JPS61110466A - Field effect semiconductor and manufacture thereof - Google Patents

Field effect semiconductor and manufacture thereof

Info

Publication number
JPS61110466A
JPS61110466A JP23171184A JP23171184A JPS61110466A JP S61110466 A JPS61110466 A JP S61110466A JP 23171184 A JP23171184 A JP 23171184A JP 23171184 A JP23171184 A JP 23171184A JP S61110466 A JPS61110466 A JP S61110466A
Authority
JP
Japan
Prior art keywords
gate electrode
forming
source
active layer
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23171184A
Other languages
Japanese (ja)
Inventor
Mayumi Hirose
広瀬 真由美
Toshiyuki Terada
俊幸 寺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP23171184A priority Critical patent/JPS61110466A/en
Priority to EP85307110A priority patent/EP0181091B1/en
Priority to DE8585307110T priority patent/DE3578271D1/en
Publication of JPS61110466A publication Critical patent/JPS61110466A/en
Priority to US07/019,682 priority patent/US4803526A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66848Unipolar field-effect transistors with a Schottky gate, i.e. MESFET
    • H01L29/66856Unipolar field-effect transistors with a Schottky gate, i.e. MESFET with an active layer made of a group 13/15 material
    • H01L29/66863Lateral single gate transistors
    • H01L29/66878Processes wherein the final gate is made before the formation, e.g. activation anneal, of the source and drain regions in the active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/107Substrate region of field-effect devices
    • H01L29/1075Substrate region of field-effect devices of field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/812Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a Schottky gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To obtain a high performance field effect semiconductor device by forming the second conductive type barrier layer in a junction with a substrate except the portion contacted with the operation layer of source and drain regions, thereby preventing a threshold voltage from decreasing due to shortening of a channel, a drain conductance from increasing and mutual conductance from decreasing. CONSTITUTION:With a gate electrode 13 and an SiO2 film 20 of the side wall of the electrode as masks Si ions are implanted. Thus, N<+> type source and drain regions 14, 15 which is higher density and deeper than an operation layer 12 are formed in a self-aligning manner for the electrode 13. Subsequently, with the same masks Mg ions are implanted, for example, as P type impurity. The means flying distance of the Mg ions is longer than that of Si ions at source and drain region forming time, and lateral extension due to the scattering at ion implanting time is large. Accordingly, P type barrier layers 16, 17 are formed at the lower and side portions of the regions 14, 15.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、半絶縁性化合物半導体基板を用いた電界効果
型半導体装置とその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a field effect semiconductor device using a semi-insulating compound semiconductor substrate and a method for manufacturing the same.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

半絶縁性GaAs基板を用いたショットキー・ゲート型
電界効果トランジスタ(MESFET)として、第5図
に示すものが知られている。図において、31は半絶縁
性GaAS基板であり、その表面部にn型動作層32が
形成され、この動作層32とショットキー障壁を形成す
るゲート電極33が形成されている。n+型ソース領[
34及びドレイン領域35はイオン注入によりゲート電
極33に自己整合的に形成されており、それぞれの表面
にソース電極36及びドレイン電極37が形成されてい
る。  このようなGaAs−MESFETが微細化す
ると、ソース電極36.ドレイン電極37間の間隔が狭
くなり、この間に高電界が加わる効果と、ソース領域3
4とドレイン領域35が極めて近接する効果とが相まっ
て、チャネルである動作層32を流れる′R流の他に基
板31を流れる電流が増大する。この結果、MESFE
Tのしきい値電圧の低下、ドレイン・コンダクタンスの
増大、更に相互コンダクタンスの低下を招くという問題
があった。特に半絶縁性基板を用いるMESFETは、
導電性基板を用いる51−MOSFET等と異なり、ソ
ース、トレイン領域と基板の間のポテンシャル・バリア
が低いため、短チヤネル化に伴う上記の問題が顕著に現
れる。
The one shown in FIG. 5 is known as a Schottky gate field effect transistor (MESFET) using a semi-insulating GaAs substrate. In the figure, 31 is a semi-insulating GaAS substrate, on the surface of which an n-type operating layer 32 is formed, and with this operating layer 32, a gate electrode 33 forming a Schottky barrier is formed. n+ type source region [
34 and a drain region 35 are formed in a self-aligned manner with the gate electrode 33 by ion implantation, and a source electrode 36 and a drain electrode 37 are formed on their respective surfaces. When such GaAs-MESFETs are miniaturized, the source electrode 36. The spacing between the drain electrodes 37 becomes narrower, and the effect of applying a high electric field between them and the source region 3
4 and the effect of the close proximity of the drain region 35, the current flowing through the substrate 31 in addition to the 'R current flowing through the active layer 32, which is the channel, increases. As a result, MESFE
There are problems in that the threshold voltage of T decreases, the drain conductance increases, and the mutual conductance decreases. In particular, MESFETs using semi-insulating substrates are
Unlike a 51-MOSFET or the like that uses a conductive substrate, the potential barrier between the source and train regions and the substrate is low, so the above-mentioned problems associated with shortening the channel become noticeable.

このような問題を解決するため、第6図のようにn型動
作層32の下にp型!!38を形成することが提案され
ている。しかしながら、この構造では次のような新たな
問題が生じる。即ちGaAS基板にp型層を制御性よく
形成することは難しく、第6図のようにチャネルとなる
動作層32の不全体にp型層38を形成する構造では、
p型層38形成の際のバラツキがMESFETのしきい
値電圧のバラツキに直接反映する。またpn接合容lが
ショットキー障壁の容量に並列に入るため、ゲート容l
が増大し、動作速度の低下をもたらす。
In order to solve this problem, as shown in FIG. 6, a p-type! ! It is proposed to form 38. However, this structure causes the following new problem. In other words, it is difficult to form a p-type layer on a GaAS substrate with good controllability, and in the structure in which the p-type layer 38 is formed partially over the active layer 32 that becomes the channel, as shown in FIG.
Variations in the formation of the p-type layer 38 are directly reflected in variations in the threshold voltage of the MESFET. Also, since the pn junction capacitance l is in parallel with the Schottky barrier capacitance, the gate capacitance l
increases, resulting in a decrease in operating speed.

〔発明の目的〕[Purpose of the invention]

本発明は上記の点に鑑み、微細化に伴う特性劣化の問題
を解決した。半絶縁性化合物半導体基板を用いた電界効
果型半導体装置とその製造方法を提供することを目的と
する。
In view of the above points, the present invention has solved the problem of characteristic deterioration due to miniaturization. An object of the present invention is to provide a field effect semiconductor device using a semi-insulating compound semiconductor substrate and a method for manufacturing the same.

(発明の概要) 本発明にかかる電界効果型半導体装置は、半絶縁性化合
物半導体基板表面部に第1導電型の動作層が形成され、
その表面に形成されたゲート電極と自己整合的に動作層
と同じ導電型で深く且つ高1度のソース、ドレイン領域
が形成された構造において、ソース、ドレイン領域の動
作層と接する部分を除く基板との接合部に第2導電型の
バリア層を設けたことを特徴とする。
(Summary of the Invention) A field effect semiconductor device according to the present invention includes an active layer of a first conductivity type formed on a surface portion of a semi-insulating compound semiconductor substrate,
In a structure in which deep and high degree source and drain regions of the same conductivity type as the active layer are formed in self-alignment with the gate electrode formed on the surface thereof, the substrate excludes the portions of the source and drain regions that are in contact with the active layer. It is characterized in that a barrier layer of the second conductivity type is provided at the joint portion with the substrate.

またこのような電界効果型半導体装置を製造する本発明
の方法は、ゲート電極とその側壁に選択的に形成した絶
縁膜をマスクとして不純物のイオン注入により第1導電
型のソース、ドレイン領域を形成する工程に加えて、別
の不純物のイオン注入によりソース、ドレイン領域の動
作層と接する部分を除く基板との接合部に第2導電型の
バリア層を形成する。この場合、バリア層形成のイオン
注入工程は、ソース、トレイン領域形成のイオン注入工
程の後でも良いし、その前でも良い。またゲート電極側
壁に絶縁膜を形成する前にゲート電極のみをマスクとし
て、後に形成されるソース。
Further, the method of the present invention for manufacturing such a field effect semiconductor device includes forming source and drain regions of the first conductivity type by implanting impurity ions using an insulating film selectively formed on the gate electrode and its sidewalls as a mask. In addition to this process, another impurity ion implantation is performed to form a second conductivity type barrier layer at the junction with the substrate except for the portions of the source and drain regions that are in contact with the active layer. In this case, the ion implantation process for forming the barrier layer may be performed after or before the ion implantation process for forming the source and train regions. Also, before forming an insulating film on the side walls of the gate electrode, the source is formed later using only the gate electrode as a mask.

ドレイン領域よりも浅くまたは同程度の深さにイオン注
入して、ソース、ドレイン領域の動作層に接する部分の
直下のみにバリア層を形成することもできる。
It is also possible to form the barrier layer only directly under the portion of the source and drain regions that contact the active layer by implanting ions to a depth shallower than or approximately the same as that of the drain region.

(発明の効果〕 本発明にかかる電界効果型半導体装置は、微細化した場
合にもチャネル領域である動作層の下の半絶縁性基板を
通って流れる電流を抑制することができる。この結果、
短チヤネル化に伴うしきい値電圧の低下、ドレイン・コ
ンダクタンスの増大。
(Effects of the Invention) The field effect semiconductor device according to the present invention can suppress the current flowing through the semi-insulating substrate under the active layer, which is the channel region, even when miniaturized.
Decrease in threshold voltage and increase in drain conductance due to shorter channels.

相互コンダクタンスの低下を防止して高性能の電界効果
型半導体装置を得ることができる。また本発明では、基
板電流を抑制するバリア層が、チャネル領域である動作
層下全面ではなくソース、ドレイン領域の周囲のみに設
けられるため、バリア層形成に伴う素子のしきい値電圧
のバラツキの増大はなく、ゲート容量の増大もない。
A high-performance field-effect semiconductor device can be obtained by preventing a decrease in mutual conductance. Furthermore, in the present invention, the barrier layer that suppresses the substrate current is provided only around the source and drain regions rather than the entire surface under the active layer, which is the channel region. There is no increase, and there is no increase in gate capacitance.

また本発明の方法によれば、従来の工程に僅かにバリア
層形成のイオン注入工程を加えるだけで上記に如き優れ
た素子特性を実現することができる。しかもこのバリア
層形成のイオン注入工程は、ソース、ドレイン領域形成
のイオン注入工程の後または前の適当な時期にゲート電
極或いはこれとその側壁に形成した絶縁膜をマスクとし
て、容易に実施することが可能である。
Furthermore, according to the method of the present invention, the excellent device characteristics described above can be achieved by simply adding a slight ion implantation step for forming a barrier layer to the conventional steps. Moreover, the ion implantation process for forming the barrier layer can be easily carried out at an appropriate time after or before the ion implantation process for forming the source and drain regions, using the gate electrode or an insulating film formed on the gate electrode and its sidewalls as a mask. is possible.

特に本発明の素子及び方法は、集積回路に適用すれば、
高速動作化、高集積化にとって有用である。
In particular, when the device and method of the present invention are applied to an integrated circuit,
This is useful for high-speed operation and high integration.

(発明の実施例) 以下本発明の詳細な説明する。(Example of the invention) The present invention will be explained in detail below.

第1図は一実施例の(3aAs−MESFETである。FIG. 1 shows an example of a (3aAs-MESFET).

11は抵抗率107〜108Ω・α程度の半絶縁性Ga
As基板であり、その表面部にチャネル領域となるn型
動作層12が形成され、その表面に4000人の窒化タ
ングステン(WNx)からなるショットキー・ゲート電
極13が形成されている。ゲート電極13を挟んで基板
に両側には、イオン注入により動作II!12より高濃
度で深いn+型ソース領域14及びドレイン領[15が
形成されている。これらソース、ドレイン領域14.1
5の周囲の動作層12と接する部分を除く基板11との
接合部には、ソース、ドレイン領域14.15から基板
11へのキャリア注入(この実施例では電子注入)に対
して高い障壁を形成するp型バリア層16.17が形成
さ札ている。
11 is semi-insulating Ga with a resistivity of about 107 to 108 Ω・α
An n-type active layer 12 serving as a channel region is formed on the surface of the As substrate, and a Schottky gate electrode 13 made of 4000 tungsten nitride (WNx) is formed on the surface. Operation II! is performed by ion implantation on both sides of the substrate across the gate electrode 13! An n+ type source region 14 and a drain region [15] which are higher in concentration and deeper than 12 are formed. These source and drain regions 14.1
A high barrier is formed at the junction with the substrate 11 except for the portion in contact with the active layer 12 around the source and drain regions 14 and 15 to prevent carrier injection (electron injection in this example) from the source and drain regions 14 and 15. P-type barrier layers 16 and 17 are formed.

18.19はそれぞれソース、ドレイン電極である。18 and 19 are source and drain electrodes, respectively.

このようなMESFETを製造する実施例を、第2図(
a)〜(e)を参照して次に説明する。
An example of manufacturing such a MESFET is shown in Figure 2 (
This will be explained next with reference to a) to (e).

まず、半絶縁性GaAS基板11に、3iイオンを50
KeV、2.Ox10’ z/df)条件ティオン注入
してn型動作層12を形成する。次にこの基板上にW 
N x mを4000人形成し、公知のフォトリソグラ
フィ技術及びドライエツチング技術を用いて1.0μ乳
幅のゲート電極13を形成する(第2図(a))。この
後、基板全面にプラズマCVDにより5iOz膜を30
00人堆積し、RIEなどの異方性ドライエツチング法
によりこのS i 02 IIを膜厚相当分だけエツチ
ングする。
First, 50% of 3i ions are placed on a semi-insulating GaAS substrate 11.
KeV, 2. Ox10' z/df) conditional ion implantation is performed to form the n-type operating layer 12. Next, add W on this board.
A gate electrode 13 having a width of 1.0 μm is formed using a known photolithography technique and dry etching technique (FIG. 2(a)). After this, a 5iOz film was deposited on the entire surface of the substrate for 30 minutes by plasma CVD.
000 is deposited, and this Si 02 II is etched by an amount equivalent to the film thickness by an anisotropic dry etching method such as RIE.

プラズマCvOによる5iOz膜は等方的に堆積しゲー
ト電極13の側壁にも同じ膜厚だけ形成されるから、こ
れを異方性ドライエツチングで全面エツチングすること
によりゲート電極13の側壁にのみ選択的にSiO2膜
20を残すことができる(第2図(b))。
The 5iOz film formed by plasma CvO is isotropically deposited and the same film thickness is formed on the side walls of the gate electrode 13. Therefore, by etching the entire surface using anisotropic dry etching, it is selectively etched only on the side walls of the gate electrode 13. The SiO2 film 20 can be left behind (FIG. 2(b)).

この後、ゲート電極13及びそのll!lをの 3i0
2膜20をマスクとしてSiのイオン注入を行う。この
ときイオン注入条件を例えば、100KeV、1.0x
lO1’ /aiに選ぶことにより、動作層12より高
濃度で深いn“型ソース、ドレイン領域14.15がゲ
ート電極13に対して自己整合的に形成される(第2図
(C))。
After this, the gate electrode 13 and its ll! 3i0
Si ions are implanted using the second film 20 as a mask. At this time, the ion implantation conditions are, for example, 100KeV, 1.0x
By selecting lO1'/ai, n" type source and drain regions 14 and 15, which are higher in concentration and deeper than the active layer 12, are formed in a self-aligned manner with respect to the gate electrode 13 (FIG. 2(C)).

続いて同じマスクを用いて、p型不純物として例えばM
Oイオンを、240  KeV、  5x1011/a
iの条件でイオン注入する。この条件では、MOイオン
の平均飛程距離がソース、ドレイン領域形成時の3iイ
オンのそれに比べて大きく、イオン注入時の散乱による
横方向への拡がりも大きいため、ソース、ドレイン領域
14.15の下部及び側部にp型バリア層16.17が
形成される(第2図(d))。ソース、トレイン領域1
4.15にもMOイオンが注入されるが、注入量がSi
のそれに比べて小さいためソース、ドレイン領域14.
15の濃度低下は無視できる。また、前述したイオン注
入時の横方向散乱によりMgイオンがSiO2膜20膜
下0動作層12にも進入するが、同様の理由でこの部分
の動作層が反転することはない。
Subsequently, using the same mask, as a p-type impurity, for example, M
O ions, 240 KeV, 5x1011/a
Ion implantation is performed under the conditions of i. Under these conditions, the average range of MO ions is larger than that of 3i ions when forming the source and drain regions, and the lateral spread due to scattering during ion implantation is also large. A p-type barrier layer 16.17 is formed at the bottom and sides (FIG. 2(d)). Source, train area 1
MO ions are also implanted in 4.15, but the implantation amount is less than that of Si.
The source and drain regions 14. are smaller than those of the source and drain regions 14.
The decrease in concentration of 15 is negligible. Additionally, Mg ions also enter the 0-operation layer 12 under the SiO2 film 20 due to the lateral scattering during the ion implantation described above, but for the same reason, the operation layer in this portion is not inverted.

この後、注入不純物の活性化のアニールを800〜85
0℃で行い、AuGe合金によルソース、ドレイン電極
18.19を形成して、セルファライン型GaAs−M
ESFETが完成する(第2図(e))。
After this, annealing for activation of the implanted impurities was performed at 800-850°C.
The process was carried out at 0°C, and the source and drain electrodes 18 and 19 were formed using an AuGe alloy, and a self-aligned GaAs-M
The ESFET is completed (Fig. 2(e)).

本実施例によるMESFETと、p型バリア層を形成し
ない池水実施例と同様の条件で作製した従来型MESF
ETと比較した結果、従来型MESFETのしきい値電
圧が−0,1Vであるのに対し、本実施例のものが+0
.05Vであった。
MESFET according to this example and conventional MESF manufactured under the same conditions as the pond water example without forming a p-type barrier layer.
As a result of comparison with ET, the threshold voltage of the conventional MESFET is -0.1V, while the threshold voltage of this example is +0.
.. The voltage was 0.05V.

ちなみに、同時に作製したゲート長10μmのMESF
ETは、本実施例のものと従来型のものとが共にしきい
値電圧+0.1vであった。これらのデータから、従来
型のMESFETでは短チヤネル化により半絶縁性基板
を流れる電流によってしきい値電圧が負側に0.2Vシ
フトしているのに対し、本実施例では、このシフトlが
0.05■と小さく抑えられていることがわかる。
By the way, MESF with a gate length of 10 μm was fabricated at the same time.
The threshold voltage of ET for both the present example and the conventional type was +0.1v. From these data, it can be seen that in the conventional MESFET, the threshold voltage is shifted to the negative side by 0.2 V due to the current flowing through the semi-insulating substrate due to the shortened channel, whereas in this example, this shift l is It can be seen that the value is kept to a small value of 0.05■.

また本実施例によるMESFETと第6図に示すように
動作層下部全体にp型層を設けたMESFETとを比較
すると、短チヤネル化に伴うしきい値電圧のシフト量は
同じ程度であったが、本実施例ではゲート容量の増大が
ないため、高速の動作が可能であることが確認された。
Furthermore, when comparing the MESFET according to this example with the MESFET in which a p-type layer is provided in the entire lower part of the active layer as shown in FIG. It was confirmed that high-speed operation is possible in this example because there is no increase in gate capacitance.

本発明は上記実施例に限られず、種々の変形が可能であ
る。
The present invention is not limited to the above embodiments, and various modifications are possible.

例えば、上記実施例の第2図(c)、(d)で説明した
、ソース、ドレイン領11g14.15を形成する3i
イオンのイオン注入工程と、p型バリア層16.17を
形成するMQイオンのイオン注入工程を逆にすることが
できる。
For example, as explained in FIGS. 2(c) and 2(d) of the above embodiment, 3i forming the source and drain regions 11g14.15.
The ion implantation process of ions and the ion implantation process of MQ ions forming the p-type barrier layer 16.17 can be reversed.

またp型バリア層16.17の形成に伴うn型動作層1
2の濃度低下を補償するために、第3図に示すように、
5iOz膜20の下に助IY層12と別にn型層21.
22を形成しても良い。このような構造は例えば、上記
実施例の第2図(a)の状態、即ちゲート電極13を形
成した後、その側壁にS i 02膜20を形成する前
に、3iイオンを50KeV、5x1012 /ci程
度にイオン注入することにより得られる。これにより、
動作層12と同程度の深さでこれより1.2〜5倍の不
純物濃度のn型層21.22を形成すれば、p型層形成
時の動作層の濃度低下を効果的に防止することができる
In addition, the n-type operating layer 1 accompanying the formation of the p-type barrier layers 16 and 17
In order to compensate for the decrease in the concentration of 2, as shown in Figure 3,
Under the 5iOz film 20, an n-type layer 21 is formed separately from the auxiliary IY layer 12.
22 may be formed. Such a structure can be constructed, for example, in the state shown in FIG. 2(a) of the above embodiment, that is, after forming the gate electrode 13 and before forming the Si02 film 20 on its sidewall, 3i ions are heated at 50 KeV and 5x1012 / This can be obtained by implanting ions to about ci. This results in
If the n-type layer 21.22 is formed to the same depth as the active layer 12 and has an impurity concentration 1.2 to 5 times higher than that of the active layer 12, a decrease in the concentration of the active layer during formation of the p-type layer can be effectively prevented. be able to.

また以上の実施例は、p型バリア層をソース。Furthermore, in the above embodiments, the p-type barrier layer is used as the source.

ドレイン領域の動作層と接する部分を除く基板との全接
合部に形成したが、動作層の下に局部的に設けることに
よっても同様の効果が得られる。そのような実施例を第
4図により説明する。先の実施例と同様に、半絶縁性G
aAS基板11にSlのイオン注入によりn型動作層1
2を形成し、その表面にショットキー・ゲート電極13
を形成する。この状態で、ゲート電極13をマスクとし
て$1イオン、MOイオンを連続的にイオン注入して動
作層12より僅かに濃度の高いn型層21゜22及びp
型バリア層16.17を形成する(第4図(a))、こ
のとき、3iイオンは濃度のビーク位置が動作層12と
同程度になるように、またMQイオンはピーク位置が動
作層12のそれよりは深く、かつ後に形成されるソース
、ドレインのn+型層と同程度か若干浅くなるようにイ
オン注入条件が設定される。この後、先の実施例と同様
にゲート電極13の側壁に選択的にS i 02膜20
を形成し、コ(DS i 02 M! 20 ト’y 
 h ?1q1413をマスクとして3iを高濃度にイ
オン注入してn′″型ソース、ドレイン領域14.15
を形成し、その表面にソース、トレイン電極18.19
を形成して完成する(第4図(b))。
Although it is formed at all junctions with the substrate except for the portion of the drain region in contact with the active layer, the same effect can be obtained by providing it locally under the active layer. Such an embodiment will be explained with reference to FIG. As in the previous example, the semi-insulating G
The n-type active layer 1 is formed by ion implantation of Sl into the aAS substrate 11.
2 and a Schottky gate electrode 13 on its surface.
form. In this state, $1 ions and MO ions are successively implanted using the gate electrode 13 as a mask to form n-type layers 21, 22 and p-type layers having a slightly higher concentration than the active layer 12.
type barrier layers 16 and 17 are formed (FIG. 4(a)), at this time, the peak position of the 3i ions is set to be approximately the same as that of the active layer 12, and the peak position of the MQ ions is set to the same level as the active layer 12. The ion implantation conditions are set so that the ion implantation condition is deeper than that of the ion implantation layer, and the ion implantation condition is about the same level or slightly shallower than that of the n+ type layer of the source and drain to be formed later. Thereafter, as in the previous embodiment, a SiO2 film 20 is selectively formed on the sidewalls of the gate electrode 13.
to form a ko(DS i 02 M! 20 t'y
h? Using 1q1413 as a mask, 3i is ion-implanted at a high concentration to form n''' type source and drain regions 14.15.
and source and train electrodes 18 and 19 on its surface.
is completed by forming (Fig. 4(b)).

こうして、p型バリア1116.17がソース。In this way, the p-type barrier 1116.17 becomes the source.

ドレイン領域14.15の動作層12直下の側部にのみ
形成されたMESFETが得られる。このような構造は
、動作層12の濃度低下を防止するためのn型層21.
22を形成しない、例えば第1図或いは第2図で説明し
た実施例について適用しても有効である。
A MESFET is obtained that is formed only on the side of the drain region 14, 15 directly below the active layer 12. Such a structure includes an n-type layer 21 .
It is also effective to apply the embodiment described in FIG. 1 or 2, for example, in which the structure 22 is not formed.

その数本発明は、用いる材料・物質についても種々変形
が可能である。例えば、ゲート電極としては、n型Ga
Asと良好なショットキー障壁を形成し、かつ熱処理後
もその特性が保持されるものであればよ<、WNxの他
、W、WSix。
Several modifications can be made to the materials and substances used in the present invention. For example, as the gate electrode, n-type Ga
In addition to WNx, W and WSix can be used as long as they form a good Schottky barrier with As and maintain their properties even after heat treatment.

W−Affi、Mo、MOS ixなどを用いることが
できる。注入不純物は、n型の場合はSe、Sなど、p
型の場合は8eなどを用い得る。また上記実施例では専
らnチャネルを説明したが、ρチャネルの場合にも本発
明を適用できる。更に本発明は、MESFETの他、接
合型FETに適用することもできるし、基板としてGa
As以外の半絶縁性化合物半導体基板を用いた場合に同
様に本発明を適用することができる。
W-Affi, Mo, MOS ix, etc. can be used. The implanted impurity is Se, S, etc. in the case of n-type, p
In the case of a mold, 8e etc. can be used. Further, in the above embodiment, only n channel was explained, but the present invention can also be applied to the case of ρ channel. Furthermore, the present invention can be applied to junction FETs in addition to MESFETs, and can also be applied to junction FETs, using Ga as a substrate.
The present invention can be similarly applied when a semi-insulating compound semiconductor substrate other than As is used.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例のGaAS−MESFETを
示す図、第2図<a)〜(e)はその製造工程を説明す
るための図、第3図は他の実施例のGaAs−MESF
ETを示す図、第4図(a)(b)は更に池の実施例の
GaAs−MESFE−「の製造工程を説明するための
図、第5図及び第6図は従来のGaAs−MESFET
を示す図である。 11・・・半絶縁性GaAS基板、12・・・n型動作
層、13・・・ショットキー・ゲート電[i、14・・
・n++ソース領域、15・・・n+型トドレイン領域
16.17・・・p型バリア層、18・・・ソース電極
、19・・・ドレイン電極、20・・・5iO211,
21゜22・・・n型層。 出願人代理人 弁理士 鈴江武彦 第30 第4図 第5r5 第6図
FIG. 1 is a diagram showing a GaAS-MESFET according to an embodiment of the present invention, FIG. 2 <a) to (e) are diagrams for explaining the manufacturing process, and FIG. MESF
ET, FIGS. 4(a) and 4(b) are diagrams for explaining the manufacturing process of GaAs-MESFET of Ike's embodiment, and FIGS. 5 and 6 are diagrams for conventional GaAs-MESFET.
FIG. DESCRIPTION OF SYMBOLS 11... Semi-insulating GaAS substrate, 12... N-type operating layer, 13... Schottky gate electrode [i, 14...
・n++ source region, 15...n+ type drain region 16.17...p type barrier layer, 18...source electrode, 19...drain electrode, 20...5iO211,
21°22...n-type layer. Applicant's agent Patent attorney Takehiko Suzue No. 30 Figure 4 Figure 5r5 Figure 6

Claims (7)

【特許請求の範囲】[Claims] (1)半絶縁性化合物半導体基板と、この基板表面部に
形成された第1導電型の動作層と、この動作層上に形成
されたゲート電極と、このゲート電極を挟んで前記基板
表面部に前記動作層より深く形成された第1導電型で高
不純物濃度のソース及びドレイン領域とを備え、前記ソ
ース及びドレイン領域の前記動作層と接する部分を除く
前記基板との接合部に第2導電型のバリア層を設けたこ
とを特徴とする電界効果型半導体装置。
(1) A semi-insulating compound semiconductor substrate, a first conductivity type active layer formed on the surface of the substrate, a gate electrode formed on the active layer, and the substrate surface with the gate electrode in between. source and drain regions of a first conductivity type and with high impurity concentration formed deeper than the operating layer; and a second conductive region at a junction with the substrate excluding a portion of the source and drain regions in contact with the operating layer. A field-effect semiconductor device characterized by providing a type barrier layer.
(2)前記半絶縁性化合物半導体基板は半絶縁性GaA
s基板であり、前記ゲート電極は動作層との間でショッ
トキー障壁を形成する特許請求の範囲第1項記載の電界
効果型半導体装置。
(2) The semi-insulating compound semiconductor substrate is semi-insulating GaA
2. The field effect semiconductor device according to claim 1, wherein the gate electrode is an S substrate and forms a Schottky barrier between the gate electrode and the active layer.
(3)半絶縁性化合物半導体基板の表面部に第1導電型
の動作層を形成する工程と、前記動作層上にゲート電極
を形成する工程と、前記ゲート電極側壁に選択的に絶縁
膜を形成する工程と、前記ゲート電極と前記絶縁膜をマ
スクとして不純物をイオン注入して前記動作層より深い
、第1導電型で高不純物濃度のソース及びドレイン領域
を形成する工程と、別の不純物のイオン注入により前記
ソース及びドレイン領域の前記動作層との接合部を除く
基板との接合部に第2導電型のバリア層を形成する工程
とを備えたことを特徴とする電界効果型半導体装置の製
造方法。
(3) forming an active layer of a first conductivity type on the surface of a semi-insulating compound semiconductor substrate, forming a gate electrode on the active layer, and selectively forming an insulating film on the sidewalls of the gate electrode; a step of ion-implanting impurities using the gate electrode and the insulating film as a mask to form source and drain regions of a first conductivity type and high impurity concentration deeper than the active layer; and a step of implanting another impurity. forming a barrier layer of a second conductivity type at the junctions of the source and drain regions with the substrate, excluding the junctions with the active layer, by ion implantation. Production method.
(4)前記バリア層を形成するイオン注入工程は、前記
ゲート電極の側壁に絶縁膜を形成した後、ソース、ドレ
イン領域を形成するイオン注入工程の前または後に行う
特許請求の範囲第3項記載の電界効果型半導体装置の製
造方法。
(4) The ion implantation step for forming the barrier layer is performed after forming an insulating film on the side wall of the gate electrode, and before or after the ion implantation step for forming the source and drain regions. A method for manufacturing a field effect semiconductor device.
(5)前記ゲート電極側壁に絶縁膜を形成する工程の前
に、前記ゲート電極をマスクとして不純物をイオン注入
して前記動作層と同程度の深さでこれより1.2〜5倍
の不純物濃度の第1導電型層を形成する工程を有する特
許請求の範囲第3項記載の電界効果型半導体装置の製造
方法。
(5) Before the step of forming an insulating film on the side walls of the gate electrode, using the gate electrode as a mask, impurity ions are implanted to the same depth as the active layer and 1.2 to 5 times the impurity. 4. The method of manufacturing a field effect semiconductor device according to claim 3, further comprising the step of forming a first conductivity type layer having a high concentration.
(6)前記バリア層を形成するイオン注入工程は、前記
ゲート電極の側壁に絶縁膜を形成する前に、後に形成さ
れるソース、ドレイン領域より浅くまたは同程度の深さ
に行う特許請求の範囲第3項記載の電界効果型半導体装
置の製造方法。
(6) The ion implantation step for forming the barrier layer is performed at a depth shallower than or to the same depth as the source and drain regions to be formed later, before forming an insulating film on the sidewalls of the gate electrode. 4. A method for manufacturing a field-effect semiconductor device according to item 3.
(7)前記半絶縁性化合物半導体基板は半絶縁性GaA
s基板であり、前記ゲート電極は動作層との間でショッ
トキー障壁を形成する特許請求の範囲第3項記載の電界
効果型半導体装置の製造方法。
(7) The semi-insulating compound semiconductor substrate is semi-insulating GaA
4. The method of manufacturing a field effect semiconductor device according to claim 3, wherein the gate electrode is an S substrate and forms a Schottky barrier between the gate electrode and the active layer.
JP23171184A 1984-11-02 1984-11-02 Field effect semiconductor and manufacture thereof Pending JPS61110466A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP23171184A JPS61110466A (en) 1984-11-02 1984-11-02 Field effect semiconductor and manufacture thereof
EP85307110A EP0181091B1 (en) 1984-11-02 1985-10-03 Schottky gate field effect transistor and manufacturing method thereof
DE8585307110T DE3578271D1 (en) 1984-11-02 1985-10-03 FIELD EFFECT TRANSISTOR WITH A SCHOTTKY GATE AND MANUFACTURING METHOD DAFUER.
US07/019,682 US4803526A (en) 1984-11-02 1987-02-17 Schottky gate field effect transistor and manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23171184A JPS61110466A (en) 1984-11-02 1984-11-02 Field effect semiconductor and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS61110466A true JPS61110466A (en) 1986-05-28

Family

ID=16927809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23171184A Pending JPS61110466A (en) 1984-11-02 1984-11-02 Field effect semiconductor and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS61110466A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6279673A (en) * 1985-10-03 1987-04-13 Mitsubishi Electric Corp Field effect transistor
JPS6425484A (en) * 1987-07-21 1989-01-27 Mitsubishi Electric Corp Semiconductor device
JPH01208869A (en) * 1988-02-16 1989-08-22 Fujitsu Ltd Semiconductor device and manufacture thereof
JPH09275111A (en) * 1996-11-01 1997-10-21 Mitsubishi Electric Corp Field effect transitor
US6134424A (en) * 1996-10-04 2000-10-17 Kabushiki Kaisha Toshiba High-frequency power amplifier and mobile communication device using same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6279673A (en) * 1985-10-03 1987-04-13 Mitsubishi Electric Corp Field effect transistor
JPS6425484A (en) * 1987-07-21 1989-01-27 Mitsubishi Electric Corp Semiconductor device
JPH01208869A (en) * 1988-02-16 1989-08-22 Fujitsu Ltd Semiconductor device and manufacture thereof
US6134424A (en) * 1996-10-04 2000-10-17 Kabushiki Kaisha Toshiba High-frequency power amplifier and mobile communication device using same
JPH09275111A (en) * 1996-11-01 1997-10-21 Mitsubishi Electric Corp Field effect transitor

Similar Documents

Publication Publication Date Title
US4803526A (en) Schottky gate field effect transistor and manufacturing method
JP2826924B2 (en) Method of manufacturing MOSFET
US5371024A (en) Semiconductor device and process for manufacturing the same
JP3462301B2 (en) Semiconductor device and manufacturing method thereof
JP3223329B2 (en) Method of manufacturing MOSFET
US20150037952A1 (en) Recessed channel insulated-gate field effect transistor with self-aligned gate and increased channel length
JPH0216020B2 (en)
JPH1197709A (en) Mos transistor and manufacture of the same
JP3075225B2 (en) Method for manufacturing semiconductor device
JPS61110466A (en) Field effect semiconductor and manufacture thereof
US5159417A (en) Semiconductor device having short channel field effect transistor with extended gate electrode structure and manufacturing method thereof
JPH11289089A (en) Semiconductor device and its manufacture
JP2852901B2 (en) Method of manufacturing MOSFET
JPS61255069A (en) Insulated gate field-effect transistor
JPS6025028B2 (en) Manufacturing method of semiconductor device
JP3307972B2 (en) Method for manufacturing field effect transistor and field effect transistor
JPH1168096A (en) Semiconductor device and manufacture thereof
JPH0438834A (en) Manufacture of mos transistor
JP2506947B2 (en) Semiconductor device and manufacturing method thereof
JP2732845B2 (en) Method for manufacturing MIS type field effect transistor
JPS62283672A (en) Field-effect transistor and manufacture thereof
JP3656867B2 (en) Manufacturing method of fine MOS transistor
JPH03211883A (en) Semiconductor device and manufacture thereof
JPS62206884A (en) Field-effect type semiconductor device and manufacture thereof
JPH01162378A (en) Semiconductor device