JPH01133381A - Superconducting transistor - Google Patents

Superconducting transistor

Info

Publication number
JPH01133381A
JPH01133381A JP62291088A JP29108887A JPH01133381A JP H01133381 A JPH01133381 A JP H01133381A JP 62291088 A JP62291088 A JP 62291088A JP 29108887 A JP29108887 A JP 29108887A JP H01133381 A JPH01133381 A JP H01133381A
Authority
JP
Japan
Prior art keywords
films
superconducting
gap
semiconductor
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62291088A
Other languages
Japanese (ja)
Inventor
Michihiro Inoue
道弘 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62291088A priority Critical patent/JPH01133381A/en
Publication of JPH01133381A publication Critical patent/JPH01133381A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To integrate an element configuration by providing a first semiconductor layer through an insulating layer on thin superconducting films which become source and drain regions formed oppositely at a narrow gap on a semiconductor substrate, forming a second semiconductor region buried in the gap between the films and connected to the first semiconductor layer, and providing a gate region on the semiconductor layer above the gap. CONSTITUTION:After thin superconducting films 2, 3 are deposited by a sputtering method or the like on a silicon substrate 1, silicon dioxide films 5, 6 are deposited, and patterned by an ion beam etching method or the like with a mask. Thereafter, silicon is grown by a molecular beam epitaxy method. In this case, a single crystalline silicon 4 is grown in the gap between superconducting regions in contact with the substrate 1, and polycrystalline films 7, 8 are grown on the films 5, 6. Thereafter, an aluminum electrode which becomes a gate is formed on the silicons 4 and 7, 8. Thus, since source, drain and gate electrodes can be all formed on the substrate, they can be easily integrated.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は超電導素子に係り、特に半導体と超電導体とを
組み合わせた3端子超電導トランジスタに関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to superconducting elements, and particularly to a three-terminal superconducting transistor that combines a semiconductor and a superconductor.

従来の技術 超電導現象を利用し、高速動作を実現しようという3端
子デバイスは、半導体トランジスタと同様バイポーラ型
、FET型のいずれも提案されているが、FET型は構
造が簡単で、高性能化に将来有望と考えられ石。第2図
に従来提案されている超電導FETを示す。第2図にお
いて、11はシリコン等の半導体、12,13は超電導
領域で、極めて狭い間隔で11の半導体上に設けられて
いる。14はアルミ等の金属ゲートで、超電導体の間隙
の直下に半導体基板を裏面より凹部を作って形成されて
いる。この素子の動作は、せまい間隙をはさんだ2つの
超電導体(12,13)の波動関数がしみ出してシリコ
ン基板11に電流が流れる。この電流を間隙に接近させ
たゲート14に印加した電圧で制御し、電流値を増減さ
せることができるというものである。
Conventional technology Three-terminal devices that utilize the superconducting phenomenon to achieve high-speed operation have been proposed in both bipolar and FET types, similar to semiconductor transistors, but the FET type has a simple structure and is not suitable for high performance. A stone considered to have a promising future. FIG. 2 shows a conventionally proposed superconducting FET. In FIG. 2, 11 is a semiconductor such as silicon, and 12 and 13 are superconducting regions, which are provided on the semiconductor 11 at extremely narrow intervals. Reference numeral 14 denotes a metal gate made of aluminum or the like, which is formed by making a recess from the back side of the semiconductor substrate directly under the gap between the superconductors. In the operation of this element, the wave functions of the two superconductors (12, 13) sandwiched by a narrow gap leak out, causing current to flow in the silicon substrate 11. This current is controlled by a voltage applied to the gate 14 close to the gap, and the current value can be increased or decreased.

発明が解決しようとする問題点 しかしながらこの構造では、図示されるように、裏面か
らゲートを形成するために、集積回路化が不可能である
Problems to be Solved by the Invention However, with this structure, as shown in the figure, since the gate is formed from the back side, it is impossible to integrate the structure into an integrated circuit.

本発明はかかる問題点に鑑みてなされたもので、高速動
作が可能な超電導トランジスタを実現するにあたり、集
積回路化が可能となる素子構造を提供することを目的と
している。
The present invention has been made in view of these problems, and an object of the present invention is to provide an element structure that can be integrated into an integrated circuit in order to realize a superconducting transistor capable of high-speed operation.

問題点を解決するための手段 本発明は上記問題点を解決するため、半導体基板と、そ
の根基上に狭い間隙を有して対抗する超電導薄膜で形成
されたソースおよびドレイン領域と、前記ソースおよび
ドレイン領域の上部に絶縁層を介して設けた第1の半導
体層と、超電導薄膜の間隙を埋めかつ第1の半導体層と
接続される第2の半導体゛輝環と、前記間隙の上部の半
導体層上に設けたゲート領域とから構成した超電導トラ
ンジスタを提供するものである。
Means for Solving the Problems In order to solve the above problems, the present invention includes a semiconductor substrate, a source and drain region formed of superconducting thin films facing each other with a narrow gap on the base thereof, and a first semiconductor layer provided above the drain region via an insulating layer; a second semiconductor bright ring that fills the gap between the superconducting thin films and is connected to the first semiconductor layer; and a semiconductor above the gap. The present invention provides a superconducting transistor comprising a gate region provided on a layer.

作  用 本発明は上記した構成により、従来のFETタイプの超
電導トランジスタに比べて、ソース電極。
Function: Due to the above-described structure, the present invention has a lower source electrode than a conventional FET type superconducting transistor.

ドレイン電極、ゲート電極全てを基板の上部に形成する
ことが可能なため、集積回路化が容易に実現でき、その
結果、超電導トランジスタの実用化を可能とするもので
ある。
Since both the drain electrode and the gate electrode can be formed on the top of the substrate, integrated circuits can be easily realized, and as a result, superconducting transistors can be put to practical use.

実施例 第1図は本発明の実施例の超電導トランジスタの断面図
を示す。第1図において、1はシリコン基板、2はドレ
インとなる超電導薄膜、3はソースとなる超電導薄膜、
4は2,3の超電導領域間のギャップに設けた単結晶シ
リコン領域、5,6は二酸化シリコン等の絶縁膜、7,
8は多結晶シリコン領域である。9はアルミ等の金属で
形成されたゲート電極である。
Embodiment FIG. 1 shows a cross-sectional view of a superconducting transistor according to an embodiment of the present invention. In Figure 1, 1 is a silicon substrate, 2 is a superconducting thin film that becomes a drain, 3 is a superconducting thin film that becomes a source,
4 is a single crystal silicon region provided in the gap between superconducting regions 2 and 3, 5 and 6 are insulating films such as silicon dioxide, 7,
8 is a polycrystalline silicon region. 9 is a gate electrode made of metal such as aluminum.

次に簡単に実施例の超電導トランジスタの製造工程を示
す。まず超電導薄膜をシリコン基板1上にスパッタ法等
で堆積した後、さらに二酸化シリコン膜を堆積し、マス
クを用いてイオンビームエツチング法等によりパターン
形成を行う。その後、分子線エピクキ−法によりシリコ
ンを成長させる。
Next, the manufacturing process of the superconducting transistor of the example will be briefly described. First, a superconducting thin film is deposited on a silicon substrate 1 by sputtering or the like, then a silicon dioxide film is further deposited, and a pattern is formed by ion beam etching or the like using a mask. Thereafter, silicon is grown using the molecular beam epi-chip method.

この時シリコン基板1に接した超電導領域の間隙には単
結晶シリコンが成長し、二酸化シリコン膜上には多結晶
膜が成長することになる。その後、単結晶シリコン4お
よび多結晶シリコン7.8上にゲートとなるアルミ電極
を形成する。
At this time, single crystal silicon grows in the gap between the superconducting regions in contact with the silicon substrate 1, and a polycrystalline film grows on the silicon dioxide film. Thereafter, an aluminum electrode serving as a gate is formed on the single crystal silicon 4 and the polycrystalline silicon 7.8.

この構造の超電導トランジスタの動作は第2図に示した
従来の超電導トランジスタと同様電界効果型(FET型
)のトランジスタで、単結晶シリコン領域4にしみ出す
超電導体の波動関数をゲート電極9に印加した電圧でコ
ントロール、して電流の増減制御を行うものである。
The operation of the superconducting transistor with this structure is that it is a field effect type (FET type) transistor, similar to the conventional superconducting transistor shown in FIG. The current is increased or decreased by controlling the voltage.

発明の効果 したがって本発明によれば、従来のFET型の超電導ト
ランジスタに比べて、よシ簡単に集積回路が実現できる
。また、チャンネル領域となるゲート直下のシリコン領
域の膜厚を薄くコントロールできるためにゲート電界が
かがシやすく制御しやすいトランジスタを形成できる。
Effects of the Invention Therefore, according to the present invention, an integrated circuit can be realized more easily than the conventional FET type superconducting transistor. Furthermore, since the film thickness of the silicon region directly under the gate, which serves as the channel region, can be controlled to be thin, it is possible to form a transistor in which the gate electric field is easy to increase and control.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例の超電導トランジスタの断面図
、第2図は従来の超電導トランジスタの断面図である。 1・・・・・・シリコン基板、2,3・・・・・・超電
導層、4・・・・・・単結晶シリコン領域、6,6・・
・・・・絶縁膜、7゜8・・・・・・多結晶シリコン、
9・・・・・・ゲート電極。 9−−−デー)膚J1 第2図
FIG. 1 is a sectional view of a superconducting transistor according to an embodiment of the present invention, and FIG. 2 is a sectional view of a conventional superconducting transistor. 1... Silicon substrate, 2, 3... Superconducting layer, 4... Single crystal silicon region, 6, 6...
...Insulating film, 7゜8...Polycrystalline silicon,
9...Gate electrode. 9----day) Skin J1 Figure 2

Claims (1)

【特許請求の範囲】[Claims]  半導体基板と、その半導体基板上に狭い間隙を有して
対抗する超電導膜で形成されたソースおよびドレイン領
域と、前記ソースおよびドレイン領域の上部に絶縁層を
介して設けた第1の半導体層と、前記超電導薄膜の間隙
を埋め、前記第1の半導体層に接続される第2の半導体
領域と、前記間隙の上部に前記第1の半導体層および第
2の半導体領域を介して設けたゲート領域とを備えて成
る超電導トランジスタ。
A semiconductor substrate, source and drain regions formed of opposing superconducting films with a narrow gap on the semiconductor substrate, and a first semiconductor layer provided above the source and drain regions with an insulating layer interposed therebetween. , a second semiconductor region that fills the gap between the superconducting thin films and is connected to the first semiconductor layer; and a gate region provided above the gap via the first semiconductor layer and the second semiconductor region. A superconducting transistor comprising:
JP62291088A 1987-11-18 1987-11-18 Superconducting transistor Pending JPH01133381A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62291088A JPH01133381A (en) 1987-11-18 1987-11-18 Superconducting transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62291088A JPH01133381A (en) 1987-11-18 1987-11-18 Superconducting transistor

Publications (1)

Publication Number Publication Date
JPH01133381A true JPH01133381A (en) 1989-05-25

Family

ID=17764288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62291088A Pending JPH01133381A (en) 1987-11-18 1987-11-18 Superconducting transistor

Country Status (1)

Country Link
JP (1) JPH01133381A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5071832A (en) * 1988-10-25 1991-12-10 Seiko Epson Corporation Field effect type josephson transistor
US5514877A (en) * 1990-09-27 1996-05-07 Sumitomo Electric Industries, Ltd. Superconducting device and a method for manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5071832A (en) * 1988-10-25 1991-12-10 Seiko Epson Corporation Field effect type josephson transistor
US5514877A (en) * 1990-09-27 1996-05-07 Sumitomo Electric Industries, Ltd. Superconducting device and a method for manufacturing the same
US5683968A (en) * 1990-09-27 1997-11-04 Sumitomo Electric Industries, Ltd. Method for manufacturing a superconducting device

Similar Documents

Publication Publication Date Title
CA1088215A (en) Fabrication of power field effect transistors and the resulting structures
JP2798361B2 (en) Superconducting field effect device having grain boundary channel and method of manufacturing the same
US4697201A (en) Power MOS FET with decreased resistance in the conducting state
JP2637937B2 (en) Method for manufacturing field effect transistor
JPH03165575A (en) Thin film transistor and manufacture thereof
US5717222A (en) Superconducting device having an extremely thin superconducting channel formed of oxide superconductor material and method for manufacturing the same
US5621223A (en) Superconducting device having a reduced thickness of oxide superconducting layer and method for manufacturing the same
US5246877A (en) Method of manufacturing a semiconductor device having a polycrystalline electrode region
JPH01133381A (en) Superconducting transistor
EP0477063B1 (en) Superconducting device having a reduced thickness of oxide superconducting layer and method for manufacturing the same
CA2051778A1 (en) Method for manufacturing superconducting device having a reduced thickness of oxide superconducting layer and superconducting device manufactured thereby
JP3057770B2 (en) Method for manufacturing thin film transistor
JP2653092B2 (en) Complementary thin film transistor and method of manufacturing the same
JPH0230147A (en) Manufacture of thin film transistor
JP2645663B2 (en) Thin film semiconductor device and method of manufacturing the same
JPH06302826A (en) Insulated gate field-effect transistor and preparation thereof
JP2641978B2 (en) Superconducting element and fabrication method
JPS5914675A (en) Thin film transistor
JP3099450B2 (en) Semiconductor device and manufacturing method thereof
JPH05152332A (en) Mos transistor and manufacturing method thereof
JP2641966B2 (en) Superconducting element and fabrication method
JPH065935A (en) Superconductor device
JPH03106081A (en) Three-terminal superconducting element
JPH04127587A (en) Manufacture of superconductive element
JPH0770716B2 (en) Method for manufacturing semiconductor device