JPS58130560A - Semiconductor memory integrated circuit - Google Patents

Semiconductor memory integrated circuit

Info

Publication number
JPS58130560A
JPS58130560A JP57011665A JP1166582A JPS58130560A JP S58130560 A JPS58130560 A JP S58130560A JP 57011665 A JP57011665 A JP 57011665A JP 1166582 A JP1166582 A JP 1166582A JP S58130560 A JPS58130560 A JP S58130560A
Authority
JP
Japan
Prior art keywords
fet
layer
threshold voltage
voltage value
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57011665A
Other languages
Japanese (ja)
Inventor
Yasunari Umemoto
康成 梅本
Susumu Takahashi
進 高橋
Nobutoshi Matsunaga
松永 信敏
Michiharu Nakamura
中村 道治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57011665A priority Critical patent/JPS58130560A/en
Publication of JPS58130560A publication Critical patent/JPS58130560A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B10/00Static random access memory [SRAM] devices

Landscapes

  • Semiconductor Memories (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Static Random-Access Memory (AREA)

Abstract

PURPOSE:To obtain the highly integrated IC wherein a threshold voltage value can be precisely controlled, by providing a reverse conductive layer under an active layer and attaching an electrode in an FET having as FF for driving a memory cell. CONSTITUTION:On the surface of a semiinsulating GaAs substrate 8, N<+> source and drain 9 and 10 and an N type active layer 3 are provided. A P layer 11 is embedded under the N layer 3 by ion implantation and annealing, and a back gate electrode 12 for controlling said layer 11 is provided. When a load voltage is gradually applied to the electrode 12 with a source electrode 6 as a reference, the threshold voltage value is continuously and gradually moved from the negative value (depression type) to the positive value (enhancement type). In this constitution, the FET, which is a constituent element of the FF applied memory cell, can be formed without additional major engineering requirements on the conventional processes, and the threshold voltage value can be precisely controlled.

Description

【発明の詳細な説明】 本発明は、半導体基板上への素子の高密度集積化を容易
に実現し得る集積装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an integrated device that can easily realize high-density integration of elements on a semiconductor substrate.

半導体基板上に電界効果トランジスタ、ダイオード、抵
抗、コンデンサ等の素子を高密度に集積化した集積装置
が盛んに製造されている。しかし、それらの素子の中で
も中枢的な役割を演する電界効果トランジスタについて
、その特性の精密な制御が困難なために、集積化の上で
制約を受けざるを侍ないというのが現状である。以下に
、従来よシある集積装置の問題点を、具体的に代表的メ
モリ回路であるE/Da成メモ成金モリとり説明する。
2. Description of the Related Art Integrated devices in which elements such as field effect transistors, diodes, resistors, and capacitors are densely integrated on a semiconductor substrate are being actively manufactured. However, the current situation is that field effect transistors, which play a central role among these elements, have to face restrictions in terms of integration because it is difficult to precisely control their characteristics. Below, the problems of conventional integrated devices will be specifically explained in E/Da memory circuits, which are typical memory circuits.

メモリの主要部は、メモリ・セルの周期的繰返しによシ
構成されている。E/D構成のメモリ・セルは第1図に
示すように、駆動用電界効果トランジスタTri、Tr
2(以下駆動用FETと略記する。)、負荷用電界効果
トランジスタ’1’r3゜Tr4 (以下負荷用FET
と略記。)とスチツチ用電界効果トランジスタTr5.
Tr6 (以下、スイッチ用FETと略記。)の計6ケ
の電界効果トランジスタ(以下、FETと略記。)より
m成される。負荷用PET Tr3.Tr4  はデプ
レッションmFET (ゲート電圧ゼロの時にも電流が
流れるFET)でアシ、駆動用FET  Tri。
The main part of the memory is made up of periodic repetitions of memory cells. As shown in FIG. 1, a memory cell with an E/D configuration includes driving field effect transistors Tri and Tr.
2 (hereinafter abbreviated as drive FET), load field effect transistor '1'r3°Tr4 (hereinafter referred to as load FET)
Abbreviated as. ) and switch field effect transistor Tr5.
It is composed of a total of six field effect transistors (hereinafter abbreviated as FET), including Tr6 (hereinafter abbreviated as switch FET). Load PET Tr3. Tr4 is a depletion mFET (a FET that allows current to flow even when the gate voltage is zero), and a drive FET Tri.

Tr2とスイッチ用FET Tr5.Tr6は、エンハ
ンスメントmFET(ゲート電圧ゼロの時には電流は流
れないFET、)である。このようなメモリ・セル構成
においては、籍にエンハンスメント型FETの閾電圧値
の動作マージンが小さく、エンハンスメント型PETに
ついては、その閾電圧値をそのマージン内に檀確におさ
めるという精密な制御技術が要求される。
Tr2 and switch FET Tr5. Tr6 is an enhancement mFET (an FET through which no current flows when the gate voltage is zero). In such a memory cell configuration, the operating margin of the threshold voltage value of the enhancement type FET is small, and for the enhancement type PET, precise control technology is required to keep the threshold voltage value exactly within that margin. required.

従来のGaAs集積回路に多用されているFETは、W
J2図(a)に示す断1ili#造を有するショットキ
ゲートnl!蒐界効果トランジスタ(MESFET)で
ある。この構造のMESFETにおける閾電圧値の制御
法として、従来よシ次の如き2つの手法がとられてきた
FETs that are often used in conventional GaAs integrated circuits are W
Schottky gate nl with the section 1ili# structure shown in J2 figure (a)! It is a field effect transistor (MESFET). Conventionally, the following two methods have been used to control the threshold voltage value in the MESFET having this structure.

(イ) ゲート電極1形成前にゲート電極部のQaA8
の表面を適当な厚さ2だけエツチングし、能動層3の厚
さ4を制御する方法(第2図(b))。
(b) QaA8 of the gate electrode part before forming the gate electrode 1
A method in which the surface of the active layer 3 is etched by an appropriate thickness 2 to control the thickness 4 of the active layer 3 (FIG. 2(b)).

(ロ)能動層3を形成するイオン打込み5の条件の最適
化を行ない、能動層3の厚さ4を制御する方法(第2図
(C))。
(b) A method of controlling the thickness 4 of the active layer 3 by optimizing the conditions of the ion implantation 5 for forming the active layer 3 (FIG. 2(C)).

しかしながら、0)の方法に関しては、エツチング皺制
御の不安定性から、ウェーハ間あるいはウェーハ内に閾
電圧値のばらつきが生じ、(ロ)の方法に関しては、G
 a A 8基板結晶の不純物濃度、欠陥等のウェーハ
間及びウェーハ内の特性のばらつきから、閾電圧値のば
らつきが生ずるため、ウェーハ内の一部のMESFET
の閾電圧値は、メモリの動作マージンから逸脱し、E/
D構成メモリの動作歩留シ低下をもたらす。ここでは、
E/D構成のメモリを例にと9説明したが、これに限ら
ず、閾電圧値の動作マージンが小さいメモリ回路におい
ては、従来の閾電圧値の制御法をとっている限9、歩留
り低下は不可避である。
However, with method 0), variations in the threshold voltage value occur between wafers or within a wafer due to instability of etching wrinkle control, and with method (b), G
a A 8 Due to variations in characteristics between wafers and within a wafer, such as impurity concentration and defects in the substrate crystal, variations in the threshold voltage value occur, so some MESFETs within the wafer
The threshold voltage value of E/
This results in a reduction in the operational yield of the D-configuration memory. here,
Although the explanation has been made using E/D configuration memory9 as an example, this is not the only example, but in memory circuits with a small operating margin of the threshold voltage value, as long as the conventional threshold voltage value control method is used9, the yield will decrease. is inevitable.

本発明の目的は、上述した閾電圧値の梢密制御の要請を
満足させ高集積回路の実現を容易にする集積装置を提供
することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an integrated device that satisfies the above-mentioned requirement for precise control of threshold voltage values and facilitates the realization of highly integrated circuits.

従来の閾電圧値の制御法は、集積装置を製造する途中の
一工程として捉えることが出来る。すなわち、閾電圧値
の精密制御の要請を満足させるために紘、プロセス技術
の改善を図らねばならない。
The conventional method of controlling the threshold voltage value can be viewed as a step in the process of manufacturing an integrated device. That is, in order to satisfy the requirement for precise control of the threshold voltage value, it is necessary to improve the process technology.

しかし、本発明では、上記の目的の達成をプロセス技術
に過大な技術的要求を迫ることなく、集積装置に新構造
を採用することによって実現しようとするものである。
However, the present invention attempts to achieve the above object by adopting a new structure for the integrated device without imposing excessive technical demands on process technology.

すなわち、集積装置の構成素子であるFETとして、閾
電圧値を任意の値に制御することが可能な電極を有する
FETを採用し、閾電圧値の梢密制御を為す。
That is, as the FET which is a constituent element of the integrated device, an FET having an electrode whose threshold voltage value can be controlled to an arbitrary value is used, and the threshold voltage value is closely controlled.

上述のFETとして、能動層下部に能動層とは逆導電型
半導体層を設け、その逆導電型半導体層を制御する電極
を有するFETを用いるのが好適である。このFET 
(以下、これをP−PETと呼ぶ)の平面構造を第3図
(a)に、A−A’に沿う断面構造を第3図(b)に示
す。
As the above-mentioned FET, it is preferable to use an FET that has a semiconductor layer of a conductivity type opposite to that of the active layer provided below the active layer and an electrode for controlling the semiconductor layer of the opposite conductivity type. This FET
(Hereinafter, this will be referred to as P-PET) A planar structure is shown in FIG. 3(a), and a cross-sectional structure along AA' is shown in FIG. 3(b).

P−FETは、第2図(a)に示す従来のFETと同僚
に(以下に記される図中の番号は、第2図及び第3図に
共通である。)、ソース電極6.ドレイン電極7及びゲ
ート電極1の三電極を有し、半絶縁性GaA1基板80
表面層にn0型ンース・ドレイン領域9,10及びn減
能動層3を有する構造を持つ。P−FETの特徴的な構
造は、能動層3の下部に設けられたp型埋込層11とこ
の層を制御するバックゲート電極12である。このバン
クゲート電極12によ、1t)P−FETの閾電圧値は
制御される。すなわち、バンクゲート電極12に、ソー
ス電極6を基準として負電圧を徐々に印加するに従い、
閾電圧値は負(デグレツショ型F E ’rの状態)か
ら正(エンノ・ンスメント型FETの状態)へ徐々に連
続的に移行する。
The P-FET is similar to the conventional FET shown in FIG. 2(a) (the numbers in the figure below are common to FIGS. 2 and 3), with a source electrode 6. A semi-insulating GaA1 substrate 80 having three electrodes, a drain electrode 7 and a gate electrode 1.
It has a structure having n0 type source/drain regions 9, 10 and an n-deactive layer 3 in the surface layer. The characteristic structure of the P-FET is a p-type buried layer 11 provided under the active layer 3 and a back gate electrode 12 that controls this layer. This bank gate electrode 12 controls the threshold voltage value of the 1t) P-FET. That is, as a negative voltage is gradually applied to the bank gate electrode 12 with reference to the source electrode 6,
The threshold voltage value gradually and continuously shifts from negative (state of degression type F E 'r) to positive (state of enforcement type FET).

上述の構造と機能を有するP−FETを、第1図に示す
メモリ・セルの駆動用PETTrl。
A PETTrl for driving a memory cell is shown in FIG. 1, in which a P-FET having the above-described structure and function is used.

Tr2とスイッチ用FET Tr5.’rr6 (7)
代りに用いたメモリ・セルの回路例を第4図(a)に示
す。この回路中に用いたTr 1,2,5.6 (P−
FET)の記号の意味は、第4図φ)に示す通りである
。第4図(a)に示すように、P−FETのノ(ツクゲ
ート電極をすべて結線し、これに適当な負電圧を印加し
て、P−11’ET (Tr 1.2.5゜6)の閾電
圧値をメモリの動作i−ジン内に容易におさめることが
可能となる。これにより、メモリの動作歩留りの向上が
実現できる。
Tr2 and switch FET Tr5. 'rr6 (7)
A circuit example of a memory cell used instead is shown in FIG. 4(a). Tr 1, 2, 5.6 (P-
The meaning of the symbol FET) is as shown in FIG. 4 φ). As shown in Fig. 4(a), all the gate electrodes of the P-FET are connected, and an appropriate negative voltage is applied thereto to form a P-11'ET (Tr 1.2.5°6). It becomes possible to easily keep the threshold voltage value within the operating range of the memory.Thereby, it is possible to improve the operating yield of the memory.

以上PETの能動層3をn型、埋込層11をp型とした
が、この導電型が逆として構成しても良いことは言うま
でもない。また、回路例としてE/D構成のメモリ・セ
ルを用いたが、閾電圧値の制御を要するすべてのメモリ
集積回路にも適用することか可能である。
Although the PET active layer 3 is of n-type and the buried layer 11 is of p-type above, it goes without saying that the conductivity types may be reversed. Furthermore, although a memory cell with an E/D configuration is used as a circuit example, it is possible to apply the present invention to any memory integrated circuit that requires control of the threshold voltage value.

具体的例を第5図(a)、Φ)、 (C)、 (d)に
示す。
Specific examples are shown in FIGS. 5(a), Φ), (C), and (d).

第5図(a)は、第4図(a)の回路の変形であシ、第
4図(a)(7)負荷用FETTr3及びTr4  の
代シに負荷抵抗R1,R2を用いたメモリセル回路であ
る。駆動用FET Tr 1.Tr 2  及びスイッ
チ用FET Tr5. Tr6にP−PETを利用する
FIG. 5(a) is a modification of the circuit in FIG. 4(a), and FIG. 4(a)(7) is a memory cell using load resistors R1 and R2 in place of load FETs Tr3 and Tr4. It is a circuit. Drive FET Tr 1. Tr 2 and switch FET Tr5. P-PET is used for Tr6.

第5図Φ)も駆動用FETTrl、Tf2  にP−F
ETを用いたメモリセル回路である。
Fig. 5 Φ) is also a driving FETTrl, Tf2 is P-F.
This is a memory cell circuit using ET.

第5図(C)、(d)は、第4図(!I)のスイッチ用
トランジスタの代りにダイオードを用いたメモリセルで
、1、(C)は負荷に抵抗、(d)は負荷にトランジス
タを用いている。駆動用PET Tri、Tr2 にP
−PETを用いる。
Figures 5(C) and (d) are memory cells using diodes in place of the switching transistors in Figure 4(!I), 1, (C) is a resistor in the load, and (d) is in the load. It uses transistors. Drive PET Tri, P to Tr2
- Use PET.

以下、本発明の製造工程を説明する。第6図(a)〜(
C)に、P−FETと従来のFETによシ構成されたメ
モリセルの製造手順を示す。第6図は装置ffr面図で
あシ、基本部分を示したものである。
The manufacturing process of the present invention will be explained below. Figure 6(a)-(
C) shows the manufacturing procedure of a memory cell configured with a P-FET and a conventional FET. FIG. 6 is a top view of the device, showing the basic parts.

先ず、第6図(a)に示すように半絶縁性GaAl基板
130表面にドナーとなる不純*<S:或いはS等)を
選択的イオン打込み法によって n+層14.15,1
6、次いで能動層17.18に打込みを行なう。次いで
、5ooc以上の^温でアニールし、no層14,15
.16及び能動ノー17.18を形成する。イオン打込
みは09ノーの場合、150KeV、lXl0”m−”
、  能動ノーノ場合、125Ke■、5X10”m−
”相変である。次に、第6図(b)に示すように、アク
セプタとなる不純物(Be、 Mg、等)を選択的にイ
オン打込み191.た後、600C以上の温度でアニー
ルし、p/11120゜21を形成する。9層20.2
1の形成には50〜150Key、1×1011〜5×
1011cWI−1程度の条件である(9層20.21
は、図には表現されていないが別な断面において連結し
ている。)。そして、znを650C以上で高濃度(I
 Cl0cm″″2程度)拡散し、p層のオー建ツクコ
ンタクト領域22を形成する。最後に第6図(C)に示
すように、AUGe合金を全面被着後ホトリソグツフィ
ー技術を用いて加工し、バックゲート電極23.ソース
あるいはドレイン電極24,25.26を形成する。そ
の後、ゲート金属tTi、Cr、At等)を全面被着恢
、ホトリソグラフィ技術を用いて加工しゲート電極27
,28を形成する。
First, as shown in FIG. 6(a), n+ layers 14, 15, 1 are added to the surface of the semi-insulating GaAl substrate 130 by selective ion implantation to impurity *<S (or S, etc.) as donors.
6. Then implant the active layer 17,18. Next, annealing is performed at a temperature of 5ooc or higher to form the NO layers 14 and 15.
.. 16 and active no. 17.18. Ion implantation is 150KeV, lXl0"m-" for 09 No.
, In the case of active nono, 125Ke■, 5X10"m-
Next, as shown in Figure 6(b), impurities (Be, Mg, etc.) that will serve as acceptors are selectively ion-implanted (191), and then annealed at a temperature of 600C or higher. Form p/11120°21.9 layers 20.2
50 to 150 keys to form 1, 1 x 1011 to 5 x
The conditions are about 1011cWI-1 (9 layers 20.21
Although not shown in the figure, they are connected in a different cross section. ). Then, zn was heated to a high concentration (I
Cl is diffused to form an open contact region 22 of the p layer. Finally, as shown in FIG. 6(C), after the AUGe alloy is deposited on the entire surface, it is processed using photolithography technology to form the back gate electrode 23. Source or drain electrodes 24, 25, and 26 are formed. Thereafter, a gate metal (Ti, Cr, At, etc.) is deposited on the entire surface and processed using photolithography technology to form a gate electrode 27.
, 28.

第6図(C)のA領域がP−FET、B領域が通常のF
ETの領域を示している。なお、23はP −FETの
埋込み層20の電位を制御し、P −FBTの閾電圧値
を制御するための電極である。回路構成は第4図(或い
は第5図(a)〜(d))に示した如きものとなす。
In Figure 6(C), area A is a P-FET, and area B is a normal FET.
The area of ET is shown. Note that 23 is an electrode for controlling the potential of the buried layer 20 of the P-FET and controlling the threshold voltage value of the P-FBT. The circuit configuration is as shown in FIG. 4 (or FIGS. 5(a) to 5(d)).

又、逆導電型のPETを用いた回路の場合も同じ製造手
j−で行なえば良いことはいうまでもない。
It goes without saying that the same manufacturing method may be used for circuits using PET of the opposite conductivity type.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来のE/Dm成メモリ・セルの回路図、第
2図(a)は、従来のFETの断面図、第2図(b)、
 (C)はゲート部とその直下の能動層を示す断面図、
第3図(a)は、P−FETの平面図、(b)はA−A
′に旧う断面図、第4図(a)は、本発明によるE/D
栴成メモリ・セルの回路図、Φ)はP−FETの回路記
号を示す図、第5図(a)〜(d)は、本発明のの別な
E/Dll成メモリを示す回路図、第6図(a)〜(C
)は、本発明によるメモリ集積装置の製造手順を示す断
面図である。 1.27・・・ゲート電極、3,17.18・・・能動
層、6.7,24,25.26・・・ソースドレイン#
L極、8.13・・・半絶縁性QaA11基板、9,1
0,14゜15.16・・・ソース・ドレイン領域、1
1,20゜21・・・pfli埋込層、12.23・・
・バックゲート或¥]  1  図 ′¥3 z 邑 (久) ′yfJ3   図 (龍) (b) 1 4 日 (b、1 ソース 冨 5 図 (久) (b) %s  図 <C)
Fig. 1 is a circuit diagram of a conventional E/Dm memory cell, Fig. 2(a) is a cross-sectional view of a conventional FET, Fig. 2(b),
(C) is a cross-sectional view showing the gate part and the active layer directly below it;
Figure 3 (a) is a plan view of the P-FET, (b) is A-A
4(a) is a cross-sectional view of the E/D according to the present invention.
5(a) to 5(d) are circuit diagrams of another E/Dll memory of the present invention, Figure 6(a)-(C
) is a sectional view showing a manufacturing procedure of a memory integrated device according to the present invention. 1.27...Gate electrode, 3,17.18...Active layer, 6.7,24,25.26...Source drain #
L pole, 8.13... Semi-insulating QaA11 substrate, 9,1
0.14°15.16...source/drain region, 1
1,20°21... pfli buried layer, 12.23...
・Back gate or\] 1 Figure'\3 z Eup (Kyu) 'yfJ3 Figure (Dragon) (b) 1 4 days (b, 1 Source wealth 5 Figure (Ku) (b) %s Figure<C)

Claims (1)

【特許請求の範囲】[Claims] 交叉接続されたフリップ・フロップを有して成るスタチ
ック型メモリセルに於いて、少なくともその駆動用トラ
ンジスタとして能動層とは逆導電型半導体ノーを能動層
下部に設け、該半導体層を制御する電極を有する電界効
果トランジスタを用いることを特徴とする半導体メモリ
集積装置。
In a static memory cell having cross-connected flip-flops, a semiconductor node of a conductivity type opposite to that of the active layer is provided below the active layer as at least a driving transistor thereof, and an electrode for controlling the semiconductor layer is provided. A semiconductor memory integrated device characterized in that it uses a field effect transistor.
JP57011665A 1982-01-29 1982-01-29 Semiconductor memory integrated circuit Pending JPS58130560A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57011665A JPS58130560A (en) 1982-01-29 1982-01-29 Semiconductor memory integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57011665A JPS58130560A (en) 1982-01-29 1982-01-29 Semiconductor memory integrated circuit

Publications (1)

Publication Number Publication Date
JPS58130560A true JPS58130560A (en) 1983-08-04

Family

ID=11784274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57011665A Pending JPS58130560A (en) 1982-01-29 1982-01-29 Semiconductor memory integrated circuit

Country Status (1)

Country Link
JP (1) JPS58130560A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60127757A (en) * 1983-12-15 1985-07-08 Fujitsu Ltd Semiconductor memory device
JPS6184869A (en) * 1984-10-03 1986-04-30 Hitachi Ltd Semiconductor device
JPS61256770A (en) * 1985-05-08 1986-11-14 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Field effect transistor structural body
JPS62204650A (en) * 1986-03-05 1987-09-09 Hitachi Ltd Pb signal test system
JPS63129673A (en) * 1986-11-20 1988-06-02 Sony Corp Field effect transistor
JPS642369A (en) * 1987-06-24 1989-01-06 Nec Corp Compound semiconductor device
JPH08148672A (en) * 1994-11-17 1996-06-07 Nec Corp Hetero junction type of field effect transistor, and its manufacture
US5592013A (en) * 1994-10-12 1997-01-07 Mitsubishi Denki Kabushiki Kaisha Semiconductor device and method of fabricating the same
US5770873A (en) * 1984-10-05 1998-06-23 Hitachi, Ltd. GaAs single crystal as well as method of producing the same, and semiconductor device utilizing the GaAs single crystal
US5907502A (en) * 1996-06-29 1999-05-25 Hyundai Electronics Industries Co., Ltd. SRAM cell and method of manufacturing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5230178A (en) * 1975-09-03 1977-03-07 Hitachi Ltd Semiconductor unit
JPS5381087A (en) * 1976-12-27 1978-07-18 Fujitsu Ltd Gallium aresenide field effect transistor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5230178A (en) * 1975-09-03 1977-03-07 Hitachi Ltd Semiconductor unit
JPS5381087A (en) * 1976-12-27 1978-07-18 Fujitsu Ltd Gallium aresenide field effect transistor

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60127757A (en) * 1983-12-15 1985-07-08 Fujitsu Ltd Semiconductor memory device
JPS6184869A (en) * 1984-10-03 1986-04-30 Hitachi Ltd Semiconductor device
US5770873A (en) * 1984-10-05 1998-06-23 Hitachi, Ltd. GaAs single crystal as well as method of producing the same, and semiconductor device utilizing the GaAs single crystal
JPH0354868B2 (en) * 1985-05-08 1991-08-21
JPS61256770A (en) * 1985-05-08 1986-11-14 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Field effect transistor structural body
JPS62204650A (en) * 1986-03-05 1987-09-09 Hitachi Ltd Pb signal test system
JPS63129673A (en) * 1986-11-20 1988-06-02 Sony Corp Field effect transistor
JPS642369A (en) * 1987-06-24 1989-01-06 Nec Corp Compound semiconductor device
US5592013A (en) * 1994-10-12 1997-01-07 Mitsubishi Denki Kabushiki Kaisha Semiconductor device and method of fabricating the same
JPH08148672A (en) * 1994-11-17 1996-06-07 Nec Corp Hetero junction type of field effect transistor, and its manufacture
US5907502A (en) * 1996-06-29 1999-05-25 Hyundai Electronics Industries Co., Ltd. SRAM cell and method of manufacturing the same
US6204538B1 (en) 1996-06-29 2001-03-20 Hyundai Electronics Industries Co. Ltd. SRAM cell
US6372565B2 (en) 1996-06-29 2002-04-16 Hyundai Electronics Industries Co. Ltd. Method of manufacturing SRAM cell

Similar Documents

Publication Publication Date Title
US4772927A (en) Thin film FET doped with diffusion inhibitor
EP0488801A1 (en) Thin-film semiconductor device
US7224205B2 (en) Apparatus and method for improving drive-strength and leakage of deep submicron MOS transistors
JPS58130560A (en) Semiconductor memory integrated circuit
US4216490A (en) Static induction transistor
US7589386B2 (en) Semiconductor device and manufacturing method thereof
JPS61101080A (en) Field effect transistor
KR100805647B1 (en) Semiconductor device and manufacturing method thereof
JPH0493038A (en) Field-effect transistor
JPS61255051A (en) Semiconductor integrated circuit
JPS59191386A (en) Semiconductor device and manufacture thereof
JPH02224369A (en) Semiconductor device
JPH04282841A (en) Manufacture of semiconductor device
JPS6245164A (en) Semiconductor integrated circuit device
JPS5918679A (en) Semiconductor device
JPS58124276A (en) Schottky gate field effect transistor and manufacture thereof
JPS63281470A (en) Semiconductor device
JP3210533B2 (en) Method for manufacturing field effect transistor
KR950005490B1 (en) Enhancement/deplection type fet and its making method
JPH07161941A (en) Semiconductor device
JPH02226760A (en) Semiconductor logic circuit
JPH11204543A (en) Semiconductor device and manufacture thereof
JPS6213079A (en) Semiconductor integrated circuit device
JPH0278228A (en) Field-effect transistor
JPS62259472A (en) Semiconductor device