインn形低不純物濃度領域 7 スペーサ 81 n+ ドレイン領域 82 n+ ソース領域 9 層間絶縁膜 10 電極配線1 n-type silicon substrate 2 p-well 21 p-well high impurity concentration region 3 gate oxide film 5 gate 6 source / drain n-type low impurity concentration region 7 spacer 81 n + drain region 82 n + source region 9 interlayer insulating film 10 electrode wiring

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】第一導電形のベース層の表面層にゲート電
極直下のチャネル領域をはさんで電極の接触する高不純
物濃度の第一領域とケース電極の直下に延びる低不純物
濃度領域の第二領域とからなるLDD構造のソース・ド
レイン層が設けられるものにおいて、一方のソース・ド
レイン層の第一領域とベース層との間に形成される平面
型接合の耐圧がドレイン・ソース間耐圧より低く、この
ソース・ドレイン層がドレインとして使用されることを
特徴とするMOS型電界効果トランジスタ。
1. A high impurity concentration first region in contact with a channel region immediately below a gate electrode on a surface layer of a base layer of the first conductivity type and a low impurity concentration region extending immediately below a case electrode. In a case where a source / drain layer having an LDD structure composed of two regions is provided, the breakdown voltage of a planar junction formed between the first region of one source / drain layer and the base layer is higher than the breakdown voltage between the drain and the source. A MOS type field effect transistor which is low, and in which this source / drain layer is used as a drain.
【請求項2】ベース層のドレインとして使用されるソー
ス・ドレイン層の第一領域との平面型接合に近接する層
部分が、ベース層の他の部分より不純物濃度が高い請求
項1記載のMOS型電界効果トランジスタ。
2. The MOS according to claim 1, wherein the layer portion adjacent to the planar junction with the first region of the source / drain layer used as the drain of the base layer has a higher impurity concentration than the other portions of the base layer. Type field effect transistor.
【請求項3】ドレインとして使用されるソース・ドレイ
ン層とベース層との間の耐圧が、ベース層のそのソース
・ドレイン層の第一領域との接合に近接した層部分の不
純物濃度により調整された請求項2記載のMOS型電界
効果トランジスタ。
3. A breakdown voltage between a source / drain layer used as a drain and a base layer is adjusted by an impurity concentration of a layer portion of the base layer adjacent to a junction with the first region of the source / drain layer. The MOS type field effect transistor according to claim 2.
【請求項4】第一導電形のベース層の表面層にゲート電
極直下のチャネル領域をはさんで設けられる帯状のソー
ス・ドレイン層が、少なくともソース・ドレイン電極の
接触する高不純物濃度の領域と、ゲート電極の直下に延
びる低不純物濃度の領域とからなるLDD構造のソース
・ドレイン層であり、半導体基体の外周部に方形の内周
辺をもってベース層の高不純物濃度をもつ表面層が露出
するものにおいて、ベース層の高不純物濃度表面層の内
周の三辺と外周の三辺で対向するソース・ドレイン層が
ドレイン領域として使用され、そのドレイン領域の外周
の各辺と対向するベース層の高不純物濃度表面層の内周
の各辺との距離が実質的に等しいことを特徴とするMO
S型電界効果トランジスタ。
4. A strip-shaped source / drain layer provided on a surface layer of a base layer of the first conductivity type, sandwiching a channel region immediately below a gate electrode, and at least a region of high impurity concentration in contact with the source / drain electrode. A source / drain layer having an LDD structure consisting of a region of low impurity concentration extending directly below the gate electrode, and a surface layer having a high impurity concentration of the base layer is exposed at the outer periphery of the semiconductor substrate with a square inner periphery. , The source / drain layers facing each other on the inner and outer three sides of the high-impurity-concentration surface layer of the base layer are used as drain regions. MO characterized in that the distance from each side of the inner periphery of the impurity concentration surface layer is substantially equal.
S-type field effect transistor.
JP13630393A 1993-06-08 1993-06-08 Mos type field-effect transistor Pending JPH06349852A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13630393A JPH06349852A (en) 1993-06-08 1993-06-08 Mos type field-effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13630393A JPH06349852A (en) 1993-06-08 1993-06-08 Mos type field-effect transistor

Publications (1)

Publication Number Publication Date
JPH06349852A true JPH06349852A (en) 1994-12-22

Family

ID=15172043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13630393A Pending JPH06349852A (en) 1993-06-08 1993-06-08 Mos type field-effect transistor

Country Status (1)

Country Link
JP (1) JPH06349852A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002134743A (en) * 2000-10-24 2002-05-10 Matsushita Electric Ind Co Ltd Semiconductor device and its manufacturing method
JP2004031804A (en) * 2002-06-27 2004-01-29 Sanyo Electric Co Ltd Semiconductor device and its manufacturing method
US6693330B2 (en) 2000-08-11 2004-02-17 Sharp Kabushiki Kaisha Semiconductor device and method of manufacturing the same
KR100596765B1 (en) * 1999-06-28 2006-07-04 주식회사 하이닉스반도체 Method of manufacturing MOS transistor for ESD protection
JP2007005825A (en) * 2006-09-04 2007-01-11 Fujitsu Ltd Method of manufacturing semiconductor device
JP2008205200A (en) * 2007-02-20 2008-09-04 Fujitsu Ltd Electrostatic discharge protection device, semiconductor device, and method for manufacturing electrostatic discharge protection device
CN108352325A (en) * 2015-11-12 2018-07-31 索尼半导体解决方案公司 Field-effect transistor and semiconductor devices

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100596765B1 (en) * 1999-06-28 2006-07-04 주식회사 하이닉스반도체 Method of manufacturing MOS transistor for ESD protection
US6693330B2 (en) 2000-08-11 2004-02-17 Sharp Kabushiki Kaisha Semiconductor device and method of manufacturing the same
JP2002134743A (en) * 2000-10-24 2002-05-10 Matsushita Electric Ind Co Ltd Semiconductor device and its manufacturing method
JP2004031804A (en) * 2002-06-27 2004-01-29 Sanyo Electric Co Ltd Semiconductor device and its manufacturing method
JP4677166B2 (en) * 2002-06-27 2011-04-27 三洋電機株式会社 Semiconductor device and manufacturing method thereof
JP2007005825A (en) * 2006-09-04 2007-01-11 Fujitsu Ltd Method of manufacturing semiconductor device
JP2008205200A (en) * 2007-02-20 2008-09-04 Fujitsu Ltd Electrostatic discharge protection device, semiconductor device, and method for manufacturing electrostatic discharge protection device
US8354723B2 (en) 2007-02-20 2013-01-15 Fujitsu Semiconductor Limited Electro-static discharge protection device, semiconductor device, and method for manufacturing electro-static discharge protection device
US8722522B2 (en) 2007-02-20 2014-05-13 Fujitsu Semiconductor Limited Electro-static discharge protection device, semiconductor device, and method for manufacturing electro-static discharge protection device
CN108352325A (en) * 2015-11-12 2018-07-31 索尼半导体解决方案公司 Field-effect transistor and semiconductor devices

Similar Documents

Publication Publication Date Title
KR100712461B1 (en) Semiconductor device and its manufacturing method
JP3158738B2 (en) High breakdown voltage MIS field-effect transistor and semiconductor integrated circuit
JPH0982814A (en) Semiconductor integrated circuit device and manufacture thereof
KR100194661B1 (en) Power transistor
JPH09115999A (en) Semiconductor integrated circuit device
US4893164A (en) Complementary semiconductor device having high switching speed and latchup-free capability
JP3317345B2 (en) Semiconductor device
JPH06349852A (en) Mos type field-effect transistor
JPH0770717B2 (en) Semiconductor device
JP2658842B2 (en) Semiconductor device
JP2001284540A (en) Semiconductor device and its manufacturing method
JP2926969B2 (en) Semiconductor device having MIS type field effect transistor
JPH07335894A (en) Semiconductor device
JPS63244874A (en) Input protective circuit
US5804857A (en) Semiconductor device with element window defined by closed loop conductor
JPH02110976A (en) Insulated-gate semiconductor device
JPS61274366A (en) High dielectric strength semiconductor device
JP3592734B2 (en) MOS type field effect transistor and method of manufacturing the same
KR0175402B1 (en) Power semiconductor device and its manufacturing method
JP2684712B2 (en) Field effect transistor
JPH0837299A (en) Protective circuit of semiconductor integrated circuit
JP3237269B2 (en) Semiconductor device and manufacturing method thereof
JP2826024B2 (en) Method for manufacturing MOS transistor
JPH0997844A (en) Semiconductor integrated circuit device
JPS6237822B2 (en)