JPS61255051A - Semiconductor integrated circuit - Google Patents

Semiconductor integrated circuit

Info

Publication number
JPS61255051A
JPS61255051A JP9710285A JP9710285A JPS61255051A JP S61255051 A JPS61255051 A JP S61255051A JP 9710285 A JP9710285 A JP 9710285A JP 9710285 A JP9710285 A JP 9710285A JP S61255051 A JPS61255051 A JP S61255051A
Authority
JP
Japan
Prior art keywords
source
electrode
film
tantalum
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9710285A
Other languages
Japanese (ja)
Inventor
Kazutaka Kamitake
一孝 上武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP9710285A priority Critical patent/JPS61255051A/en
Publication of JPS61255051A publication Critical patent/JPS61255051A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0605Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits made of compound material, e.g. AIIIBV

Abstract

PURPOSE:To reduce element effective area and to improve high-resistance layer controllability by a method where in a lamination constituted of a tantalum film to serve as a stopper and a tantalum oxide film to serve as a high- resistance layer is formed on a part of the source or drain electrode of a Schottky gate FET. CONSTITUTION:On a semi-insulating GaAs substrate 1, an n-type enhancement layer 2 is formed, for the building of a gate electrode 5, source and drain ohmic electrodes 3 and 4, for a Schottky gate FET. An insulating film 6 is formed made of CVD-SiO2 or the like, whereafter an opening is provided in the insulating film 6 for the source ohmic electrode 3. Next, the entirety of the substrate 1 is covered with a tantalum oxide film (element high-resistance section) 8. The formation of the required thickness of a tantalum film 7. A source electrode 10 and a drain electrode 11 are then formed respectively by photolighography and by reactive dry etching. This design reduces element effective area and improves the controllability of its high-resistance layer.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はシ1ットキ接合型の化合物半導体集積回路に関
し、特に素子実効面積を極めて小さくして高密度実装を
行う半導体集積回路に関するものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a single-junction type compound semiconductor integrated circuit, and more particularly to a semiconductor integrated circuit that achieves high-density packaging by extremely reducing the effective area of elements. .

(従来の技術) 最近、化合物半導体装置、l!!l1cGakBシロッ
トキ接合型電界効果トランジスタ(以下GaAsMES
FETと略す)やGaAJ As等ノへテロ接合を用い
る化合物半導体集積回路は、その高速性。
(Prior Art) Recently, compound semiconductor devices, l! ! l1cGakB Sirotki junction field effect transistor (hereinafter referred to as GaAsMES)
Compound semiconductor integrated circuits that use heterojunctions such as FETs and GaAJAs are known for their high speed.

低消費電力化、耐放射線損傷等の点から注目され活発に
開発が行なわれている。単体レベル(SSIレベル)で
の化合物半導体集積回路装置は、シリコンデバイスに比
べて電子移動度が大きく、10’Ω−二以上の所謂半絶
縁性基板が得られ、デバイス構造が簡単である等のため
その高速性、低消費電力性等が証明されつつある。しか
しながら、数100〜数1000素子、さらlこは致方
素子レベルの中規模集積回路から大規模集積回路になる
とGaAs MESFET自身の利得がシリコンバイポ
ーラトランジスタ等の利得に比べて小さいため。
It is attracting attention due to its low power consumption and resistance to radiation damage, and is being actively developed. Compound semiconductor integrated circuit devices at the single-unit level (SSI level) have higher electron mobility than silicon devices, can provide so-called semi-insulating substrates of 10'Ω-2 or more, and have simple device structures. Therefore, its high speed, low power consumption, etc. are being proven. However, when moving from a medium-scale integrated circuit to a large-scale integrated circuit with several hundred to several thousand elements, or even a single element, the gain of the GaAs MESFET itself is smaller than that of a silicon bipolar transistor or the like.

配線容量が増加したり、ファンアウトが増加したりする
と急激に高集積回路装置としてその高速性が損なわれる
If the wiring capacitance increases or the fan-out increases, the high-speed performance of a highly integrated circuit device will be rapidly impaired.

これらの問題を解決するために1例えば高い相互コンダ
クタンス素子の製造方法を用いたりして単体素子自身の
性能を向上させると共に、回路面からの検討も活発に行
われている。
In order to solve these problems, for example, methods of manufacturing high mutual conductance elements are used to improve the performance of the single element itself, and studies from the circuit aspect are also being actively conducted.

このGaAs MESFETを用いて構成されるゲート
回路として第5図(a)〜(d)に示す回路がある。
There are circuits shown in FIGS. 5(a) to 5(d) as gate circuits constructed using this GaAs MESFET.

図において、第5図(a)はデプレッシ欝ン型PETを
用いて二型源(VDD 、−VSs )  により動作
するバッファドPET論理回路(BFL:Buffer
edFET  Logic) 、第5図中)は同じとデ
プレッシ!1!FF1tT、 二型[(Vnn、−Vs
s)’lいたシ曹ットキダイオードによるFET論理回
路(5DFT ; 5chottky  DiOdes
  FBT  LogiC)。
In the figure, FIG. 5(a) shows a buffered PET logic circuit (BFL: Buffer
edFET Logic), in Figure 5) are the same and depress! 1! FF1tT, type 2 [(Vnn, -Vs
s) FET logic circuit using 5chottky diodes (5DFT; 5chottky DiOdes)
FBT LogiC).

第5図(C)はエンハンスメント、デプレツシ璽ン型F
’ETを用いて1電源を用いた低ピンチオフPgT論理
回路、(LPFL;Low  Pinchoff Lo
gic)、第5図し)はエンハンスメント型FETを用
いて1電源からなる直接結合F′ET論理回路(DCF
L;Direct  Coupled  FET Lo
gic ) テある。
Figure 5 (C) shows enhancement and depression type F.
'Low Pinchoff PgT logic circuit using one power supply using ET, (LPFL;
gic), Figure 5) uses enhancement type FETs to create a direct coupled F'ET logic circuit (DCF) consisting of one power supply.
L; Direct Coupled FET Lo
gic) There is.

これらの回路中、単一電源で簡単な回路構成がとれ消費
電力も小さく素子占有面積が小さくとれて高集積化に向
いた回路は第5図(d)のDCFL回路である。一般に
、DCFL回路の内でも負荷にノーマリオンFETを用
いたE/Dゲート回路。
Among these circuits, the DCFL circuit shown in FIG. 5(d) is suitable for high integration because it has a simple circuit configuration using a single power supply, consumes little power, and occupies a small area. Generally, among DCFL circuits, E/D gate circuits use normally-on FETs as loads.

すなわち第5図(d)の負荷にノーマリオンFET駆動
用にノーマリオフFETを用いたDCFL回路が、負荷
に高抵抗を用いたE/Rゲート回路より素子面積が小さ
くできること、及びE/Rゲート回路における高抵抗層
制御性の難かしさりために専ら検討されている。
That is, the DCFL circuit using a normally-off FET for driving a normally-on FET as the load shown in FIG. 5(d) can have a smaller element area than the E/R gate circuit using a high resistance as the load, and This method has been studied exclusively because of the difficulty in controlling the high resistance layer in the conventional method.

これらの集積回路を化合物半導体基板上に製造するには
、高い均一性と各デバイスの最適化とが可能なイオン注
入法が用いられているが、一般に用いられているイオン
注入技術やデバイス製造技術で、例えばGa入s Mg
5FETのエンハンスメント型FBTとデプレッシlン
型FETとを用いたE/Dゲート回路を用いて所望のピ
ンチオフ電圧内に制御して集積回路を製造することは至
難の業であり、またコントロールできたとしても素子占
有面積が多きく、−チップ内での本均−性等に基づ(不
良や特性劣化を防ぐことが困難である。
To manufacture these integrated circuits on compound semiconductor substrates, ion implantation is used, which allows for high uniformity and optimization of each device.However, commonly used ion implantation and device manufacturing techniques So, for example, Ga containing Mg
It is extremely difficult to manufacture an integrated circuit using an E/D gate circuit using a 5FET enhancement type FBT and a depressing type FET by controlling the pinch-off voltage within a desired range, and even if control is possible, However, the device occupies a large area, and it is difficult to prevent defects and characteristic deterioration based on uniformity within the chip.

また、E/几ゲート回路を同様に製造するとしても、今
度は高抵抗層をG a A s基板上にコントロールし
て製作する為には、Gaps等の化合物半導体で特有の
問題である表面空乏層の影参や電子の速度飽和の問題が
あり(G a A sでは3KV/cm程度の電界がか
かると抵抗素子として動作しなくなる)、高抵抗層の制
御性及び抵抗面積の縮少化には並々ならぬ問題と限界が
ある。
Furthermore, even if an E/F gate circuit is manufactured in the same way, in order to control and manufacture a high resistance layer on a GaAs substrate, surface depletion, which is a problem specific to compound semiconductors such as Gaps, must be avoided. There are problems with layer shadows and electron velocity saturation (in GaAs, if an electric field of about 3KV/cm is applied, it will no longer function as a resistance element), and it is difficult to control the high resistance layer and reduce the resistance area. has extraordinary problems and limitations.

(発明の目的) 本発明の目的は、このようなE/Rゲート回路等におけ
る素子面積を極めて小さくさせると共に、高抵抗層を制
御性良く、しかもGaAs結晶特有の問題点も回避でき
る半導体集積回路を提供することにある。
(Objective of the Invention) The object of the present invention is to provide a semiconductor integrated circuit that can extremely reduce the element area in such E/R gate circuits, have good controllability of the high resistance layer, and avoid problems specific to GaAs crystals. Our goal is to provide the following.

(発明の構成) 本発明の半導体集積回路の構成は、電界効果トランジス
タのソース電極上またはドレイン電極上の一部領域に、
タンタル酸化膜を高比抵抗導電膜としてまた下地電極と
の高温熱処理時等に相互反応を防止して安定に個々の素
子機能を働らかせるためのストッパ層としてのタンタル
金属膜と高抵抗層としてのタンタル酸化膜の多層構造を
形成することにより、素子実効面積を小さくし、例えば
E/R型ゲート回路ではエンハンスメント型FBT−個
分に相当する面積で回路を構成できるようにしたことを
%微とする。
(Structure of the Invention) The structure of the semiconductor integrated circuit of the present invention is such that in a partial region on the source electrode or the drain electrode of the field effect transistor,
The tantalum oxide film is used as a high-resistance conductive film, and the tantalum metal film and high-resistance layer are used as a stopper layer to prevent mutual reactions with the underlying electrode during high-temperature heat treatment and allow each device to function stably. By forming a multilayer structure of tantalum oxide films, the effective area of the device can be reduced, and for example, in an E/R type gate circuit, it is possible to construct a circuit with an area equivalent to an enhancement type FBT. shall be.

(発明の原理) 一般に、タンタル酸化膜は高誘電率の絶縁膜として使用
されている。このタンタル酸化膜は、反応性直流スパッ
タを用いてタンタル金属を酸素雰囲気下でスパッタする
ことにより、被着させることができる。この場合、その
被着速度と酸素分圧との関係は、第2図に示すように、
所定の酸素分圧(A)になると被着速度が急激に下がる
臨界酸素分圧が存在する。この臨界酸素分圧Aは被着す
る装置の種類や形状及び被着条件1例えば下地加熱温度
、アルゴン流量、パワー他によっても異なって(る。
(Principle of the Invention) Generally, a tantalum oxide film is used as a high dielectric constant insulating film. This tantalum oxide film can be deposited by sputtering tantalum metal in an oxygen atmosphere using reactive DC sputtering. In this case, the relationship between the deposition rate and oxygen partial pressure is as shown in Figure 2.
There is a critical oxygen partial pressure at which the deposition rate rapidly decreases at a predetermined oxygen partial pressure (A). This critical oxygen partial pressure A varies depending on the type and shape of the deposition apparatus and deposition conditions 1, such as substrate heating temperature, argon flow rate, power, etc.

一般に、この臨界酸素外圧入より低い酸素分圧で被着し
たタンタル酸化膜は、絶縁物としての化学量論理組成よ
り酸素が少ないため、絶縁物というよりは高抵抗体とし
て機能する。
In general, a tantalum oxide film deposited at an oxygen partial pressure lower than this critical oxygen intrusion has less oxygen than the stoichiometric composition of an insulator, so it functions as a high-resistance material rather than an insulator.

本発明は、このような高抵抗体としてのタンタル酸化膜
を垂直方向の抵抗素子としてGaAsMESFET  
のソース電極又はドレイン電極上に構成することにより
、従来E/R型ゲート回路構等で問題となっていたGa
As等化合物半導体固有の問題をなくし、しかも素子占
有面積を極端に小さくして高集積規模のDCFL等の回
路構成を有利に配設することができる。
The present invention uses such a tantalum oxide film as a high resistance material as a vertical resistance element in a GaAs MESFET.
By configuring the source electrode or drain electrode on the source or drain electrode, Ga
Problems specific to As compound semiconductors can be eliminated, the area occupied by the device can be extremely reduced, and circuit configurations such as DCFLs on a highly integrated scale can be advantageously arranged.

(実施例) 以下、本発明の実施例について図面を参照にして説明す
る。
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings.

第1図(a)〜(f)は本発明の一実施例を製造工程順
に示したE/R型ゲート回路のGaAs MESFBT
の断面図である。
FIGS. 1(a) to 1(f) show an example of the present invention in the order of manufacturing steps of a GaAs MESFBT of an E/R type gate circuit.
FIG.

まず、第1図(a)に示す様に、半絶縁性GaAs基板
1上にn型エンハンスメント(Enhance men
t)層2を設け、エンハンスメント型シ1ットキゲート
FBTのゲート電極5及びソース、ドレインオーミック
コンタクト層3,4(例えば入u G e/N i等)
が形成される。次に、第1図(b)に示す様に、CV 
D S iOz等の絶縁膜6を被會随にソース′シ極部
3のみ通常用いられる写真蝕刻法と絶縁膜エツチング方
法により絶縁膜6に開孔を設ける。次に。
First, as shown in FIG. 1(a), an n-type enhancement layer is formed on a semi-insulating GaAs substrate 1.
t) Layer 2 is provided, and the gate electrode 5 and source and drain ohmic contact layers 3 and 4 (for example, input U G e/N i, etc.) of the enhancement type switching gate FBT are provided.
is formed. Next, as shown in FIG. 1(b), CV
An insulating film 6 made of D SiOz or the like is coated, and holes are formed in the insulating film 6 only in the source and the cathode portions 3 by the commonly used photolithography and insulating film etching methods. next.

この基板全面に高抵抗タンタル酸化膜8を、第2図に示
したような所望の酸素分圧(例えば、臨界酸素分圧入以
下)で被着せしめる。この際、先づタンタル金属膜7を
所望厚さ被着後にタンタル酸化膜8を所望厚さ被着せし
める。
A high-resistance tantalum oxide film 8 is deposited on the entire surface of the substrate at a desired oxygen partial pressure (for example, below the critical oxygen partial pressure) as shown in FIG. At this time, first, tantalum metal film 7 is deposited to a desired thickness, and then tantalum oxide film 8 is deposited to a desired thickness.

その後に第1図(C)に示すように、写真蝕刻法及び反
応性ドライエツチング、例えばフレオンガス。
This is followed by photolithography and reactive dry etching, such as Freon gas, as shown in FIG. 1C.

フレオンガスに酸素を微量混入せしめた混合ガス等で蝕
刻して、@1図(d)に示した様に、オーミック電極3
上にタンタル膜、酸化膜7.8を得る。
The ohmic electrode 3 is etched with a mixed gas containing a small amount of oxygen in Freon gas, as shown in Figure 1 (d).
A tantalum film and an oxide film 7.8 are obtained on top.

この後、第1図(e)に示すように高抵抗素子の上部電
極とソース電極10及びドレイン電極11を形成するた
めに、絶縁膜6の開孔を従来と同様に行なう。この場合
の素子の断面図は、第1図(e)の様であるが、E/R
fiゲート回路の平面図は、例えば第3図に示す様にな
る。
Thereafter, as shown in FIG. 1(e), in order to form the upper electrode, source electrode 10, and drain electrode 11 of the high-resistance element, holes are made in the insulating film 6 in the same manner as in the conventional method. The cross-sectional view of the element in this case is as shown in Fig. 1(e), but E/R
A plan view of the fi gate circuit is shown in FIG. 3, for example.

続いてソース、ドレイン電極10.11及び高抵抗素子
の上部電極としてチタン(Ti)、白金、金等の電極金
属をスパーター法等とより被着した後、通常行なわれて
いる写真蝕刻法とイオンシリン法等により蝕刻して、第
1図(f)に示すよう形成される。
Next, electrode metals such as titanium (Ti), platinum, gold, etc. are deposited as the source and drain electrodes 10.11 and the upper electrodes of the high-resistance elements by a sputtering method, etc., and then photolithography and ion deposition are carried out using the conventional photolithography method. Etching is performed using a cylindrical method or the like to form the structure shown in FIG. 1(f).

以上説明したとおり、本発明によれば、高抵抗素子を平
面抵抗素子として用いないで垂直方向素子として両端子
間の電極をFET素子のソース又はドレイン電極と一部
共用して用いることにより、素子実効面積を極端に小さ
く、しかもG a A s 特有の表面空乏層の影響や
電子の速度飽和現象等の問題を回避してE/R型DCF
L回路を製造することが出来る。
As explained above, according to the present invention, the high resistance element is not used as a planar resistance element, but is used as a vertical element, with the electrode between both terminals partially sharing the source or drain electrode of the FET element. The E/R type DCF has an extremely small effective area and avoids problems such as the effect of the surface depletion layer and the electron velocity saturation phenomenon that are unique to GaAs.
L circuits can be manufactured.

また、多層膜(7,8)の垂直方向高抵抗素子を形成す
る場合に、タンタル被膜7を形成後、100℃〜100
0℃の酸化性雰囲気中にて所定時間熱処理を施すことに
よって形成されるタンタル酸化膜も、誘電体としての化
学量論組成よりズしてタンタル金属過剰の酸化物となる
為に高抵抗体として機能する。
In addition, when forming a vertical high resistance element of the multilayer film (7, 8), after forming the tantalum film 7,
A tantalum oxide film formed by heat treatment for a predetermined time in an oxidizing atmosphere at 0°C also deviates from its stoichiometric composition as a dielectric and becomes an oxide with an excess of tantalum metal, so it cannot be used as a high-resistance material. Function.

(発明の効果) 本発明によれば、従来のElD型DCFL回路を使用す
る場合に比べて素子実効面積は単位ゲートでは50%程
度縮少され、またスタテックメモリ等を第4図に示す様
な回路構成でセル形成を行なうとすれば、30〜50%
その実効面積が縮少されることになる。
(Effects of the Invention) According to the present invention, the effective area of a device can be reduced by about 50% for a unit gate compared to the case of using a conventional ElD type DCFL circuit, and static memory etc. can be reduced by about 50% as shown in FIG. If a cell is formed with a similar circuit configuration, 30 to 50%
Its effective area will be reduced.

また、本発明は、本実施例のG a A sを含む化合
物半導体集積回路によるDCFL回路のみではな(、ア
ナログICでも、また化合物半導体集積回路に限定され
ることなく、シリコンMO8IC、シリコンバイポーラ
LCにも応用可能であり、高抵抗素子素子占有面積を小
さくして集積化する場合に利用できる。
Furthermore, the present invention is applicable not only to DCFL circuits based on compound semiconductor integrated circuits including GaAs of this embodiment (but also to analog ICs, and is not limited to compound semiconductor integrated circuits, but also silicon MO8ICs, silicon bipolar LCs). It can also be applied to the case where the area occupied by a high resistance element is reduced and integrated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜げ)は本発明の一実施例を製造工程順に
示した素子の断面図、第2図は第1図の工程における酸
素分圧と被着速度との関係を示す特性図、W、3図は第
1図のE/R型ゲート回路の場合の平面図、第4図は第
1図の回路として用いられるスタティックメモリの回路
図、第5図(a)〜(d)は一般のゲート回路の各種回
路図である。図において1・・・・・・半絶縁性GaA
s基板、2・・・・・・nliエンハンスメント層、3
・・・・・・ソースオーミック電極、4・・・・・・ド
レインオーミック電極、5・・・・・・ゲート電極。 6・・・・・・CVD8i0zなどの絶縁膜、7・・・
・・・タンタル膜、8・・・・・・タンタル酸化膜(高
抵抗素子部)、9・・・・・・フォトレジスト、10・
・・・・・ソース1他、11・・・・・・ドレイン′隠
極、13・・・・・・ソースt=11i11孔部、14
・・・・・・ドレイン電極開口部である。 ^べへ 叱       悌       0 棄分万 Vss 第5図
Figures 1 (a) to (e) are cross-sectional views of an element showing an example of the present invention in the order of manufacturing steps, and Figure 2 is a characteristic showing the relationship between oxygen partial pressure and deposition rate in the process of Figure 1. 3 is a plan view of the E/R type gate circuit in FIG. 1, FIG. 4 is a circuit diagram of a static memory used as the circuit in FIG. 1, and FIGS. 5(a) to (d) ) are various circuit diagrams of general gate circuits. In the figure, 1... Semi-insulating GaA
s substrate, 2...nli enhancement layer, 3
......Source ohmic electrode, 4...Drain ohmic electrode, 5...Gate electrode. 6... Insulating film such as CVD8i0z, 7...
... Tantalum film, 8 ... Tantalum oxide film (high resistance element part), 9 ... Photoresist, 10.
... Source 1 and others, 11 ... Drain' hidden pole, 13 ... Source t = 11i11 hole, 14
. . . This is the drain electrode opening. ^Behe scolding 悌 0 Abandonment million Vss Figure 5

Claims (1)

【特許請求の範囲】[Claims] 電界効果トランジスタのソースまたはドレイン電極上の
一部領域にストッパ層となるタンタル金属膜と高抵抗層
となるタンタル酸化膜とを積層して形成することにより
、素子実効面積を小さくしたことを特徴とする半導体集
積回路。
A feature of the field effect transistor is that the effective area of the device is reduced by laminating a tantalum metal film that serves as a stopper layer and a tantalum oxide film that serves as a high resistance layer in a partial region on the source or drain electrode of the field effect transistor. semiconductor integrated circuits.
JP9710285A 1985-05-08 1985-05-08 Semiconductor integrated circuit Pending JPS61255051A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9710285A JPS61255051A (en) 1985-05-08 1985-05-08 Semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9710285A JPS61255051A (en) 1985-05-08 1985-05-08 Semiconductor integrated circuit

Publications (1)

Publication Number Publication Date
JPS61255051A true JPS61255051A (en) 1986-11-12

Family

ID=14183249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9710285A Pending JPS61255051A (en) 1985-05-08 1985-05-08 Semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPS61255051A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5536971A (en) * 1992-10-28 1996-07-16 Matsushita Electronics Corporation Semiconductor device having a hollow around a gate electrode and a method for producing the same
JP2008108840A (en) * 2006-10-24 2008-05-08 Mitsubishi Electric Corp Semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5536971A (en) * 1992-10-28 1996-07-16 Matsushita Electronics Corporation Semiconductor device having a hollow around a gate electrode and a method for producing the same
US5559046A (en) * 1992-10-28 1996-09-24 Matsushita Electronics Corporation Semiconductor device having a hollow around a gate electrode and a method for producing the same
JP2008108840A (en) * 2006-10-24 2008-05-08 Mitsubishi Electric Corp Semiconductor device

Similar Documents

Publication Publication Date Title
US7339187B2 (en) Transistor structures
US7888207B2 (en) Transistor structures and methods for making the same
US3514676A (en) Insulated gate complementary field effect transistors gate structure
JPS58130560A (en) Semiconductor memory integrated circuit
JPS61255051A (en) Semiconductor integrated circuit
JP3121676B2 (en) Thin film transistor and static RAM using thin film transistor
JPS60251666A (en) Thin-film transistor
US5866921A (en) Lateral SRAM transistor circuits and methods of fabrication therefor
JPS61255052A (en) Semiconductor integrated circuit
JPS6395658A (en) Semiconductor device
JPH04370978A (en) Quantum-effect type field-effect transistor
JPS6212212A (en) Superconduction circuit
JPS6197868A (en) Manufacture of semiconductor ic
JPS6245164A (en) Semiconductor integrated circuit device
JPH01133381A (en) Superconducting transistor
JPS63283177A (en) Superconducting transistor
JPH04364781A (en) Semiconductor device
JPS61110481A (en) Superconductive transistor
JPS6329594A (en) Superconducting transistor integrated circuit
JPS60102771A (en) Field effect transistor
JPH01149472A (en) Thin film transistor and driving method thereof
JPH04116875A (en) Superconducting element and its manufacture
JPH04127587A (en) Manufacture of superconductive element
JPH04212447A (en) Compound semiconductor integrated circuit device and its manufacture
JPS61292967A (en) Compound semiconductor device