JPS62206884A - Field-effect type semiconductor device and manufacture thereof - Google Patents
Field-effect type semiconductor device and manufacture thereofInfo
- Publication number
- JPS62206884A JPS62206884A JP4865286A JP4865286A JPS62206884A JP S62206884 A JPS62206884 A JP S62206884A JP 4865286 A JP4865286 A JP 4865286A JP 4865286 A JP4865286 A JP 4865286A JP S62206884 A JPS62206884 A JP S62206884A
- Authority
- JP
- Japan
- Prior art keywords
- gate electrode
- substrate
- source
- conductivity type
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004065 semiconductor Substances 0.000 title claims description 17
- 230000005669 field effect Effects 0.000 title claims description 12
- 238000004519 manufacturing process Methods 0.000 title claims description 8
- 239000000758 substrate Substances 0.000 claims abstract description 40
- 230000004888 barrier function Effects 0.000 claims abstract description 17
- 238000000034 method Methods 0.000 claims description 15
- 150000001875 compounds Chemical class 0.000 claims description 6
- 239000012535 impurity Substances 0.000 claims description 6
- 150000002500 ions Chemical class 0.000 claims description 6
- 238000005468 ion implantation Methods 0.000 abstract description 9
- 229910001218 Gallium arsenide Inorganic materials 0.000 abstract description 4
- 238000002347 injection Methods 0.000 abstract description 3
- 239000007924 injection Substances 0.000 abstract description 3
- -1 tungsten nitride Chemical class 0.000 abstract description 3
- 230000006866 deterioration Effects 0.000 abstract description 2
- 238000004904 shortening Methods 0.000 abstract description 2
- 229910052721 tungsten Inorganic materials 0.000 abstract description 2
- 239000010937 tungsten Substances 0.000 abstract description 2
- 230000007423 decrease Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 3
- 238000001312 dry etching Methods 0.000 description 3
- 238000005036 potential barrier Methods 0.000 description 3
- 238000002513 implantation Methods 0.000 description 2
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 2
- DDFHBQSCUXNBSA-UHFFFAOYSA-N 5-(5-carboxythiophen-2-yl)thiophene-2-carboxylic acid Chemical compound S1C(C(=O)O)=CC=C1C1=CC=C(C(O)=O)S1 DDFHBQSCUXNBSA-UHFFFAOYSA-N 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Landscapes
- Junction Field-Effect Transistors (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の技術分野〕
本発明は、半絶縁性化合物半導体基板を用いた電界効果
型半導体装置とその製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a field effect semiconductor device using a semi-insulating compound semiconductor substrate and a method for manufacturing the same.
半絶縁性GaAs基板を用いたショットキー・ゲート型
電界効果トランジスタ(MESFET)として、第4図
に示すものが知られている1図において、31は半絶縁
性GaAs基板であり、その表面部にn型動作層32が
形成され、この動作層32とショットキー障壁を形成す
るゲートf4極33が形成されている。The Schottky gate field effect transistor (MESFET) using a semi-insulating GaAs substrate is shown in FIG. An n-type operating layer 32 is formed, and a gate f4 pole 33 forming a Schottky barrier with this operating layer 32 is formed.
ロ+型ソース領域34及びドレイン領域35はイオン注
入によりゲート電極33に自己整合的に形成されており
、それぞれの表面にソース11iIi@36及びドレイ
ン電極37が形成されている。このようなGaAg −
MESFETが微細化すると、ソース電極36、ドレイ
ン電極37間の間隔が狭くなり、この間に高電界が加わ
る効果と、ソース領域34とドレイン領域35が極めて
近接する効果とが相まって、チャネルである動作[32
を流れる電流の他に基板31を流れる電流が増大する。The R+ type source region 34 and drain region 35 are formed in a self-aligned manner with the gate electrode 33 by ion implantation, and a source 11iIi@36 and a drain electrode 37 are formed on their respective surfaces. Such GaAg −
As MESFETs are miniaturized, the spacing between the source electrode 36 and drain electrode 37 narrows, and the effect of applying a high electric field between them and the effect of the source region 34 and drain region 35 being extremely close to each other combine to improve channel operation [ 32
In addition to the current flowing through the substrate 31, the current flowing through the substrate 31 increases.
この結果、MESFETのしきい値電圧の低下、ドレイ
ン・コンダクタンスの増大、更に相互コンダクタンスの
低下を招くという問題があった。As a result, there are problems in that the threshold voltage of the MESFET decreases, the drain conductance increases, and the mutual conductance decreases.
特に半絶縁性基板を用いるNESFETは、導電性基板
を用いるS、t −MESFET等と異なり、ソース・
ドレイン領域と基板の間のポテンシャル・バリアが低い
ため、短チヤネル化に伴う上記の問題が顕著に現れる。In particular, NESFETs that use semi-insulating substrates differ from S, t-MESFETs, etc. that use conductive substrates in that they
Since the potential barrier between the drain region and the substrate is low, the above-mentioned problems associated with shortening the channel become noticeable.
そこで第5図、第6図のようにソース・ドレイン領域の
周囲にポテンシャルバリアとなる2層を形成する構造が
提案されている。ところが第5図のような構造ではソー
ス・ドレイン領域14,15とp型pR16,17との
接合面積が大きいため基板に対する容量が大きいという
連立があり、また提案者らが先に提案(特願昭59−2
31711号)した第6図のような構造ではp壁領域1
6.17かきねめで小さいためにバリアとしての効果が
不充分であるという問題があった。Therefore, a structure has been proposed in which two layers serving as a potential barrier are formed around the source/drain regions as shown in FIGS. 5 and 6. However, in the structure shown in FIG. 5, the junction area between the source/drain regions 14, 15 and the p-type pRs 16, 17 is large, so the capacitance with respect to the substrate is large. Showa 59-2
31711), the p-wall region 1
There was a problem that the barrier effect was insufficient due to the small size of 6.17 mm.
本発明は上記の点に鑑み、微細化に伴う特性劣化の問題
を解決した。半絶縁性化合物半導体基板を用いた電界効
果型半導体装置とその製造方法を提供することを目的と
する。In view of the above points, the present invention has solved the problem of characteristic deterioration due to miniaturization. An object of the present invention is to provide a field effect semiconductor device using a semi-insulating compound semiconductor substrate and a method for manufacturing the same.
本発明にかかる電界効果型半導体装置は、半絶縁性化合
物半導体基板表面部に第1導電型の動作層が形成され、
その表面に形成されたゲート電極と自己整合的に動作層
と同じ導電型で深く且つ高濃度のソース・ドレイン領域
が形成された構造において、ゲート電極側部下方の第1
導電型層と基板との接合部に第2導電型のバリア層をソ
ース・ドレイン領域よりも深く形成することを特徴とす
る。A field-effect semiconductor device according to the present invention includes an active layer of a first conductivity type formed on a surface portion of a semi-insulating compound semiconductor substrate,
In a structure in which deep and highly doped source/drain regions of the same conductivity type as the active layer are formed in self-alignment with the gate electrode formed on the surface, the first region below the side of the gate electrode is formed.
The method is characterized in that a barrier layer of the second conductivity type is formed deeper than the source/drain regions at the junction between the conductivity type layer and the substrate.
またこのような電界効果型半導体装置を製造する本発明
の方法は、ゲート電極をマスクとして不純物のスオン注
入により、第1導電型のソース・ドレイン領域を形成し
た後、ゲート電極の側壁に選択的に絶縁膜を形成したの
ち、別の絶縁膜を形成し、さらに側壁部分のみをとり除
いてこの開口部より第1導電型層と基板の接合部に第2
導電型によるバリア層をソース・ドレイン領域よりも深
く形成することを特徴とする。In addition, the method of the present invention for manufacturing such a field effect semiconductor device includes forming source/drain regions of the first conductivity type by ion implantation of impurities using the gate electrode as a mask, and then selectively implanting the source/drain regions on the sidewalls of the gate electrode. After forming an insulating film on the first conductivity type layer, another insulating film is formed, and then only the side wall portion is removed and a second conductivity type layer is formed through this opening at the junction between the first conductivity type layer and the substrate.
It is characterized by forming a barrier layer depending on the conductivity type deeper than the source/drain region.
また側壁形成の工程はソース・ドレイン領域形成の前で
もよい。Further, the step of forming the sidewalls may be performed before forming the source/drain regions.
本発明にかかる電界効果型半導体装置は、微細化した場
合にもチャネル領域である動作層の下の半絶縁性基板を
通って流れる電流を制御することができる。この結果、
短チヤネル化に伴うしきい値電圧の低下、ドレイン・コ
ンダクタンスの増大。The field effect semiconductor device according to the present invention can control the current flowing through the semi-insulating substrate under the active layer, which is the channel region, even when miniaturized. As a result,
Decrease in threshold voltage and increase in drain conductance due to shorter channels.
相互コンダクタンスの低下を防止して高性能の電界効果
型半導体装置を得ることができる6また本発明では、基
板電流を抑制するバリア層が、N中層と接触する面積が
小さく、シかもバリアとしての効果を十分発揮するのに
必要な領域を確保することができる。従って本発明の素
子及び方法は高性能な素子を実現することができ、集積
回路に適用すれば、高速動作化、高集積化が可能である
。A high-performance field-effect semiconductor device can be obtained by preventing a decrease in mutual conductance.6 In addition, in the present invention, the barrier layer that suppresses substrate current has a small area in contact with the N intermediate layer, so that it can be easily used as a barrier. It is possible to secure the area necessary to fully demonstrate the effect. Therefore, the device and method of the present invention can realize a high-performance device, and when applied to an integrated circuit, high-speed operation and high integration are possible.
以下本発明の詳細な説明する。 The present invention will be explained in detail below.
第1図は一実施例のGaAs −MESFETである。FIG. 1 shows an example of a GaAs-MESFET.
11は抵抗率10’〜101Ω・1程度の半絶縁性Ga
As基板であり、その表面部にチャネル領域となるn型
動作層12が形成され、その表面に4000人の窒化タ
ングステン(vNX)からなるショットキー・ゲートt
l[13が形成されている。ゲート電極13を挟んで基
板の両側には、イオン注入により動作M12より高濃度
で深いn十型ソース領域14及びドレイン領域15が形
成されている。これらソース・ドレイン領域14゜15
のガート電極に近接した部分の基板11との境界部には
、ソース・ドレイン領域14.15から基板11へのキ
ャリア注入(この実施例では電子注入)に対して高い障
壁を形成するp型バリア層16,17が形成されている
。 18.19はそれぞれソース・ドレイン電極である
。11 is semi-insulating Ga with a resistivity of about 10' to 101Ω・1
An n-type active layer 12 that becomes a channel region is formed on the surface of the As substrate, and a Schottky gate made of 4,000 tungsten nitride (vNX) is formed on the surface.
l[13 is formed. On both sides of the substrate with the gate electrode 13 in between, an n+ type source region 14 and a drain region 15, which are higher in concentration and deeper than the operation M12, are formed by ion implantation. These source/drain regions 14°15
At the boundary with the substrate 11 in the vicinity of the guard electrode, there is a p-type barrier that forms a high barrier against carrier injection (electron injection in this embodiment) from the source/drain region 14.15 into the substrate 11. Layers 16 and 17 are formed. 18 and 19 are source and drain electrodes, respectively.
このようなMESFETを製造する実施例を、第2図(
a)〜(e)を参照して次に説明する。まず、半絶縁性
GaAs基板11に、Siイオンを50KeV、2.O
X 10”/at!の条件でイオン注入してn型動作層
12を形成する。An example of manufacturing such a MESFET is shown in Figure 2 (
This will be explained next with reference to a) to (e). First, Si ions were applied to a semi-insulating GaAs substrate 11 at 50 KeV and 2. O
The n-type operating layer 12 is formed by ion implantation under the condition of X 10''/at!.
次にこの基板上にVNx膜を4000人形成し、公知の
フォトリソグラフィ技術及びドライエツチング技術を用
いて1.0. [のゲート電極13を形成する。Next, 4,000 VNx films were formed on this substrate, and a film of 1.0 was formed using known photolithography and dry etching techniques. Gate electrode 13 is formed.
このゲート電極をマスクとしてさらにSiイオンを18
0KeV、 3 X 10” / alの条件でイオン
注入し、ソース・ドレイン領域14.15を形成する(
第2図(a)) 、 この後、基板全面にプラズマC
VDによりSiO□膜を4000人堆積しIIIIEな
どの異方性ドライエツチング法によりこのSin、膜を
膜厚相当分だけエツチングする。プラズマCVDによる
5iOzll’2は等方的に堆積しゲート電極13の側
壁にも同じ膜厚だけ形成されるから、これを異方性ドラ
イエツチングで全面エツチングすることによりゲート電
極13の側壁にのみ選択的に5i02膜20を残すこと
ができる(第2図(b))。Using this gate electrode as a mask, 18 Si ions were further applied.
Ion implantation is performed under the conditions of 0 KeV and 3 x 10"/al to form source/drain regions 14.15 (
Figure 2(a)) After this, plasma C is applied to the entire surface of the substrate.
A 4000 SiO□ film is deposited by VD, and the SiO film is etched by an amount corresponding to the film thickness by an anisotropic dry etching method such as IIIE. The 5iOzll'2 deposited by plasma CVD is isotropically deposited and the same film thickness is formed on the side walls of the gate electrode 13, so by etching the entire surface using anisotropic dry etching, it is selectively etched only on the side walls of the gate electrode 13. In general, the 5i02 film 20 can be left (FIG. 2(b)).
続いてプラズマCVDにより基板全面にSiN膜を40
00人堆積し、公知のレジストを用いた平坦化法とエッ
チバック法により、ゲート電極及びSin、側壁表面を
露出させる(第2図(C))。 ここで21は残された
SiN膜である。Next, a SiN film with a thickness of 40% is deposited on the entire surface of the substrate by plasma CVD.
The gate electrode, the Sin, and the sidewall surfaces are exposed by a planarization method and an etchback method using a known resist (FIG. 2(C)). Here, 21 is the remaining SiN film.
次にフッ化アンモニウムを用いた選択ウェットエッチに
より5108側壁2oを除去し、この開口部からp型不
純物としてたとえばZnイオンを500KeV5X10
”/aJでイオン注入する(第2図(d) )。Next, the 5108 sidewall 2o is removed by selective wet etching using ammonium fluoride, and Zn ions, for example, are injected at 500KeV5X10 as a p-type impurity through this opening.
”/aJ (Fig. 2(d)).
ソース・ドレイン領域14.15の一部にもZnイオン
が注入されているが、注入量がSLのそれに比べて小さ
いためと、高エネルギーの注入によって表面側は特に低
濃度となるために、レース・ドレイン領域14.15の
濃度低下による寄生抵抗の増大はほとんどない。またイ
オン注入の横方向散乱により動作層と基板の接合部の一
部にもp層が形成されるが同様の理由により問題はない
。Zn ions are also implanted into a part of the source/drain regions 14.15, but the implantation amount is smaller than that of SL, and the high-energy implantation results in a particularly low concentration on the surface side. - There is almost no increase in parasitic resistance due to a decrease in concentration in the drain regions 14 and 15. Further, a p-layer is also formed in a part of the junction between the active layer and the substrate due to lateral scattering due to ion implantation, but there is no problem for the same reason.
この後、SiN膜21とはく離し、注入不純物の活性化
のアニールを^S雰囲気中のキャップレス法により80
0〜850℃で行い、AuGa合金によるソース・ドレ
イン電極18,19を形成して、セルファライン型Ga
As −MESFETが完成する(第2図(e))。After that, the SiN film 21 is peeled off, and the implanted impurity is activated by annealing for 80 minutes using a capless method in a S atmosphere.
The self-line type Ga
The As-MESFET is completed (Fig. 2(e)).
本実施例によるNHSFETと、p型バリア層を形成し
ない従来型MESFETを同様の条件で作製し、その性
能を比較したところ、ゲート長を4111mからIIm
に縮小した場合の閾値電圧のシフト量は従来型が400
+mVであるのに対し1本実施例では100mVと改善
された。この値は、n十周囲の大部分をp型層で囲んだ
第5図のような実施例で得られた値60+aVに比べる
と、この点ではやや性能が劣る。ところが本実施例によ
るMESFETで構成した回路のゲート一段あたりの遅
延時間は35psであり、第5図のようにp層でn十周
囲の大部分を囲んだ構造に比べ約20%高速となってい
る。これは基板に対する容量が減少したためである。さ
らにp型バリア層のない従来構造と比較すると、遅延時
間の向上は40%にものぼる。また、n十周囲のごく一
部の基板との接面に浅くpを形成する構造(第6図)で
は閾値電圧シフト量200朧V、遅延時間は40psで
あり、本実施例においてはこの構造よりも高い性能が得
られた。The NHSFET according to this example and a conventional MESFET without a p-type barrier layer were fabricated under similar conditions and their performances were compared.
The shift amount of the threshold voltage when reduced to 400 for the conventional type
+mV, whereas in this example it was improved to 100mV. This value is slightly inferior in performance in this respect to the value 60+aV obtained in the example shown in FIG. However, the delay time per gate stage of the circuit configured with MESFETs according to this example is 35 ps, which is approximately 20% faster than the structure in which most of the periphery of n0 is surrounded by a p layer as shown in FIG. There is. This is because the capacitance relative to the substrate has decreased. Furthermore, compared to a conventional structure without a p-type barrier layer, the delay time is improved by as much as 40%. In addition, in the structure (Fig. 6) in which a shallow p is formed on a small part of the contact surface with the substrate around n10, the threshold voltage shift amount is 200 V and the delay time is 40 ps. Higher performance was obtained.
本発明は第慕図(a)(b)で説明したソース・ドレイ
ン領域14.15を形成するイオン注入工程と、ゲート
電極側壁形成の工程を逆にすることができる。In the present invention, the ion implantation process for forming the source/drain regions 14 and 15 and the process for forming the sidewalls of the gate electrode described in FIGS. 3A and 3B can be reversed.
その場合には第3図に示されるようにp型領域が広がり
、ポテンシャルバリアとしての効力が強まる。この方法
によればチャネル領域のn型層12と基板11との境界
部分にp型層16が形成されるように、p型層形成のた
めのイオン注入の加速電圧、ドーズ量さらにイオン種を
選ぶことにより、高性能PETを実現することが可能と
なる。In that case, as shown in FIG. 3, the p-type region expands and becomes more effective as a potential barrier. According to this method, the accelerating voltage, dose, and ion species of ion implantation for forming the p-type layer are adjusted so that the p-type layer 16 is formed at the boundary between the n-type layer 12 and the substrate 11 in the channel region. Depending on the selection, it becomes possible to realize high-performance PET.
第1図は本発明の一実施例のGaAs −MESFET
を示す図、第2図(a)〜(e)はその製造工程を説明
するための図、第3図は他の実施例のGaAs −ME
SFETを示す図、第4@、第5図及び第6図は従来の
GaAs−MESFETを示す図である。
11・・・半絶縁性GaAs基板、12・・・n型動作
層、13・・・ショットキー・ゲート電極、14・・・
n生型ソース領域、15・・・n中型ドレイン領域、
16.17・・・p型バリア層。
18・・・ソースff電極、19・・・ドレインil!
極、20・・・SiO□膜、21・・・SiN膜、22
・・・N型層。
代理人 弁理士 則 近 憲 佑
同 竹花喜久男
ず1
第1図
l
第2図
第2図
第3図FIG. 1 shows a GaAs-MESFET according to an embodiment of the present invention.
2(a) to 2(e) are diagrams for explaining the manufacturing process, and FIG. 3 is a diagram showing the GaAs-ME of another example.
Figures 4@, 5, and 6 showing SFETs are diagrams showing conventional GaAs-MESFETs. DESCRIPTION OF SYMBOLS 11... Semi-insulating GaAs substrate, 12... N-type operating layer, 13... Schottky gate electrode, 14...
n raw type source region, 15...n medium type drain region,
16.17...p-type barrier layer. 18... Source ff electrode, 19... Drain il!
Pole, 20...SiO□ film, 21...SiN film, 22
...N-type layer. Agent Patent Attorney Nori Ken Yudo Takehana Kikuozu 1 Figure 1 l Figure 2 Figure 2 Figure 3
Claims (4)
形成された第1導電型の動作層と、この動作層上に形成
されたゲート電極と、このゲート電極を挟んで前記基板
表面部に前記動作層より深く形成された第1導電型で高
不純物濃度のソース及びドレン領域を備え、前記ゲート
電極側部下方の第1導電型の層と前記基板の境界部に、
第2導電型のバリア層をソースドレイン領域より深く形
成したことを特徴とする電界効果型半導体装置。(1) A semi-insulating compound semiconductor substrate, a first conductivity type active layer formed on the surface of this substrate, a gate electrode formed on this active layer, and the substrate surface with this gate electrode in between. a first conductivity type high impurity concentration source and drain region formed deeper than the active layer, at a boundary between the first conductivity type layer below the gate electrode side and the substrate;
A field effect semiconductor device characterized in that a barrier layer of a second conductivity type is formed deeper than a source/drain region.
s基板であり、前記ゲート電極は動作層との間でショッ
トキー障壁を形成する特許請求の範囲第1項記載の電界
効果型半導体装置。(2) The semi-insulating compound semiconductor substrate is semi-insulating GaA
2. The field effect semiconductor device according to claim 1, wherein the gate electrode is an S substrate and forms a Schottky barrier between the gate electrode and the active layer.
の動作層を形成する工程と前記動作層上にゲート電極を
形成する工程と、前記ゲート電極をマスクとして第1導
電型で高不純物濃度のソース及びドレイン領域を形成す
る工程と、ゲート電極に側壁を形成したのち、別の絶縁
膜を形成し、さらにゲート電極と側壁を上部を露出させ
たのち側壁をとり除いてこの部分を開口部をとする工程
と、別の不純物のイオン注入により前記ゲート電極側部
下方の第1導電型と基板との接合部にソース及びドレイ
ン領域よりも深く第2導電型のバリア層を形成する工程
とを備えたことを特徴とする電界効果型半導体装置の製
造方法。(3) forming an active layer of the first conductivity type on the surface of the semi-insulating compound semiconductor substrate; forming a gate electrode on the active layer; After forming source and drain regions with impurity concentration and forming sidewalls on the gate electrode, another insulating film is formed, and after exposing the upper part of the gate electrode and sidewalls, the sidewalls are removed to form this part. A barrier layer of the second conductivity type is formed deeper than the source and drain regions at the junction between the first conductivity type and the substrate below the side of the gate electrode by forming an opening and implanting ions of another impurity. A method for manufacturing a field effect semiconductor device, comprising the steps of:
域形成の前に行ない、ゲート電極及びゲート電極側壁を
マスクとしてソース・ドレイン領域を形成する特許請求
第3項記載の電界効果型半導体装置の製造方法。(4) Manufacturing the field effect semiconductor device according to claim 3, wherein the step of forming the gate sidewall is performed before forming the source/drain region, and the source/drain region is formed using the gate electrode and the gate electrode sidewall as a mask. Method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61048652A JPH07123128B2 (en) | 1986-03-07 | 1986-03-07 | Field-effect semiconductor device and method of manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61048652A JPH07123128B2 (en) | 1986-03-07 | 1986-03-07 | Field-effect semiconductor device and method of manufacturing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62206884A true JPS62206884A (en) | 1987-09-11 |
JPH07123128B2 JPH07123128B2 (en) | 1995-12-25 |
Family
ID=12809286
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61048652A Expired - Lifetime JPH07123128B2 (en) | 1986-03-07 | 1986-03-07 | Field-effect semiconductor device and method of manufacturing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07123128B2 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5376676A (en) * | 1976-12-17 | 1978-07-07 | Nec Corp | High breakdown voltage field effect power transistor |
JPS61101080A (en) * | 1984-10-24 | 1986-05-19 | Hitachi Ltd | Field effect transistor |
JPS61222177A (en) * | 1985-03-27 | 1986-10-02 | Sumitomo Electric Ind Ltd | Schottky gate field effect transistor and manufacture thereof |
-
1986
- 1986-03-07 JP JP61048652A patent/JPH07123128B2/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5376676A (en) * | 1976-12-17 | 1978-07-07 | Nec Corp | High breakdown voltage field effect power transistor |
JPS61101080A (en) * | 1984-10-24 | 1986-05-19 | Hitachi Ltd | Field effect transistor |
JPS61222177A (en) * | 1985-03-27 | 1986-10-02 | Sumitomo Electric Ind Ltd | Schottky gate field effect transistor and manufacture thereof |
Also Published As
Publication number | Publication date |
---|---|
JPH07123128B2 (en) | 1995-12-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2826924B2 (en) | Method of manufacturing MOSFET | |
US6518138B2 (en) | Method of forming Self-aligned lateral DMOS with spacer drift region | |
JPH0620132B2 (en) | Field effect transistor | |
US6160288A (en) | Vertical type misfet having improved pressure resistance | |
JPH06204469A (en) | Field-effect transistor and manufacture thereof | |
JPH11354541A (en) | Semiconductor device and its manufacture | |
US7018899B2 (en) | Methods of fabricating lateral double-diffused metal oxide semiconductor devices | |
JP2003060064A (en) | Mosfet, semiconductor device and its fabricating method | |
JP2952570B2 (en) | Method for manufacturing semiconductor device | |
US6215153B1 (en) | MOSFET and method for fabricating the same | |
JPS61255069A (en) | Insulated gate field-effect transistor | |
JP2578662B2 (en) | Method for manufacturing semiconductor device | |
US7453121B2 (en) | Body contact formation in partially depleted silicon on insulator device | |
JPS61110466A (en) | Field effect semiconductor and manufacture thereof | |
JPS62206884A (en) | Field-effect type semiconductor device and manufacture thereof | |
JPS63227059A (en) | Semiconductor device and manufacture thereof | |
JPH02196434A (en) | Manufacture of mos transistor | |
JPH09181313A (en) | Manufacturing method for mosfet | |
JP3653652B2 (en) | Semiconductor device | |
KR0170513B1 (en) | Mos transistor and its fabrication | |
JPS63305566A (en) | Semiconductor device and manufacture thereof | |
KR100376874B1 (en) | Method for manufacturing transistor of semiconductor device | |
JP3656867B2 (en) | Manufacturing method of fine MOS transistor | |
JPH0644605B2 (en) | Method of manufacturing high breakdown voltage MOS field effect semiconductor device | |
JPH081910B2 (en) | Field effect type semiconductor device and method of manufacturing the same |