JPH081910B2 - Field effect type semiconductor device and method of manufacturing the same - Google Patents

Field effect type semiconductor device and method of manufacturing the same

Info

Publication number
JPH081910B2
JPH081910B2 JP62117824A JP11782487A JPH081910B2 JP H081910 B2 JPH081910 B2 JP H081910B2 JP 62117824 A JP62117824 A JP 62117824A JP 11782487 A JP11782487 A JP 11782487A JP H081910 B2 JPH081910 B2 JP H081910B2
Authority
JP
Japan
Prior art keywords
concentration impurity
impurity layer
gate electrode
layer
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62117824A
Other languages
Japanese (ja)
Other versions
JPS63281473A (en
Inventor
幹夫 金森
昌興 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP62117824A priority Critical patent/JPH081910B2/en
Publication of JPS63281473A publication Critical patent/JPS63281473A/en
Publication of JPH081910B2 publication Critical patent/JPH081910B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Junction Field-Effect Transistors (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電界効果型半導体装置及びその製造方法に関
する。
The present invention relates to a field effect semiconductor device and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

半導体装置,例えば砒化ガリウム(GaAs)を用いたシ
ョットキ障壁型電界効果トランジスタ(以下、MESFETと
称す)として、第3図に示すような構造のものが知られ
ている。第3図において、1は耐熱性のゲート電極、2a
はソース電極、2bはドレイン電極、3はGaAsからなる動
作層、4bは高濃度不純物半導体結晶層(以下高濃度不純
物層という)、5はSiO2膜、6は半絶縁性のGaAs基板で
ある。
As a semiconductor device, for example, a Schottky barrier field effect transistor (hereinafter referred to as MESFET) using gallium arsenide (GaAs), a structure shown in FIG. 3 is known. In FIG. 3, 1 is a heat-resistant gate electrode, 2a
Is a source electrode, 2b is a drain electrode, 3 is an operating layer made of GaAs, 4b is a high-concentration impurity semiconductor crystal layer (hereinafter referred to as a high-concentration impurity layer), 5 is a SiO 2 film, and 6 is a semi-insulating GaAs substrate. .

この構造を有するMESFETにおいては、高濃度不純物層
4bの存在により、ソース,ドレインの直列寄生抵抗が低
減され、高い相互コンダクタンス、低いオン抵抗が得ら
れ、FETの高速動作が可能となる。現在このようなFETも
しくはFETを用いた集積回路が製作されている。
In the MESFET having this structure, the high concentration impurity layer
The presence of 4b reduces the series parasitic resistance of the source and drain, obtains high transconductance and low on-resistance, and enables high-speed operation of the FET. At present, such FETs or integrated circuits using FETs are being manufactured.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

上述のGaAs MESFETを製作する場合、高濃度不純物層4
bは、ゲート電極及びゲート電極の側面に形成された絶
縁材からなる側壁をマスクとした選択成長によって形成
される。側壁は高濃度不純物層4bとゲート電極1が接触
しゲート電極の耐圧が減少するのを防ぐために設けてあ
る。しかし、側壁を設けたことにより、側壁下に高抵抗
の領域が生じるため、ソース,ドレインの寄生抵抗が十
分低減されない。
When manufacturing the above-mentioned GaAs MESFET, the high-concentration impurity layer 4
b is formed by selective growth using a gate electrode and a sidewall made of an insulating material formed on the side surface of the gate electrode as a mask. The side wall is provided to prevent the high-concentration impurity layer 4b and the gate electrode 1 from coming into contact with each other and preventing the breakdown voltage of the gate electrode from decreasing. However, since the side wall is provided, a high resistance region is formed under the side wall, so that the parasitic resistance of the source and drain is not sufficiently reduced.

また、高濃度不純物層4bの濃度を低くすると、ゲート
電極と高濃度不純物層が接触した場合のゲート耐圧の劣
化を防ぐことができ、側壁を用いずにFETを製作するこ
とが可能となる。しかしながら、高濃度不純物層4bのシ
ート抵抗が増加するため、この場合も寄生抵抗を十分に
低減することができなくなる。
Further, when the concentration of the high-concentration impurity layer 4b is lowered, it is possible to prevent deterioration of the gate breakdown voltage when the gate electrode and the high-concentration impurity layer are in contact with each other, and it is possible to manufacture the FET without using the side wall. However, since the sheet resistance of the high concentration impurity layer 4b increases, the parasitic resistance cannot be sufficiently reduced in this case as well.

さらに、第4図に示すように側壁下の領域の抵抗を低
減させるため、高濃度不純物層4bを形成する前にゲート
電極1のみをマスクとしてイオン注入を行ないGaAs基板
6に高濃度不純物層9を形成する方法がある。しかしな
がら、このようにイオン注入を行った場合は短チャネル
効果が顕著になり、短いゲート長のFETを製作する際
に、しきい値電圧の制御が困難となる問題がある。
Further, as shown in FIG. 4, in order to reduce the resistance of the region under the side wall, ion implantation is performed using only the gate electrode 1 as a mask before forming the high concentration impurity layer 4b, and the high concentration impurity layer 9 is formed on the GaAs substrate 6. There is a method of forming. However, when the ion implantation is performed in this way, the short channel effect becomes remarkable, and there is a problem that it becomes difficult to control the threshold voltage when manufacturing an FET having a short gate length.

本発明の目的は、短チャネル効果の増大を生じさせる
ことなくソース,ドレインの直列寄生抵抗を低減した電
界効果型半導体装置及びその製造方法を提供することに
ある。
An object of the present invention is to provide a field effect semiconductor device in which the series parasitic resistance of the source and drain is reduced without causing an increase in the short channel effect, and a manufacturing method thereof.

〔問題点を解決するための手段〕[Means for solving problems]

第1の発明の電界効果型半導体装置は、半絶縁性半導
体基板に形成された一導電型半導体動作層と、前記半導
体動作層上に形成されたゲート電極と、前記ゲート電極
の側面に接しかつ前記動作層上に形成された一導電型低
濃度不純物層と、前記低濃度不純物層上でかつ前記ゲー
ト電極の側面に形成された絶縁膜からなる側壁と、前記
側壁に接しかつ前記低濃度不純物層上に設けられた一導
電型高濃度不純物層とを含んで構成される。
A field-effect semiconductor device according to a first aspect of the present invention is a one-conductivity-type semiconductor operating layer formed on a semi-insulating semiconductor substrate, a gate electrode formed on the semiconductor operating layer, and a side surface of the gate electrode. A one-conductivity-type low-concentration impurity layer formed on the operating layer, a sidewall made of an insulating film formed on the low-concentration impurity layer and on a side surface of the gate electrode, and a low-concentration impurity layer in contact with the sidewall. And a one-conductivity-type high-concentration impurity layer provided on the layer.

第2の発明の電界効果型半導体装置の製造方法は、半
絶縁性半導体基板に不純物のイオン注入により一導電型
半導体動作層を形成する工程と、前記半導体動作層上に
ゲート電極を形成する工程と、前記ゲート電極をマスク
とし前記半導体動作層上のソース・ドレイン領域に一導
電型低濃度不純物層を形成する工程と、前記低濃度不純
物層上でかつ前記ゲート電極の側面に絶縁膜からなる側
壁を形成する工程と、前記ゲート電極と側壁とをマスク
とし前記低濃度不純物層上に一導電型高濃度不純物層を
形成する工程とを含んで構成される。
A method of manufacturing a field-effect semiconductor device according to a second aspect of the present invention comprises a step of forming a one-conductivity-type semiconductor operating layer by ion implantation of impurities into a semi-insulating semiconductor substrate, and a step of forming a gate electrode on the semiconductor operating layer. And a step of forming a one-conductivity-type low-concentration impurity layer in the source / drain regions on the semiconductor operation layer using the gate electrode as a mask, and an insulating film on the low-concentration impurity layer and on the side surface of the gate electrode. It includes a step of forming a side wall and a step of forming a one-conductivity-type high-concentration impurity layer on the low-concentration impurity layer by using the gate electrode and the side wall as a mask.

〔作用〕[Action]

本発明は、ソース・ドレインを低濃度不純物層と高濃
度不純物層からなる2つの選択成長層を用いて形成する
ことにより、直列寄生抵抗の著しい低減を可能とするも
のである。
The present invention makes it possible to significantly reduce the series parasitic resistance by forming the source / drain by using two selective growth layers including a low concentration impurity layer and a high concentration impurity layer.

高濃度不純物層によりソース,ドレイン領域のシート
抵抗は低減され、また側壁下には、動作層のほか低濃度
不純物層が導入されているため、寄生抵抗の増加が従来
に比べ抑制される。特に、エンハンスメント型FETにお
いては、動作層の抵抗が大であり、低濃度不純物層導入
による抵抗の低減効果は大きい。
Since the high-concentration impurity layer reduces the sheet resistance of the source and drain regions, and the low-concentration impurity layer is introduced below the side wall in addition to the operating layer, an increase in parasitic resistance is suppressed as compared with the conventional case. Particularly, in the enhancement type FET, the resistance of the operating layer is large, and the effect of reducing the resistance by introducing the low concentration impurity layer is large.

また、本発明ではソース・ドレインにイオン注入層を
用いていないため、短チャネル効果の増大は生じない。
Further, in the present invention, since the ion implantation layer is not used for the source / drain, the short channel effect does not increase.

〔実施例〕〔Example〕

以下に、本発明の実施例について図面を参照して説明
する。第1図(a)〜(d)は本発明の一実施例を説明
するために工程順に示した半導体チップの断面図であ
る。
Embodiments of the present invention will be described below with reference to the drawings. FIGS. 1A to 1D are cross-sectional views of a semiconductor chip shown in the order of steps for explaining an embodiment of the present invention.

まず第1図(a)に示すように、半絶縁性のGaAs基板
6上にSiイオンを50keV,ドーズ量2×1012cm-2の条件で
選択的にイオン注入し、CVD SiO2膜を保護膜として800
℃,20分間の熱処理を行いGaAsからなる動作層3を形成
した。次に保護膜を除去した後、スパッタ法を用いてタ
ングステンシリサイド(WS1)をGaAs動作層3及びGaAs
基板6上全面に0.5μmの厚さに堆積した後、四フッ化
炭素を用いたドライエッチング法でWS1を加工し、ゲー
ト電極1を形成した。
First, as shown in FIG. 1A, Si ions are selectively ion-implanted on a semi-insulating GaAs substrate 6 under the conditions of 50 keV and a dose amount of 2 × 10 12 cm -2 to form a CVD SiO 2 film. 800 as a protective film
Heat treatment was performed at 20 ° C. for 20 minutes to form an operating layer 3 made of GaAs. Next, after removing the protective film, the tungsten silicide (WS 1 ) is deposited on the GaAs operating layer 3 and the GaAs by sputtering.
After depositing a thickness of 0.5 μm on the entire surface of the substrate 6, WS 1 was processed by a dry etching method using carbon tetrafluoride to form a gate electrode 1.

次に、第1図(b)に示すようにGaAs基板6の所定部
分にSiO2膜7を形成した後、ゲート電極1及びSiO2膜7
をマスクとして、ソース・ドレイン領域に不純物濃度が
2×1017cm-3である低濃度不純物層4aをMOCVD法を用い7
00℃で膜厚0.15μm選択成長することにより形成した。
Next, as shown in FIG. 1B, after the SiO 2 film 7 is formed on a predetermined portion of the GaAs substrate 6, the gate electrode 1 and the SiO 2 film 7 are formed.
Using the mask as a mask, a low-concentration impurity layer 4a having an impurity concentration of 2 × 10 17 cm -3 is formed in the source / drain regions by MOCVD.
It was formed by selective growth of a film thickness of 0.15 μm at 00 ° C.

次にSiO2膜7を除去した後、第1図(c)に示すよう
に、CVD法によりSiO2膜を全面に0.3μmの膜厚で被着し
た後、レジスト膜をマスクとしてCF4を用いた異方性エ
ッチングでSiO2膜を加工し、ゲート電極1の側面のみに
SiO2膜5を残した。次にこのレジスト膜を除去した後、
ゲート電極1,SiO2膜5及びSiO2膜8をマスクとして2×
1018cm-3のSiを含む高濃度不純物層をMOCVD法で膜厚0.3
μm選択成長した。
Next, after removing the SiO 2 film 7, as shown in FIG. 1C, a SiO 2 film is deposited on the entire surface by a CVD method to a film thickness of 0.3 μm, and then CF 4 is used with the resist film as a mask. The SiO 2 film is processed by the anisotropic etching used and only the side surface of the gate electrode 1 is processed.
The SiO 2 film 5 is left. Next, after removing this resist film,
2 × using the gate electrode 1, SiO 2 film 5 and SiO 2 film 8 as a mask
A high-concentration impurity layer containing Si of 10 18 cm -3 was formed by MOCVD to a thickness of 0.3.
μm was selectively grown.

最後に第1図(d)に示すように、高濃度不純物層上
にAuGe系のソース,ドレイン電極を形成し、FETの製作
を完了した。
Finally, as shown in FIG. 1D, AuGe-based source and drain electrodes were formed on the high-concentration impurity layer, and the fabrication of the FET was completed.

上述のFETのほか、従来の第3図、第4図に示されて
いるFETも製作した。第3図のFETでは高濃度不純物層4b
は濃度が2×1018cm-3,膜厚0.3μmである。また、第
4図のFETではイオン注入による高濃度不純物層は50ke
V,7×1012cm-2の条件で注入した後、SiNを保護膜厚とし
て750℃,20分の熱処理を行うことにより形成した。
In addition to the above-mentioned FET, conventional FETs shown in FIGS. 3 and 4 were also manufactured. In the FET of FIG. 3, the high-concentration impurity layer 4b
Has a concentration of 2 × 10 18 cm -3 and a film thickness of 0.3 μm. Moreover, in the FET of FIG. 4, the high concentration impurity layer by ion implantation is 50 ke
After implantation under the condition of V, 7 × 10 12 cm -2 , SiN was formed as a protective film by heat treatment at 750 ° C. for 20 minutes.

これらのFETを100個づつ選び、相互コンダクタンスgm
としきい値電圧VTのゲート長依存性を調べた結果を第2
図に示す。第2図より本実施例によるFETが従来のFETに
比べて短チャネル効果を抑えつつ高いgmを有しているこ
とが明らかになった。
Select each 100 of these FETs to find the mutual conductance gm
The second is the result of examining the gate length dependence of the threshold voltage V T and
Shown in the figure. It is clear from FIG. 2 that the FET according to this embodiment has a high gm while suppressing the short channel effect as compared with the conventional FET.

上記の実施例では不純物層をMOCVD法を用いて選択成
長を行ったが、他にLPE,MBE等の成長方法を用いても本
発明の趣旨を逸脱するものではない。
Although the impurity layer is selectively grown by using the MOCVD method in the above-mentioned embodiments, it does not depart from the gist of the present invention to use other growth methods such as LPE and MBE.

〔発明の効果〕〔The invention's effect〕

以上説明したように本発明は、ソース・ドレインを低
濃度不純物層と高濃度不純物層の2種類の選択成長層を
用いて形成することにより短チャネル効果を増大させず
に直列寄生抵抗の低減した電界効果型半導体装置が得ら
れる。
As described above, the present invention reduces the series parasitic resistance without increasing the short channel effect by forming the source / drain using the two types of selective growth layers of the low concentration impurity layer and the high concentration impurity layer. A field effect semiconductor device can be obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図(a)〜(d)は本発明の一実施例を説明するた
めの工程順に示した半導体チップの断面図、第2図は実
施例と従来例のFET特性を示した図、第3図及び第4図
は従来のMESFETの断面図である。 1……ゲート電極、2a……ソース電極、2b……ドレイン
電極、3……動作層、4a……低濃度不純物層、4b……高
濃度不純物層、5……SiO2膜、6……GaAs基板、7,8…
…SiO2膜、9……高濃度不純物層。
1 (a) to 1 (d) are cross-sectional views of a semiconductor chip shown in the order of steps for explaining an embodiment of the present invention, and FIG. 2 is a view showing FET characteristics of the embodiment and a conventional example, 3 and 4 are sectional views of a conventional MESFET. 1 ... Gate electrode, 2a ... Source electrode, 2b ... Drain electrode, 3 ... Operating layer, 4a ... Low concentration impurity layer, 4b ... High concentration impurity layer, 5 ... SiO 2 film, 6 ... GaAs substrate, 7,8 ...
… SiO 2 film, 9 …… High-concentration impurity layer.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】半絶縁性半導体基板に形成された一導電型
半導体動作層と、前記半導体動作層上に形成されたゲー
ト電極と、前記ゲート電極の側面に接しかつ前記動作層
上に形成された一導電型低濃度不純物層と、前記低濃度
不純物層上でかつ前記ゲート電極の側面に形成された絶
縁膜からなる側壁と、前記側壁に接しかつ前記低濃度不
純物層上に設けられた一導電型高濃度不純物層とを含む
ことを特徴とする電界効果型半導体装置。
1. A one-conductivity-type semiconductor operating layer formed on a semi-insulating semiconductor substrate, a gate electrode formed on the semiconductor operating layer, a side surface of the gate electrode and formed on the operating layer. A conductive type low-concentration impurity layer, a sidewall made of an insulating film formed on the low-concentration impurity layer and on a side surface of the gate electrode, and a sidewall provided in contact with the sidewall and on the low-concentration impurity layer. A field effect semiconductor device comprising: a conductive high concentration impurity layer.
【請求項2】半絶縁性半導体基板に不純物のイオン注入
により一導電型半導体動作層を形成する工程と、前記半
導体動作層上にゲート電極を形成する工程と、前記ゲー
ト電極をマスクとし前記半導体動作層上のソース・ドレ
イン領域に一導電型低濃度不純物層を形成する工程と、
前記低濃度不純物層上でかつ前記ゲート電極の側面に絶
縁膜からなる側壁を形成する工程と、前記ゲート電極と
側壁とをマスクとし前記低濃度不純物層上に一導電型高
濃度不純物層を形成する工程とを含むことを特徴とする
電界効果型半導体装置の製造方法。
2. A step of forming a one conductivity type semiconductor operating layer by ion implantation of impurities into a semi-insulating semiconductor substrate, a step of forming a gate electrode on the semiconductor operating layer, and the semiconductor using the gate electrode as a mask. A step of forming a one conductivity type low concentration impurity layer in the source / drain regions on the operating layer,
Forming a side wall made of an insulating film on the low concentration impurity layer and on the side surface of the gate electrode; and forming one conductivity type high concentration impurity layer on the low concentration impurity layer using the gate electrode and the side wall as a mask. A method of manufacturing a field effect semiconductor device, comprising:
JP62117824A 1987-05-13 1987-05-13 Field effect type semiconductor device and method of manufacturing the same Expired - Lifetime JPH081910B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62117824A JPH081910B2 (en) 1987-05-13 1987-05-13 Field effect type semiconductor device and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62117824A JPH081910B2 (en) 1987-05-13 1987-05-13 Field effect type semiconductor device and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPS63281473A JPS63281473A (en) 1988-11-17
JPH081910B2 true JPH081910B2 (en) 1996-01-10

Family

ID=14721156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62117824A Expired - Lifetime JPH081910B2 (en) 1987-05-13 1987-05-13 Field effect type semiconductor device and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JPH081910B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH081911B2 (en) * 1987-06-24 1996-01-10 日本電気株式会社 Field effect type semiconductor device and method of manufacturing the same
JPH05326561A (en) * 1992-05-22 1993-12-10 Nec Corp Manufacture of field effect transistor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59207669A (en) * 1983-05-10 1984-11-24 Mitsubishi Electric Corp Manufacture of field effect transistor
JPS60165764A (en) * 1984-02-08 1985-08-28 Nec Corp Manufacture of compound semiconductor device

Also Published As

Publication number Publication date
JPS63281473A (en) 1988-11-17

Similar Documents

Publication Publication Date Title
JPH11354541A (en) Semiconductor device and its manufacture
JPH081910B2 (en) Field effect type semiconductor device and method of manufacturing the same
JPH081911B2 (en) Field effect type semiconductor device and method of manufacturing the same
JPS616871A (en) Manufacture of field-effect transistor
JP3035917B2 (en) Field effect type semiconductor device and method of manufacturing the same
JPS594083A (en) Manufacture of semiconductor device
JP3653652B2 (en) Semiconductor device
JP2867422B2 (en) Field effect transistor and method for manufacturing the same
JPS60164365A (en) Manufacture of semiconductor device
JPH012370A (en) Field effect semiconductor device and its manufacturing method
JP2728427B2 (en) Field effect transistor and its manufacturing method
JPH0622247B2 (en) Field effect semiconductor device
JPH03283627A (en) Manufacture of field-effect semiconductor device
JPS6142963A (en) Manufacture of semiconductor device
JPH0824132B2 (en) Method for manufacturing field effect transistor
JPH0257340B2 (en)
JPH01155665A (en) Semiconductor integrated circuit
JPH028454B2 (en)
JPS62206884A (en) Field-effect type semiconductor device and manufacture thereof
JPS6038882A (en) Manufacture of schottky gate type field effect transistor
JPH0467338B2 (en)
JPS62243371A (en) Manufacture of semiconductor device
JPS62245678A (en) Manfacture of field-effect transistor
JPH01161873A (en) Manufacture of semiconductor device
JPS62206883A (en) Manufacture of field-effect transistor