JP2728424B2 - Semiconductor integrated circuit device - Google Patents
Semiconductor integrated circuit deviceInfo
- Publication number
- JP2728424B2 JP2728424B2 JP63060383A JP6038388A JP2728424B2 JP 2728424 B2 JP2728424 B2 JP 2728424B2 JP 63060383 A JP63060383 A JP 63060383A JP 6038388 A JP6038388 A JP 6038388A JP 2728424 B2 JP2728424 B2 JP 2728424B2
- Authority
- JP
- Japan
- Prior art keywords
- mosfet
- integrated circuit
- transistor
- layer
- drain region
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000004065 semiconductor Substances 0.000 title claims description 7
- 239000000758 substrate Substances 0.000 claims description 4
- 239000012535 impurity Substances 0.000 claims description 3
- 230000005669 field effect Effects 0.000 claims 1
- 239000012212 insulator Substances 0.000 claims 1
- 239000010410 layer Substances 0.000 description 31
- 238000004519 manufacturing process Methods 0.000 description 7
- 238000000034 method Methods 0.000 description 6
- 230000015556 catabolic process Effects 0.000 description 4
- 238000005468 ion implantation Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 239000011229 interlayer Substances 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000002784 hot electron Substances 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
Landscapes
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
- Non-Volatile Memory (AREA)
- Semiconductor Integrated Circuits (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、小信号回路と高耐圧もしくは電力用トラン
ジスタが同一チツプ上に共存する半導体集積回路に係
り、特にドレイン領域のゲート側に低濃度不純物層を有
する、いわゆるLDD構造MOSFETから成る大規模集積回路
の多機能・高付加価値化に関する。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor integrated circuit in which a small signal circuit and a high breakdown voltage or power transistor coexist on the same chip. The present invention relates to multifunctional and high-value-added large-scale integrated circuits composed of a so-called LDD structure MOSFET having an impurity layer.
従来の装置は、アイ・イー・イー・イー,トランザク
シヨン オン エレクトロン デバイシス,イー デイ
ー33,(1986年12月)第1985頁から第1991頁(IEEE,Tran
s.Electron Devices ED33(Dec.1986)PP.1985-1991)
において論じられているように、多結晶Siゲートの3μ
mCMOSプロセスを用いて、低電圧CMOS素子と高耐圧CMOS
素子の集積化を行つていた。A conventional device is disclosed in IEE, Transaction on Electron Devices, EDE33, December 1986, 1985 to 1991 (IEEE, Tran).
s.Electron Devices ED33 (Dec.1986) PP.1985-1991)
3 μm of the polycrystalline Si gate, as discussed in
Low voltage CMOS and high voltage CMOS using mCMOS process
Devices were being integrated.
上記従来技術を用いて、更に集積回路の性能向上を行
うには、微細化が考えられる。しかし、ゲート長を3μ
mから1.3μm,0.8μmとすると、従来技術による小信号
MOSFETの構造では、耐圧低下,ホツト・エレクトロンに
よる信頼性の低下といつた問題が生じる。よつて、これ
を解決するために、LDD構造MOSFETが使われ、高圧低温
酸化膜サイド・ウオールの形成工程,イオン打込み工程
が追加される。In order to further improve the performance of the integrated circuit by using the above-described conventional technology, miniaturization can be considered. However, if the gate length is 3μ
m to 1.3μm, 0.8μm, small signal according to the prior art
In the structure of the MOSFET, problems such as a decrease in breakdown voltage and a decrease in reliability due to hot electrons occur. Therefore, in order to solve this problem, an LDD structure MOSFET is used, and a step of forming a high-pressure low-temperature oxide film sidewall and an ion implantation step are added.
小信号MOSFETと高耐圧電力用トランジスタとの共存化
において、このような構造,工程の変更は、高耐圧電力
用トランジスタ部の構造,工程も複雑なものとし、不都
合となる。In the coexistence of the small-signal MOSFET and the high-voltage power transistor, such a change in the structure and process becomes inconvenient because the structure and process of the high-voltage power transistor unit are complicated.
本発明の目的は、超微細化MOSFETと高耐圧・電力用ト
ランジスタの共存化に最適な構造とその製法を提供する
ことである。An object of the present invention is to provide a structure optimal for coexistence of an ultra-miniaturized MOSFET and a high breakdown voltage / power transistor and a method of manufacturing the same.
上記目的は、LDD構造MOSFETと横型パワーMOSFETを共
存させ、LDD構造用低不純物濃度層とパワーMOSFETのオ
フセツト層を、同時に、同一の形成条件で形成すること
により達成される。The above object is achieved by coexisting an LDD structure MOSFET and a lateral power MOSFET, and simultaneously forming the low impurity concentration layer for the LDD structure and the offset layer of the power MOSFET under the same forming conditions.
LDD構造の低濃度層とパワーMOSFETのオフセツト層を
同時に、同一の形成条件で形成することは、低濃度層と
オフセツト層を別々に形成するのに比べて、製作工程の
短縮,簡更化を可能にする。そして、このような方法を
使用するLDD構造MOSFETと横型パワーMOSFETの共存化技
術は、超微細工程における小信号MOSFETと高耐圧・電力
用トランジスタの共存化に最適な技術となる。Simultaneously forming the low-concentration layer of the LDD structure and the offset layer of the power MOSFET under the same forming conditions can shorten and simplify the manufacturing process compared to forming the low-concentration layer and the offset layer separately. to enable. Then, the coexistence technology of the LDD structure MOSFET and the lateral power MOSFET using such a method is an optimum technology for coexistence of the small signal MOSFET and the high withstand voltage / power transistor in the ultrafine process.
以下、本発明の一実施例を第1,2図により説明する。 Hereinafter, an embodiment of the present invention will be described with reference to FIGS.
第1図は、LDD構造MOSFETと横型パワーMOSFETを同一
チツプ上に共存させた大規模集積回路の断面構造の一部
である。1がLDD構造を有するnチヤネル小信号MOSFE
T、2がドレイン・オフセツト層を有するnチヤネル横
型パワーMOSFETである。ここではnチヤネルのみ示した
が、pチヤネルも同様に共存化させることができる。3
は通常のVLSIで使用するp形低濃度基板、4はp型WELL
層、5はドレイン・ソース領域である高濃度n形層、6
はソースとWELL層の電位を共通に取るための高濃度p形
層、7はLDD構造におけるn形低濃度層、8はパワーMOS
FETのn形ドレイン・オフセツト層、9は多結晶Siのゲ
ート電極、10はLDD構造のためのサイド・ウオール、11
はSi酸化膜、12は絶縁膜、13はAlの第1層電極、14は層
間絶縁膜、15はAl第2層電極、16は表面保護膜である。
また、第2図に、第1図の集積路の製造工程を示した。
順を追つて製造工程の説明を行う。まず、(a)におい
て、p形基板を表面酸化した後、WELLホト、B+イオン
注入,ドライブインによりp形WELL層を形成し、続い
て、Si3N4の堆積、Lホト、熱酸化でLOCOS分離を行
う。次に、(b)のように、厚さ200Åのゲート酸化膜
を形成し、多結晶Siの堆積,リン処理,ゲート電極ホト
の後、17のP+イオン打込みを行う。これにより、LDD
構造MOSFETの低濃度層と横型パワーMOSFETのオフセツト
層を形成する。続いて(c)のように、高温低圧酸化膜
の堆積,異方性エツチングによりゲート電極のサイド・
ウオールを形成した後、18のホト工程を経て19のP+イ
オン打込みを行い、高濃度n形層を形成する。この時、
LDD構造MOFETのゲート電極端と高濃度n形層との距離
は、サイド・ウオールにより自己整合的に決まるが、横
型パワーMOSFETのそれは、レジストマスクの寸法と合せ
精度で決まる。更に、(d)のように高濃度p形層を形
成した後、絶縁膜を堆積する。最後に、(e)のように
コンタクト穴開け、A1層の配線,層間絶縁膜の堆
積,スルーホール開け、Al2層の配線、保護膜形成を行
い、前工程を終了する。本実施例によれば、LDD構造の
低濃度層とオフセツト層を同時に形成することで、最も
簡単な工程で、LDD構造MOSFETと横型パワーMOSFETの共
存化を行うことができる。すなわち、p,n形のオフセツ
ト層形成のためのホト工程,イオン打込み工程,アニー
ル工程を行う必要が無く、LDD構造MOSFETのそのままの
工程で良い。また、本実施例は半導体基体としてSiを用
いたが、それ以外の材料、例えばGaAs等の化合物半導体
を用いても実施できる。更に、配線材料として、Al以外
に高導電率でエレクトロマイグレーシヨンの起こりにく
い材料例えばCuを、ゲート絶縁膜としてSi酸化膜以外に
高誘電率,高信頼度の材料例えばTa2O5を用いることも
できる。FIG. 1 shows a part of a cross-sectional structure of a large-scale integrated circuit in which an LDD structure MOSFET and a lateral power MOSFET coexist on the same chip. 1 is an n-channel small signal MOSFE having an LDD structure
T and 2 are n-channel lateral power MOSFETs having a drain / offset layer. Although only the n-channel is shown here, the p-channel can also be made to coexist. 3
Is a p-type low-concentration substrate used in normal VLSI, 4 is a p-type well
Layer 5, a high-concentration n-type layer serving as a drain / source region;
Is a high-concentration p-type layer for taking the potential of the source and the WELL layer in common, 7 is an n-type low-concentration layer in the LDD structure, and 8 is a power MOS.
FET n-type drain / offset layer, 9 is a polycrystalline Si gate electrode, 10 is a side wall for LDD structure, 11
Is an Si oxide film, 12 is an insulating film, 13 is an Al first layer electrode, 14 is an interlayer insulating film, 15 is an Al second layer electrode, and 16 is a surface protective film.
FIG. 2 shows a manufacturing process of the integrated circuit shown in FIG.
The manufacturing process will be described step by step. First, in (a), after the surface of a p-type substrate is oxidized, a p-type WELL layer is formed by WELL photo, B + ion implantation and drive-in, and subsequently, Si 3 N 4 deposition, L photo, and thermal oxidation are performed. Perform LOCOS separation. Next, as shown in FIG. 2B, a gate oxide film having a thickness of 200.degree. Is formed, and after polycrystalline Si is deposited, phosphorous treatment is performed, and a gate electrode is heated, P + ions 17 are implanted. This allows LDD
The low-concentration layer of the structure MOSFET and the offset layer of the lateral power MOSFET are formed. Subsequently, as shown in (c), a high-temperature and low-pressure oxide film is deposited and anisotropic etching is performed to form a side electrode of the gate electrode.
After the formation of the wall, a P + ion implantation of 19 is performed through a photo step of 18 to form a high-concentration n-type layer. At this time,
The distance between the gate electrode end of the LDD structure MOFET and the high-concentration n-type layer is determined in a self-aligned manner by the side wall. However, that of the lateral power MOSFET is determined by the alignment accuracy with the dimension of the resist mask. Further, after forming a high-concentration p-type layer as shown in (d), an insulating film is deposited. Finally, a contact hole is formed, an A1 layer wiring, an interlayer insulating film is deposited, a through hole is formed, an Al2 layer wiring and a protective film are formed as shown in FIG. According to this embodiment, by simultaneously forming the low-concentration layer and the offset layer having the LDD structure, the LDD structure MOSFET and the lateral power MOSFET can coexist in the simplest process. That is, there is no need to perform a photo step, an ion implantation step, and an annealing step for forming the p, n type offset layer, and the LDD structure MOSFET may be used as it is. In this embodiment, Si is used as the semiconductor substrate. However, the present invention can also be implemented using other materials, for example, a compound semiconductor such as GaAs. Further, as the wiring material, a material such as Cu, which has high conductivity and is unlikely to cause electromigration, other than Al, and a material having a high dielectric constant and high reliability such as Ta 2 O 5 other than the Si oxide film is used as the gate insulating film. Can also.
本発明の他の一実施例を、第3,4図により説明する。
第3図(a)は小信号LDD構造MOSFETとメツシユゲート
横型パワーMOSFETから成る多段CMOSドライバの回路図、
(b)はそれを実際にレイアウトした平面図である。20
はLDD構造pチヤネルMOSFET、21はnチヤネルMOSFETで
あり、22,24,26はメツシユゲート構造を有するドレイン
耐圧−30Vのpチヤネル横型パワーMOSFET、23,25,27は
ドレイン耐圧30Vのnチヤネル横型パワーMOSFET、28は
その単位セル、29,30,31はそれぞれ5V,20V,0Vの電源端
子、32は入力端子、33は出力端子である。また、28の単
位セルの平面図を第4図(a)に、断面図(b)に示し
た。34がA1層とSi結晶とのコンタクト穴、35がA
1層と2層のスルーホールである。ここで、第3図
(a)の回路について説明する。本回路は5Vの入力信号
から20Vの出力信号を得るものである。このために22,23
により構成されるCMOSが前段のCMOSの電源電圧の半分の
入力電圧で切り換わるように22,23のサイズを調整し
た。22と23のしきい値電圧がそれぞれ−1V,1Vであり、
電子移動度が正孔移動度の3倍、22,23のチヤネル長が
等しいことを考慮し、23のチヤネル幅が22の約30倍とな
るようにした。また、22,23以外のトランジスタはそれ
自身の電源電圧の半分の入力電圧で切り換わるようにサ
イズを調整した。本ドライバは、LDD構造MOSFETにより
構成されるマイクロ・プロセツサの出力段、またEPROM
等の不揮発性メモリの書込み用昇圧回路に使われる。本
実施例により、LDD構造MOSFETで構成される大規模集積
回路の出力信号を昇圧する出力ドライバを、同一チツプ
上に共存させることが可能となつた。Another embodiment of the present invention will be described with reference to FIGS.
FIG. 3A is a circuit diagram of a multi-stage CMOS driver including a small signal LDD structure MOSFET and a mesh gate lateral power MOSFET,
(B) is a plan view in which the layout is actually laid out. 20
Is a p-channel MOSFET with an LDD structure, 21 is an n-channel MOSFET, 22, 24, and 26 are p-channel lateral power MOSFETs with a mesh gate structure of −30 V, and 23, 25, and 27 are n-channel lateral power MOSFETs with a drain breakdown voltage of 30 V. MOSFET, 28 is its unit cell, 29, 30, 31 are 5V, 20V, 0V power supply terminals, 32 is an input terminal, and 33 is an output terminal. FIG. 4A is a plan view of the unit cell 28, and FIG. 4B is a sectional view of the unit cell. 34 is a contact hole between the A1 layer and the Si crystal, 35 is A
One and two layers of through holes. Here, the circuit of FIG. 3A will be described. This circuit obtains a 20V output signal from a 5V input signal. 22,23 for this
The size of 22 and 23 was adjusted so that the CMOS constituted by switches at an input voltage that is half of the power supply voltage of the preceding CMOS. The threshold voltages of 22 and 23 are −1 V and 1 V, respectively.
Considering that the electron mobility is three times the hole mobility and the channel lengths of 22, 23 are equal, the channel width of 23 is set to be about 30 times that of 22. The size of the transistors other than 22 and 23 was adjusted so that they could be switched at half the input voltage of their own. This driver consists of an output stage of a micro processor composed of an LDD structure MOSFET and EPROM.
Etc. are used for a boosting circuit for writing in a nonvolatile memory. According to the present embodiment, an output driver for boosting an output signal of a large-scale integrated circuit including an LDD structure MOSFET can coexist on the same chip.
本発明によれば、LDD構造MOSFETで構成される大規模
集積回路と横型パワーMOSFETを同一チツプ上に共存でき
るので、パツケージコストの低減,実装面積の縮小の効
果がある。また、大規模集積回路の製造工程を全て変更
することなく共存化が行えるので、製造コスト上昇の心
配がないという効果がある。According to the present invention, since a large-scale integrated circuit composed of an LDD structure MOSFET and a lateral power MOSFET can coexist on the same chip, there is an effect of reducing the package cost and the mounting area. Further, coexistence can be achieved without changing all the manufacturing processes of the large-scale integrated circuit, and thus there is an effect that there is no concern about an increase in manufacturing cost.
第1図は本発明の一実施例であるLDD構造MOSFETと横型
パワーMOSFETを共存させたLSIの断面構造、第2図は第
1の素子の製造工程、第3図は本発明の他の実施例のLD
D構造MOSFETとメツシユゲート構造横型パワーMOSFETか
ら成る多段CMOSドライバの回路図と平面図、第4図は第
3図のパワーMOSFETを構成する単位セルの平面図と断面
図である。 1……小信号MOSFET、2……パワーMOSFET、7……LDD
用N型低濃度層、8……N型オフセツト層、10……サイ
ドウオール。FIG. 1 is a sectional view of an LSI in which an LDD structure MOSFET and a lateral power MOSFET coexist according to an embodiment of the present invention, FIG. 2 is a manufacturing process of the first element, and FIG. 3 is another embodiment of the present invention. Example LD
FIG. 4 is a circuit diagram and a plan view of a multi-stage CMOS driver including a D-structure MOSFET and a mesh gate structure lateral power MOSFET, and FIG. 4 is a plan view and a cross-sectional view of a unit cell constituting the power MOSFET of FIG. 1 ... Small signal MOSFET, 2 ... Power MOSFET, 7 ... LDD
N-type low-concentration layer, 8... N-type offset layer, 10.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 29/792 (72)発明者 小島 浩嗣 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 岡部 健明 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (56)参考文献 特開 昭60−64473(JP,A) 特開 昭54−109794(JP,A) 特開 昭61−5571(JP,A)──────────────────────────────────────────────────続 き Continuation of the front page (51) Int.Cl. 6 Identification number Agency reference number FI Technical display location H01L 29/792 (72) Inventor Koji Kojima 1-280 Higashi-Koigabo, Kokubunji-shi, Tokyo Hitachi, Ltd. Inside the laboratory (72) Inventor Takeaki Okabe 1-280 Higashi Koikekubo, Kokubunji-shi, Tokyo Inside the Central Research Laboratory, Hitachi, Ltd. (56) References JP-A-60-64473 (JP, A) JP-A-54-109794 (JP, A) JP-A-61-5571 (JP, A)
Claims (1)
のソース、ドレイン領域が互いに離れて形成され、前記
ソース,ドレイン領域の間でドレイン領域から離れた位
置に絶縁膜を介してゲート電極が設けられ、前記ドレイ
ン領域からゲート電極下のチヤネル領域に到達する第2
導電形の低濃度不純物層が設けられた絶縁ゲート型電界
効果トランジスタが複数個存在する半導体集積回路装置
において、前記トランジスタの一部がゲート電極の側壁
からドレイン領域上に到達するように絶縁物が形成され
た第1のトランジスタであり、また一部が、ゲート電極
からドレイン領域までの距離が第1のトランジスタのそ
れよりも長い第2のトランジスタであり、前記第2のト
ランジスタの構造が、平面上で二次元的に配置されたソ
ース、ドレイン領域からなるメッシュゲート構造を有す
ることを特徴とする半導体集積回路装置。A source and a drain region of a second conductivity type are formed on a surface of a semiconductor substrate of a first conductivity type so as to be separated from each other, and an insulating film is provided between the source and drain regions at a position separated from the drain region. A second gate electrode is provided to reach a channel region below the gate electrode from the drain region;
In a semiconductor integrated circuit device having a plurality of insulated gate field effect transistors provided with a conductive type low-concentration impurity layer, an insulator is provided so that a part of the transistors reaches the drain region from a side wall of the gate electrode. A first transistor formed, a part of which is a second transistor whose distance from a gate electrode to a drain region is longer than that of the first transistor, wherein the structure of the second transistor is a planar transistor; A semiconductor integrated circuit device having a mesh gate structure including source and drain regions two-dimensionally arranged above.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63060383A JP2728424B2 (en) | 1988-03-16 | 1988-03-16 | Semiconductor integrated circuit device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63060383A JP2728424B2 (en) | 1988-03-16 | 1988-03-16 | Semiconductor integrated circuit device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01235369A JPH01235369A (en) | 1989-09-20 |
JP2728424B2 true JP2728424B2 (en) | 1998-03-18 |
Family
ID=13140572
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63060383A Expired - Fee Related JP2728424B2 (en) | 1988-03-16 | 1988-03-16 | Semiconductor integrated circuit device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2728424B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0566262A2 (en) * | 1992-04-15 | 1993-10-20 | National Semiconductor Corporation | Field effect transistor with a deep P body contacted by the source electrode |
JPH09248912A (en) * | 1996-01-11 | 1997-09-22 | Canon Inc | Ink-jet head and base for head, ink-jet cartridge and ink-jet apparatus |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54109794A (en) * | 1978-02-17 | 1979-08-28 | Hitachi Ltd | Manufacture of semiconductor device |
JPS583264A (en) * | 1981-06-30 | 1983-01-10 | Fujitsu Ltd | High withstand voltage semiconductor integrated circuit and manufacture thereof |
JPS6064473A (en) * | 1983-09-20 | 1985-04-13 | Seiko Epson Corp | Mos type transistor |
JPH0648717B2 (en) * | 1984-06-20 | 1994-06-22 | 株式会社日立製作所 | Method for manufacturing semiconductor device |
-
1988
- 1988-03-16 JP JP63060383A patent/JP2728424B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH01235369A (en) | 1989-09-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5223451A (en) | Semiconductor device wherein n-channel MOSFET, p-channel MOSFET and nonvolatile memory cell are formed in one chip and method of making it | |
KR100712461B1 (en) | Semiconductor device and its manufacturing method | |
US5214295A (en) | Thin film field effect transistor, CMOS inverter, and methods of forming thin film field effect transistors and CMOS inverters | |
US5294822A (en) | Polycide local interconnect method and structure | |
JPH05308128A (en) | Semiconductor device and its manufacture | |
JP3206026B2 (en) | Semiconductor device having high voltage MISFET | |
JPH01205470A (en) | Semiconductor device and its manufacture | |
US5184203A (en) | Semiconductor device having a charge transfer device, MOSFETs, and bipolar transistors--all formed in a single semiconductor substrate | |
JPH03214666A (en) | Semiconductor device containing charge transfer device and manufacture thereof | |
JP3380117B2 (en) | Semiconductor device and manufacturing method thereof | |
US6188111B1 (en) | Dual gate semiconductor device for shortening channel length | |
JPH04241452A (en) | Semiconductor integrated circuit device | |
JP2728424B2 (en) | Semiconductor integrated circuit device | |
US7138311B2 (en) | Semiconductor integrated circuit device and manufacture method therefore | |
JP3119902B2 (en) | Semiconductor device and manufacturing method thereof | |
JP2753301B2 (en) | Semiconductor integrated circuit device | |
JPH10163338A (en) | Semiconductor device and its manufacturing method | |
JPH10256390A (en) | Manufacture of semiconductor device | |
JP2973464B2 (en) | Method for manufacturing semiconductor integrated circuit device | |
JP2635577B2 (en) | Semiconductor device | |
JP2002289697A (en) | Complementary insulated gate transistor | |
JPH0770628B2 (en) | Semiconductor device and manufacturing method thereof | |
JP4577948B2 (en) | Offset gate field effect transistor | |
JP2826024B2 (en) | Method for manufacturing MOS transistor | |
JPH11220124A (en) | Semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |