JPS63281473A - Field-effect semiconductor device and manufacture thereof - Google Patents

Field-effect semiconductor device and manufacture thereof

Info

Publication number
JPS63281473A
JPS63281473A JP11782487A JP11782487A JPS63281473A JP S63281473 A JPS63281473 A JP S63281473A JP 11782487 A JP11782487 A JP 11782487A JP 11782487 A JP11782487 A JP 11782487A JP S63281473 A JPS63281473 A JP S63281473A
Authority
JP
Japan
Prior art keywords
concentration impurity
gate electrode
impurity layer
layer
mask
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11782487A
Other languages
Japanese (ja)
Other versions
JPH081910B2 (en
Inventor
Mikio Kanamori
金森 幹夫
Masaoki Ishikawa
石川 昌興
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP62117824A priority Critical patent/JPH081910B2/en
Publication of JPS63281473A publication Critical patent/JPS63281473A/en
Publication of JPH081910B2 publication Critical patent/JPH081910B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To reduce a series parasitic resistance without increasing the short channel effect, by forming a source.drain by using two kinds of selective growth layers, i.e., a low concentration impurity layer and a high concentration impurity layer. CONSTITUTION:In a semi-insulative GaAs substrate 6, Si ion is selectively implanted, and an operating layer 3 composed of GaAs is formed by heat- treating applying an SiO2 film to a protective mask. Then the protective film is eliminated, and tungsten silicide WS1 is deposited on the whole surface of the GaAs operating layer 3 and the GaAs substrate 6. A gate electrode 1 is formed by processing WS1. A low concentration impurity layer 4a is formed in a source.drain region, by selective growth applying the gate electrode 1 and an SiO2 film 7 to a mask. After the SiO2 mask 7 is eliminated, and an SiO2 film is stuck, an SiO2 film 5 is left only on the side surface of the gate electrode 1 by anisotropic etching. By applying the gate electrode 1, the SiO2 film 5 and the SiO2 film 8 to a mask, a high concentration impurity layer 4b containing Si is selectively grown. Finally, source.drain electrodes are formed on the high concentration impurity layer.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電界効果型半導体装置及びその製造方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a field effect semiconductor device and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

半導体装置9例えば砒化カリウム(GaAs)を用いた
ショットキ障壁型電界効果トランジスタ(以下、MES
FETと称す)として、第3図に示すような構造のもの
が知られている。第3図において、1は耐熱性のケート
電極、2aはソース電極、2bはトレイン電極、3はG
aAsからなる動作層、4bは高濃度不純物半導体結晶
層(以下高濃度不純物層という)、5はSiO□膜、6
は半絶縁性のG a A s基板である。
Semiconductor device 9 For example, a Schottky barrier field effect transistor (hereinafter referred to as MES) using potassium arsenide (GaAs)
A structure shown in FIG. 3 is known as an FET (FET). In Figure 3, 1 is a heat-resistant gate electrode, 2a is a source electrode, 2b is a train electrode, and 3 is a G
an active layer made of aAs, 4b a high concentration impurity semiconductor crystal layer (hereinafter referred to as a high concentration impurity layer), 5 a SiO□ film, 6
is a semi-insulating GaAs substrate.

この構造を有するMESFETにおいては、高濃度不純
物層4bの存在により、ソース、ドレインの直列寄生抵
抗か低減され、高い相互コンダクタンス、低いオン抵抗
が得られ、FETの高速動作が可能となる。現在このよ
うなFETもしくはFETを用いた集積回路が製作され
ている。
In the MESFET having this structure, the presence of the heavily doped impurity layer 4b reduces the series parasitic resistance of the source and drain, resulting in high mutual conductance and low on-resistance, allowing the FET to operate at high speed. Currently, such FETs or integrated circuits using FETs are being manufactured.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述のGaAs  MESFETを製作する場合、高濃
度不純物層4bは、ゲート電極及びゲート電極の側面に
形成された絶縁材からなる側壁をマスクとした選択成長
によって形成される。側壁は高濃度不純物層4bとケー
ト電極1が接触しケート電極の耐圧が減少するのを防ぐ
ために設けである。しかし、側壁を設けたことにより、
側壁下に高抵抗の領域が生じるため、ソース、トレイン
の寄生抵抗か十分低減されない。
When manufacturing the above-mentioned GaAs MESFET, the high concentration impurity layer 4b is formed by selective growth using the gate electrode and the sidewalls made of an insulating material formed on the side surfaces of the gate electrode as masks. The side walls are provided to prevent the high concentration impurity layer 4b and the gate electrode 1 from coming into contact with each other and reducing the withstand voltage of the gate electrode. However, by providing side walls,
Since a high resistance region is generated under the sidewall, the parasitic resistance of the source and train cannot be sufficiently reduced.

また、高濃度不純物層4bの濃度を低くすると、ゲート
電極と高濃度不純物層が接触した場合のゲート耐圧の劣
化を防ぐことができ、側壁を用いずにFETを製作する
ことが可能となる。しかしながら、高濃度不純物層4b
のシート抵抗が増加するため、この場合も寄生抵抗を十
分に低減することができなくなる。
Further, by lowering the concentration of the high concentration impurity layer 4b, it is possible to prevent the gate breakdown voltage from deteriorating when the gate electrode and the high concentration impurity layer come into contact with each other, and it becomes possible to manufacture an FET without using sidewalls. However, the high concentration impurity layer 4b
Since the sheet resistance increases, the parasitic resistance cannot be sufficiently reduced in this case as well.

さらに、第4図に示ずように側壁下の領域の抵抗を低減
させるため、高濃度不純物層4bを形成する前にケート
電i1のみをマスクとしてイオン注入を行ないGaAs
基板6に高濃度不純物層9を形成する方法がある。しが
しながら、このようにイオン注入を行った場合は短チヤ
ネル効果が顕著になり、短いゲート長のFETを製作す
る際に、しきい値電圧の制御が困難となる問題がある。
Furthermore, as shown in FIG. 4, in order to reduce the resistance in the region under the sidewall, ions are implanted using only the gate electrode i1 as a mask before forming the high concentration impurity layer 4b.
There is a method of forming a high concentration impurity layer 9 on the substrate 6. However, when ion implantation is performed in this manner, the short channel effect becomes significant, and there is a problem in that it becomes difficult to control the threshold voltage when manufacturing an FET with a short gate length.

本発明の目的は、短チヤネル効果の増大を生しさせるこ
となくソース、ドレインの直列寄生抵抗を低減した電界
効果型半導体装置及びその製造方法を提供することにあ
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide a field effect semiconductor device and a method for manufacturing the same in which the series parasitic resistance of the source and drain is reduced without increasing the short channel effect.

〔問題点を解決するための手段〕[Means for solving problems]

第1の発明の電界効果型半導体装置は、半絶縁性半導体
基板に形成された一導電型半導体動作層と、前記半導体
動作層上に形成されたゲート電極と、前記ゲート電極の
側面に接して形成された一導電型低濃度不純物層と、前
記ゲート電極と所定間隔をおいて前記低濃度不純物層上
に設けられた一導電型高濃度不純物層とを含んで構成さ
れる。
A field effect semiconductor device according to a first aspect of the invention includes a semiconductor active layer of one conductivity type formed on a semi-insulating semiconductor substrate, a gate electrode formed on the semiconductor active layer, and a semiconductor active layer in contact with a side surface of the gate electrode. The semiconductor device includes a low concentration impurity layer of one conductivity type and a high concentration impurity layer of one conductivity type provided on the low concentration impurity layer at a predetermined distance from the gate electrode.

第2の発明の電界効果型半導体装置の製造方法は、半絶
縁性半導体基板に一導電型半導体動作層を形成する工程
と、前記半導体動作層上にゲート電極を形成する工程と
、前記ゲート電極をマスクとし前記半導体動作層上のソ
ース・ドレイン領域に一導電型低濃度不純物層を形成す
る工程と、前記低濃度不純物層上でかつ前記ゲート電極
の側面に絶縁膜からなる側壁を形成する工程と、前記ケ
ート電極と側壁とをマスクとし前記低濃度不純物層上に
一導電型高濃度不純物層を形成する工程とを含んて構成
される。
A method for manufacturing a field effect semiconductor device according to a second aspect of the invention includes the steps of: forming a semiconductor active layer of one conductivity type on a semi-insulating semiconductor substrate; forming a gate electrode on the semiconductor active layer; and forming a gate electrode on the semiconductor active layer. a step of forming a low concentration impurity layer of one conductivity type in the source/drain region on the semiconductor active layer using as a mask, and a step of forming a sidewall made of an insulating film on the low concentration impurity layer and on the side surface of the gate electrode. and forming a high concentration impurity layer of one conductivity type on the low concentration impurity layer using the gate electrode and the sidewall as a mask.

〔作用〕[Effect]

本発明は、ソース・トレインを低濃度不純物層=5− と高濃度不純物層からなる2つの選択成長層を用いて形
成する。二とにより、直列寄生抵抗の著しい低減を可能
とするものである。
In the present invention, the source train is formed using two selectively grown layers consisting of a low concentration impurity layer (5-) and a high concentration impurity layer. 2, it is possible to significantly reduce the series parasitic resistance.

高濃度不純物層によりソース、トレイン領域の □シー
ト抵抗は低減され、また側壁下には、動作層のほか低濃
度不純物層が導入されているため、寄生抵抗の増加が従
来に比べ抑制される。特に、エンハンスメント型FET
においては、動作層の抵抗が大てあり、低濃度不純物層
導入による抵抗の低減効果は大きい。
The high-concentration impurity layer reduces the sheet resistance of the source and train regions, and since a low-concentration impurity layer is introduced under the sidewalls in addition to the active layer, increases in parasitic resistance are suppressed compared to conventional devices. In particular, enhancement type FET
In this case, the resistance of the active layer is large, and the effect of reducing the resistance by introducing a low concentration impurity layer is large.

また、本発明ではソース・ドレインにイオン注入層を用
いていないため、短チヤネル効果の増大は生しない。
Further, in the present invention, since no ion implantation layer is used for the source/drain, the short channel effect does not increase.

〔実施例〕〔Example〕

以下に、本発明の実施例について図面を参照して説明す
る。第1図(a)〜(d)は本発明の一実施例を説明す
るために工程順に示した半導体チップの断面図である。
Embodiments of the present invention will be described below with reference to the drawings. FIGS. 1(a) to 1(d) are cross-sectional views of a semiconductor chip shown in the order of steps for explaining an embodiment of the present invention.

まず第1図(a)に示ずように、半絶縁性のG a A
 s基板6上にSiイオンを50 k e V 。
First, as shown in FIG. 1(a), a semi-insulating G a A
Si ions are applied to the s-substrate 6 at 50 keV.

ドーズjL2×1012cm−2の条件で選択的にイオ
ン注入し、CVD  S i O2膜を保護膜として8
00°Cl2O分間の熱処理を行いG a A sから
なる動作層3を形成した。次に保護膜を除去した後、ス
パッタ法を用いてタングステンシリサイド(WSl)を
GaAs動作層3及びGaAs基板6上全面に0.5μ
mの厚さに堆積した後、四フッ化炭素を用いたトライエ
ツチング法でWSlを加工し、ゲート電極1を形成した
Ions were selectively implanted at a dose of jL2 x 1012 cm-2, and a CVD SiO2 film was used as a protective film.
A heat treatment was performed for 00°CCl2O minutes to form an active layer 3 made of GaAs. Next, after removing the protective film, tungsten silicide (WSl) is applied to the entire surface of the GaAs active layer 3 and the GaAs substrate 6 to a thickness of 0.5 μm using a sputtering method.
After being deposited to a thickness of m, WSL was processed by a tri-etching method using carbon tetrafluoride to form a gate electrode 1.

次に、第1図(b)に示すようにGaAs基板6の所定
部分にSiO□膜7を形成した後、ゲート電極1及び5
i02Jl(7をマスクとして、ソース・ドレイン領域
に不純物濃度が2 X 1017cm−3である低濃度
不純物層4aをMOCVD法を用い700℃で膜厚0,
15μm選択成長することにより形成した。
Next, as shown in FIG. 1(b), after forming a SiO□ film 7 on a predetermined portion of the GaAs substrate 6, the gate electrodes 1 and 5
Using i02Jl (7) as a mask, a low concentration impurity layer 4a with an impurity concentration of 2 x 1017 cm-3 was formed in the source/drain region using the MOCVD method at 700°C with a film thickness of 0,
It was formed by selective growth of 15 μm.

次に5i02膜7を除去した後、第1図(c)に示すよ
うに、CVD法によりS i 02膜を全面に0.3μ
mの膜厚で被着した後、レジスト膜をマスクとしてCF
4を用いた異方性エツチングでSiO2膜を加工し、ゲ
ート電極1の側面のみにSiO□膜5を残した。次にこ
のレジスト膜を除去した後、ゲート電極1 、 S i
 02膜5及び5i02膜8をマスクとして2×101
8cm−3のSiを含む高濃度不純物層をMOCVD法
て膜厚0.3μm!!択成長した。
Next, after removing the 5i02 film 7, as shown in FIG.
After depositing a film with a thickness of m, CF was applied using the resist film as a mask.
The SiO 2 film was processed by anisotropic etching using 4, leaving the SiO□ film 5 only on the side surfaces of the gate electrode 1. Next, after removing this resist film, the gate electrode 1, Si
02 film 5 and 5i02 film 8 as a mask 2×101
A highly concentrated impurity layer containing 8cm-3 of Si was formed by MOCVD to a film thickness of 0.3μm! ! I grew up selectively.

最後に第1図(d)に示すように、高濃度不純物層上に
AuGe系のソース、トレイン電極を形成し、PETの
製作を完了した。
Finally, as shown in FIG. 1(d), AuGe-based source and train electrodes were formed on the high concentration impurity layer, completing the fabrication of the PET.

上述のFETのほか、従来の第3図、第4図に示されて
いるFETも製作した。第3図のF E ’rでは高濃
度不純物層4bは濃度か2×1018cm−3膜厚0.
3μmである。また、第4図のFETではイオン注入に
よる高濃度不純物層は50keV。
In addition to the above-mentioned FET, conventional FETs shown in FIGS. 3 and 4 were also manufactured. In F E'r of FIG. 3, the high concentration impurity layer 4b has a concentration of 2×10 18 cm −3 and a film thickness of 0.
It is 3 μm. Further, in the FET shown in FIG. 4, the high concentration impurity layer formed by ion implantation has a voltage of 50 keV.

7 X 1012cm−2の条件で注入した後、SiN
を保護膜として750℃、20分の熱処理を行うことに
より形成した。
After implantation under the conditions of 7 x 1012 cm-2, SiN
A protective film was formed by heat treatment at 750° C. for 20 minutes.

これらのFETを100個づつ選び、相互コンダクタン
スgmとしきい値電圧V。のゲート長依存性を調べた結
果を第2図に示す。第2図より本実施例によるFETが
従来のFETに比べて短チヤネル効果を抑えつつ高いg
mを有していることが明らかになった。
Select 100 of these FETs and calculate their mutual conductance gm and threshold voltage V. Figure 2 shows the results of investigating the gate length dependence of . Figure 2 shows that the FET according to this embodiment has a higher g while suppressing the short channel effect than the conventional FET.
It became clear that it has m.

上記の実施例では不純物層をMOCVD法を用いて選択
成長を行ったが、他にLPE、MBE等の成長方法を用
いても本発明の趣旨を逸脱するものではない。
In the above embodiment, the impurity layer was selectively grown using MOCVD, but other growth methods such as LPE and MBE may be used without departing from the spirit of the present invention.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、ソース・ドレインを低濃
度不純物層と高濃度不純物層の2種類の選択成長層を用
いて形成することにより短チヤネル効果を増大させずに
直列寄生抵抗の低減した電界効果型半導体装置か得られ
る。
As explained above, the present invention reduces the series parasitic resistance without increasing the short channel effect by forming the source/drain using two types of selectively grown layers: a low concentration impurity layer and a high concentration impurity layer. A field effect semiconductor device can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜 (d)は本発明の一実施例を説明する
ための工程順に示した半導体チップの断面図、第2図は
実施例と従来例のFET特性を示した図、第3図及び第
4図は従来のMESFETの断面図である。 1・・・ゲート電極、2a・・・ソース電極、2b・・
・ドレイン電極、3・・・動作層、4a・・・低濃度不
純物層、4b・・・高濃度不純物層、5・・・5iOz
膜、6・・・GaAs基板、7,8・・・5i02膜、
9・・・高濃度不純物層。 鱈Z図 ケ゛−戚、Ig)を沁
1(a) to 1(d) are cross-sectional views of a semiconductor chip shown in the order of steps to explain an embodiment of the present invention, FIG. 2 is a diagram showing FET characteristics of the embodiment and a conventional example, and FIG. 3 and 4 are cross-sectional views of conventional MESFETs. 1... Gate electrode, 2a... Source electrode, 2b...
- Drain electrode, 3... Operating layer, 4a... Low concentration impurity layer, 4b... High concentration impurity layer, 5... 5iOz
film, 6...GaAs substrate, 7,8...5i02 film,
9...High concentration impurity layer. Cod Z map (Ig)

Claims (2)

【特許請求の範囲】[Claims] (1)半絶縁性半導体基板に形成された一導電型半導体
動作層と、前記半導体動作層上に形成されたゲート電極
と、前記ゲート電極の側面に接して形成された一導電型
低濃度不純物層と、前記ゲート電極と所定間隔をおいて
前記低濃度不純物層上に設けられた一導電型高濃度不純
物層とを含むことを特徴とする電界効果型半導体装置。
(1) A semiconductor active layer of one conductivity type formed on a semi-insulating semiconductor substrate, a gate electrode formed on the semiconductor active layer, and a low concentration impurity of one conductivity type formed in contact with a side surface of the gate electrode. and a high concentration impurity layer of one conductivity type provided on the low concentration impurity layer at a predetermined distance from the gate electrode.
(2)半絶縁性半導体基板に一導電型半導体動作層を形
成する工程と、前記半導体動作層上にゲート電極を形成
する工程と、前記ゲート電極をマスクとし前記半導体動
作層上のソース・ドレイン領域に一導電型低濃度不純物
層を形成する工程と、前記低濃度不純物層上でかつ前記
ゲート電極の側面に絶縁膜からなる側壁を形成する工程
と、前記ゲート電極と側壁とをマスクとし前記低濃度不
純物層上に一導電型高濃度不純物層を形成する工程とを
含むことを特徴とする電界効果型半導体装置の製造方法
(2) A step of forming a semiconductor active layer of one conductivity type on a semi-insulating semiconductor substrate, a step of forming a gate electrode on the semiconductor active layer, and a step of forming a source/drain layer on the semiconductor active layer using the gate electrode as a mask. forming a low concentration impurity layer of one conductivity type in the region, forming a side wall made of an insulating film on the low concentration impurity layer and on the side surface of the gate electrode, and using the gate electrode and the side wall as a mask. A method for manufacturing a field effect semiconductor device, comprising the step of forming a high concentration impurity layer of one conductivity type on the low concentration impurity layer.
JP62117824A 1987-05-13 1987-05-13 Field effect type semiconductor device and method of manufacturing the same Expired - Lifetime JPH081910B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62117824A JPH081910B2 (en) 1987-05-13 1987-05-13 Field effect type semiconductor device and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62117824A JPH081910B2 (en) 1987-05-13 1987-05-13 Field effect type semiconductor device and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPS63281473A true JPS63281473A (en) 1988-11-17
JPH081910B2 JPH081910B2 (en) 1996-01-10

Family

ID=14721156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62117824A Expired - Lifetime JPH081910B2 (en) 1987-05-13 1987-05-13 Field effect type semiconductor device and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JPH081910B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS642370A (en) * 1987-06-24 1989-01-06 Nec Corp Field-effect type semiconductor device and manufacture thereof
JPH05326561A (en) * 1992-05-22 1993-12-10 Nec Corp Manufacture of field effect transistor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59207669A (en) * 1983-05-10 1984-11-24 Mitsubishi Electric Corp Manufacture of field effect transistor
JPS60165764A (en) * 1984-02-08 1985-08-28 Nec Corp Manufacture of compound semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59207669A (en) * 1983-05-10 1984-11-24 Mitsubishi Electric Corp Manufacture of field effect transistor
JPS60165764A (en) * 1984-02-08 1985-08-28 Nec Corp Manufacture of compound semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS642370A (en) * 1987-06-24 1989-01-06 Nec Corp Field-effect type semiconductor device and manufacture thereof
JPH05326561A (en) * 1992-05-22 1993-12-10 Nec Corp Manufacture of field effect transistor
US5298445A (en) * 1992-05-22 1994-03-29 Nec Corporation Method for fabricating a field effect transistor

Also Published As

Publication number Publication date
JPH081910B2 (en) 1996-01-10

Similar Documents

Publication Publication Date Title
JPH02253632A (en) Manufacture of field effect transistor
US4717685A (en) Method for producing a metal semiconductor field effect transistor
JPS63281473A (en) Field-effect semiconductor device and manufacture thereof
JPH012370A (en) Field effect semiconductor device and its manufacturing method
JP3034546B2 (en) Method for manufacturing field effect transistor
JPH0685286A (en) Field effect transistor and its manufacture
JP3653652B2 (en) Semiconductor device
JPS60164365A (en) Manufacture of semiconductor device
JPH081911B2 (en) Field effect type semiconductor device and method of manufacturing the same
JPH04291732A (en) Manufacture of field-effect transistor
JPS60144980A (en) Semiconductor device
JPH03283627A (en) Manufacture of field-effect semiconductor device
JPH0810701B2 (en) Method for manufacturing junction field effect transistor
JP2616032B2 (en) Method for manufacturing field effect transistor
JPH01161873A (en) Manufacture of semiconductor device
JPH0719781B2 (en) Field effect transistor
JPH028454B2 (en)
JPS59195874A (en) Manufacture of field-effect transistor
JPS60116178A (en) Semiconductor device and manufacture thereof
JPS6347982A (en) Semiconductor device
JPS62245678A (en) Manfacture of field-effect transistor
JPH01208867A (en) Semiconductor device and manufacture thereof
JPS62243371A (en) Manufacture of semiconductor device
JPH043102B2 (en)
JPS6038882A (en) Manufacture of schottky gate type field effect transistor