JPS5918679A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS5918679A
JPS5918679A JP12797982A JP12797982A JPS5918679A JP S5918679 A JPS5918679 A JP S5918679A JP 12797982 A JP12797982 A JP 12797982A JP 12797982 A JP12797982 A JP 12797982A JP S5918679 A JPS5918679 A JP S5918679A
Authority
JP
Japan
Prior art keywords
layer
region
gate electrode
source
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12797982A
Other languages
Japanese (ja)
Inventor
Koichiro Kotani
小谷 紘一郎
Takashi Mimura
高志 三村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP12797982A priority Critical patent/JPS5918679A/en
Publication of JPS5918679A publication Critical patent/JPS5918679A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To improve the reproducibility of characteristics of a semiconductor device and to reduce the rate of defects by forming different impurity densities of semiconductor regions which are contacted with a gate electrode from those of regions which are contacted with source and drain electrodes. CONSTITUTION:A no-addition GaAs buffer layer 12 and an N type layer 13 of 105X 10<17>cm<-3> in density are epitaxially formed on a semi-insulating GaAs substrate 11, and an AlN film 14 is superposed. Three-layer mask of photoresist 16, Ti 17 and Au 18 is formed on a region 15 to be formed with the gate electrode of an enhancement type FET, O ions are implanted by energy in the prescribed density, and the region is annealed at 600 deg.C for 20min. Since the annealing is performed at the temperature lower than the conventional annealing, no thermal deterioration occurs in a substrate. Then O ions are implanted to 1/2 or more of the thickness of the layer 12 in multistage, the mask is removed, and source electrodes 20, 21 of AuGe/Au, drain electrodes 22, 23 and gate electrodes 24, 25 of Ti-Pt-Au are formed as the conventional one. Since ion implantation is limited to the part directly under the gate electrode and low temperature treatment is performed, the source, drain and channel are maintained in preferable state of epitaxial layer, thereby improving the reproducibility of various characteristics and reducing the rate of defect.

Description

【発明の詳細な説明】 (a)  発明の゛技術分野 本発明は半導体装置に関し、特に化合物半導体よりなる
電界効果トランジスタ、特に電界効果トランジスタを含
む集積回路装置の構成に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field of the Invention The present invention relates to a semiconductor device, and more particularly to a field effect transistor made of a compound semiconductor, and particularly to the structure of an integrated circuit device including the field effect transistor.

(b)  技術の背景 情報処理装置等の能力の一層の向上のために。(b) Technology background To further improve the capabilities of information processing equipment, etc.

これに使用される半導体装置の高速化、低消費電力化及
び大容t4:化が強く要求され°Cいる。
There is a strong demand for higher speed, lower power consumption, and larger capacity of semiconductor devices used for this purpose.

現在はもっばらシリコン(St)半導体装置が実用化さ
れているが、  St半導体装置の高速化はキャリアの
移動度などの81の物性にょシ制約されるために、キャ
リアの移動度が81より邊に大きい化合物半導体を用い
て、高速化、低消費電力化された半導体装置を実現する
努力が重ねられているO 半導体装置に用いられる化合物半導体は現在■−V族化
合物が主体をなし1例えばガリウム・砒素(GaAs)
、インジウム・燐(InP)等の二元化合物結晶、及び
アルミニウム、・ガリウム・砒素(AlGaAs  )
 、インジウム・ガリウム・砒素・燐(InGaAsP
  )等の三元以上の化合物混晶などである。
Currently, most silicon (St) semiconductor devices are in practical use, but the speedup of St semiconductor devices is limited by 81 physical properties such as carrier mobility. Efforts are being made to realize semiconductor devices with higher speed and lower power consumption using large compound semiconductors.Currently, the compound semiconductors used in semiconductor devices are mainly made of ■-V group compounds, such as gallium.・Arsenic (GaAs)
, binary compound crystals such as indium/phosphorous (InP), and aluminum, gallium, arsenic (AlGaAs)
, indium, gallium, arsenic, phosphorus (InGaAsP
) and other ternary or higher compound mixed crystals.

■−V族化合物半導体を用いたトランジスタとしては、
これらの化合物半導体における少数キャリアの寿命が短
いことなどの理由によって現在電界効果トランジスタ(
以下FETと略称する)。
■-As a transistor using a V group compound semiconductor,
Due to the short lifetime of minority carriers in these compound semiconductors, field effect transistors (
(hereinafter abbreviated as FET).

特に基板を半絶縁性にして対地容量を小さくすることが
できる利点を活用するジョットキーバリア形FETもし
くは接合ゲート形FETが主として用いられている。
In particular, Jottky barrier type FETs or junction gate type FETs, which take advantage of the advantage of having a semi-insulating substrate to reduce ground capacitance, are mainly used.

(C)  従来技術と問題点 前記の半導体装置の均一性、再現性を向上し。(C) Conventional technology and problems To improve the uniformity and reproducibility of the semiconductor device mentioned above.

かつ信頼性を確保するためには、半導体結晶の欠陥を排
除し、かつ不純物濃度等が充分に制御されることが必要
である。しかるに1例えば半絶縁性GaAs基板は、単
結晶成長の際にこれを半絶縁性とするために現在導入さ
れているクロム(Cr)が成長中の時間的経過により、
また成長面内でも濃度差を生ずるために、仮に基板に直
接に不純物を導入するならば、その領域のキャリア濃度
はCrの濃度差の影響を受けて変動し易く、前記の要求
を満足することができない。
In addition, in order to ensure reliability, it is necessary to eliminate defects in the semiconductor crystal and to sufficiently control impurity concentration and the like. However, 1 For example, in a semi-insulating GaAs substrate, chromium (Cr), which is currently introduced to make it semi-insulating during single crystal growth, deteriorates over time during growth.
Furthermore, since a concentration difference occurs within the growth plane, if impurities were introduced directly into the substrate, the carrier concentration in that region would be likely to fluctuate due to the influence of the Cr concentration difference, making it difficult to satisfy the above requirements. I can't.

このために化合物半導体装置の活性領域が基板上に形成
されたエピタキシャル成長層に設けられまた活性層とす
るエピタキシャル成長層・と基板との間にバッファ層を
介在させることが多い。従って化合物半導体装置の活性
領域は、目的に従って形成された不純物濃度、導電型或
いは化合物組成の異なるエピタキシャル成長層の積層構
造内に配設されている。
For this reason, the active region of a compound semiconductor device is often provided in an epitaxial growth layer formed on a substrate, and a buffer layer is often interposed between the epitaxial growth layer serving as the active layer and the substrate. Therefore, the active region of a compound semiconductor device is arranged in a laminated structure of epitaxially grown layers having different impurity concentrations, conductivity types, or compound compositions formed according to the purpose.

従来性なわれている半導体装置の具体的な例として Q
aAs 化合物半導体を用いてショットキーハリアケ−
)で、エンハンスメン) (Enhance −men
t)形とディブリーシ、 :y (、[)eplet 
1on)形とのFETが同一基板上に形成された例を第
1図に断面図をもって示す。
Q: What is a specific example of a conventional semiconductor device?
Schottky Hariake using aAs compound semiconductor
), Enhance-men)
t) Shape and debrisi, :y (, [)eplet
FIG. 1 shows a cross-sectional view of an example in which a 1on) type FET is formed on the same substrate.

図において1は半絶縁性 QaAs基板、2は例えば気
相エピタキシャル成長法によって形成されたノンドープ
のGaAs  バッファ層、3は同様に形成された不純
物濃度0.8X10  (α 〕程度のn型GaAs層
、4はn型GaAS 層3内に形成された不純物濃度1
.5X 1017(crn−”:l程度のn型領域、5
は素子分離領域、6及び6′はゲート電極、7及び7′
はソース電極、8及び8′はドレイン電極である。
In the figure, 1 is a semi-insulating QaAs substrate, 2 is a non-doped GaAs buffer layer formed by, for example, vapor phase epitaxial growth, 3 is an n-type GaAs layer with an impurity concentration of about 0.8×10 (α) formed in the same way, and 4 is a semi-insulating QaAs substrate. is the impurity concentration 1 formed in the n-type GaAS layer 3
.. 5X 1017 (crn-”: n-type region of about l, 5
is an element isolation region, 6 and 6' are gate electrodes, and 7 and 7' are
is a source electrode, and 8 and 8' are drain electrodes.

m1図において、ゲート電極6によってn型QaAs 
層3をチャネル層として制御するFETはエンハンスメ
ント形、ゲート電極6′によってn型領域4f:チャネ
ル層として制御するFETはディプリーション形である
In the m1 diagram, n-type QaAs is formed by the gate electrode 6.
The FET in which the layer 3 is controlled as a channel layer is an enhancement type, and the FET in which the n-type region 4f is controlled as a channel layer by the gate electrode 6' is a depletion type.

本従来例の構造においては、不純物濃度の異なるエンハ
ンスメント形とディプリーション形とのチャネル領域を
同一エピタキシャル成長層に形成する方法として1通常
n型GaAs  層3をエピタキシャル成長せしめると
きに、この層の不純物濃度を、゛目的とする画形にそれ
ぞれ適合する不純物濃度のうち低い方の値であるエンノ
・シスメント形に適合する値に設定し、ディプリーショ
ン形FET管形成する領域全体に不純物のイオン注入を
行がい、半導体基体に加熱処理を施して注入された不純
物を活性化し、ディプリーション形に適合する不純物濃
度を与えている。
In the structure of this conventional example, as a method for forming enhancement type and depletion type channel regions with different impurity concentrations in the same epitaxial growth layer, 1. When epitaxially growing the normal n-type GaAs layer 3, the impurity concentration of this layer is is set to the lower value of the impurity concentrations that suit the desired image shape, which is the value that is compatible with the ennosisment shape, and the impurity ions are implanted into the entire region where the depletion type FET tube is to be formed. In this process, the semiconductor substrate is subjected to heat treatment to activate the implanted impurities and provide an impurity concentration compatible with the depletion type.

しかしながらイオン注入法によって不純物が導入された
結晶では、注入されたイオンとの衝突によって結晶格子
の損傷及び接合界面の乱れを生じ。
However, in crystals into which impurities are introduced by ion implantation, collisions with the implanted ions cause damage to the crystal lattice and disturbance of the bonding interface.

また不純物の濃度も統計的な変動幅をもって分布するた
めに、エピタキシャル成長の際に導入された不純物の分
布に比較すれば均−性等の点で劣つている。
Furthermore, since the impurity concentration is distributed with a statistical fluctuation range, it is inferior in terms of uniformity and the like compared to the distribution of impurities introduced during epitaxial growth.

注入されたイオンとの衝突による結晶の損傷は。Damage to the crystal due to collisions with implanted ions.

イオン注入後の加熱処理によって治療されるが必ずしも
完全ではなく、更に半導体基体全体についてこの加熱処
理による熱変性を生じている。
Although the problem is cured by heat treatment after ion implantation, it is not always completely cured, and furthermore, the entire semiconductor substrate is thermally denatured by this heat treatment.

これらの問題点のために、化合物半導体装置特にFET
を含む集積回路装置について、キャリア濃度が制御され
た領域の選択的形成方法の改善が必要と判断される。
Due to these problems, compound semiconductor devices, especially FETs,
It is judged that an improvement in the method for selectively forming regions with controlled carrier concentration is necessary for integrated circuit devices including the following.

(d)  発明の目的 本発明は、化合物半導体装置、特に電界効果トランジス
タを含む集積回路装置に関して、イオン注入法による結
晶及び界面の損傷ならびに不純物濃度偏差を制限するこ
とによシ、該半導体装置のソース領域及びドレイン領域
の抵抗率、伝達コンダクタンス等の特性、特にその再現
性の向上及び故障率の減少等を推進することを目的とす
る。
(d) Purpose of the Invention The present invention relates to compound semiconductor devices, particularly integrated circuit devices including field effect transistors, by limiting damage to crystals and interfaces and impurity concentration deviations caused by ion implantation. The purpose of this research is to improve the characteristics of source and drain regions such as resistivity and transfer conductance, particularly their reproducibility, and reduce failure rates.

(e)  発明の構成 本発明の前記目的は、半導体基体と該半導体基体上に形
成された半導体層と該半導体層上に配設されたゲート電
極、ソース電極及びドレイン電極とを備え、前記ゲート
電極に接する前記半導体層領域が、前記ソース電極、ド
レイン電極に接する半導体層領域とは異る不純物濃度と
されてなる半導体装置により達成される。
(e) Structure of the Invention The object of the present invention is to include a semiconductor substrate, a semiconductor layer formed on the semiconductor substrate, and a gate electrode, a source electrode, and a drain electrode disposed on the semiconductor layer; This is achieved by a semiconductor device in which the semiconductor layer region in contact with the electrode has a different impurity concentration than the semiconductor layer region in contact with the source and drain electrodes.

(「)発明の実施例 以下本発明の実施例を製造工程とともに具体的に説明す
る。
(') EXAMPLES OF THE INVENTION Examples of the present invention will be specifically described below along with manufacturing steps.

第2図(a)乃至(d)はQaAs  ショットキーバ
リア形FETを含む集積回路装置に本発明を適用した実
施例を示す断面図である。
FIGS. 2(a) to 2(d) are cross-sectional views showing an embodiment in which the present invention is applied to an integrated circuit device including a QaAs Schottky barrier type FET.

第2図(a)参照 半絶縁性QaAs 基板11上に、厚さ1.5 〔μ+
n)程度のノンドープG a A S  バッファM4
12.不純物一度1.5X 1017〔crn−31程
度、厚さ0.3 Cμml程度のn型GaAs層13が
エピタキシャル成長さねた半導体基体を用いる。
Refer to FIG. 2(a), a semi-insulating QaAs substrate 11 with a thickness of 1.5 [μ+
n) non-doped G a A S buffer M4
12. A semiconductor substrate on which an n-type GaAs layer 13 of about 1.5×10 17 [crn-31 and a thickness of about 0.3 C μml is epitaxially grown with impurities is used.

ただし2本実施例のn型GaAs層13の不純物濃度1
5 X 1017[on−3]は、ディプリーション形
FETを形成するに適した不純物濃度′1r、選択した
ものである。
However, in two cases, the impurity concentration of the n-type GaAs layer 13 in this embodiment is 1.
5×1017[on-3] is the selected impurity concentration '1r suitable for forming a depletion type FET.

まずn型GaAS  層13面に接して例えば窒化アル
ミニウム(AIN)等によシ厚さ50 (nm)程度の
保護膜14を形成する。
First, in contact with the surface of the n-type GaAS layer 13, a protective film 14 made of aluminum nitride (AIN) or the like is formed to a thickness of about 50 (nm).

第2図(b)参照 エンハンスメント形FFJTを形成するために。See Figure 2(b) To form an enhancement type FFJT.

そのチャネル領域のキャリア濃度の制御を以下に説明す
る方法によって実施する。
The carrier concentration in the channel region is controlled by the method described below.

すなワチ、エンハンヌメント形FETのゲート電極を形
成する位置において、ゲート電極長にマスク合わせのた
めに必要とされる余裕を加えた領域15に限定して9例
えば酸素(0)イオンをドーズ量lXl0  〔cm 
 ]程度に、  100 CKeV)程I8のエネルギ
ーを与えてイオン注入を行なう。
In other words, at the position where the gate electrode of the enhancement type FET is to be formed, for example, oxygen (0) ions are dosed only in the region 15, which is the length of the gate electrode plus the margin required for mask alignment. Amount lXl0 [cm
], ion implantation is performed by applying an energy of I8 of about 100 CKeV).

なおこのキャリア濃度制御領域15以外のn型GaAs
層13に損傷を与えないために1本実施例に2いてはイ
オン注入の際のマスクとしては。
Note that n-type GaAs other than this carrier concentration control region 15
In order not to damage the layer 13, in this embodiment, it is used as a mask during ion implantation.

フォトレジスト(例えばAz1350J)膜16゜チタ
ン(T + )膜17及び金(Ate)膜18よシなる
積層構造のマスクを用いている。このマスクはフォトレ
ジスト膜16を剥離液等によって剥離除去することにJ
:って、容易に除去される。
A mask having a laminated structure consisting of a photoresist (for example, Az1350J) film 16°, a titanium (T + ) film 17, and a gold (Ate) film 18 is used. This mask is used to remove the photoresist film 16 using a stripping solution or the like.
: It is easily removed.

次いでイオン注入によるキャリア濃度制御領域15の損
傷を治癒する目的で、温度600 〔’c )時間20
分間程度の加熱処理を行なう。この加熱処理温度は従来
例えばシリコン(Si)イオン注入後にその活性化のた
めに行なわれる800〔℃〕程程度速達る加熱処理温度
に比較すれば逼に低温であるために、半導体基体に熱変
性を生じない。
Next, in order to heal damage to the carrier concentration control region 15 caused by ion implantation, the temperature was 600 ['c] for 20 hours.
Heat treatment is performed for about a minute. This heat treatment temperature is much lower than the conventional heat treatment temperature, which reaches about 800 degrees Celsius (approximately 800 degrees Celsius), which is conventionally performed for activation after silicon (Si) ion implantation, so it causes thermal denaturation in the semiconductor substrate. does not occur.

以上説明したキャリア濃度制御の結果、この領域15の
キャリア濃度は7 X 1016’ (cm−3)程度
となる。
As a result of the carrier concentration control described above, the carrier concentration in this region 15 is approximately 7×1016' (cm-3).

第2図(C)参照 素子分離領域19を以下に述べる如くに形成する。See Figure 2 (C) Element isolation regions 19 are formed as described below.

す万わち先に説明したマスクと同村・に、フォトレジス
トHK16’+  Tr BrA17/及びAu ll
6K 18’よりηるマスクを配設して、  QaAs
  バッファ層の厚さの少なくともI/2以上に達する
深さに到達させる!とめに、酸素イオンの多段注入を行
なう。本実施例においては例えば200[KeV]と1
00[: KeV ]とにおいて、それぞれドーズ量1
.5 X10(w)の2段注入を実施している。
Photoresist HK16'+ Tr BrA17/ and Au ll in the same village as the mask explained earlier.
QaAs
Reach a depth that is at least I/2 of the thickness of the buffer layer! Finally, multistage implantation of oxygen ions is performed. In this example, for example, 200 [KeV] and 1
00 [: KeV ], each with a dose of 1
.. A two-stage injection of 5×10(w) was performed.

第2図(d)参照 前記マスクを剥離除去した後に、従来技術によって、ソ
ース電極20及び21.ドレイン電極22及び23を例
えば金・ゲルマニウム(AuQe)/金(All)を用
いて、またゲート電極24及び25を例えばチタン(T
i )−白金(pt )−金(Au)によって配設する
Referring to FIG. 2(d), after peeling off the mask, source electrodes 20 and 21. The drain electrodes 22 and 23 are made of, for example, gold/germanium (AuQe)/gold (All), and the gate electrodes 24 and 25 are made of, for example, titanium (T).
i)-platinum (pt)-gold (Au).

以上の如くに形成された集積回路装置においては、先に
説明した従来方法による場合とは異なって、イオン注入
はゲート電極直下に局限され、更に加熱処理温度が低温
であるためにソース・ドレイン領域及びその近傍のチャ
ネル領域はエピタキシャル成長層の良好な状態が保たれ
ている。
In the integrated circuit device formed as described above, unlike the conventional method described above, ion implantation is localized directly under the gate electrode, and furthermore, because the heat treatment temperature is low, the source/drain region is The epitaxially grown layer in the channel region and its vicinity is maintained in good condition.

この結果ソース・ドレイン領域の抵抗率、伝達コンダク
タンス等の特性、特にその再現性が向上し、また故障率
の減少がもたらされている。
As a result, characteristics such as resistivity and transfer conductance of the source/drain regions, especially their reproducibility, are improved, and the failure rate is reduced.

なお、前記実施例の如く、ゲート1!極24直下の尼1
限された領域】5のみについてキャリア濃度を減少させ
、ソース領域及びドレイン領域のキャリアa度は高濃度
に保たれることけ、ソース領域゛。
Note that, as in the above embodiment, gate 1! Ama 1 just below pole 24
[Limited region] The carrier concentration in only the source region 5 is reduced, and the carrier a degree in the source region and drain region is kept at a high concentration.

及びドレイン領域の抵抗甲及び両寛枦とのコンタクト抵
抗が従来拾遺より低減される効果を有する。
It also has the effect that the contact resistance of the drain region with the resistor instep and both canopies is reduced compared to the conventional one.

更にこのキャリ70度分布によってゲート空乏層の横方
向、特にドレイン電析22方向への拡がりが制限されて
、ドレイン電極22のゲート電極24側の端面近傍にお
けるガンドメインの発生が抑制される結果ドレインの耐
電圧も向上する。
Furthermore, this carry 70 degree distribution restricts the spread of the gate depletion layer in the lateral direction, particularly in the direction of the drain electrode 22, suppressing the generation of gun domains near the end face of the drain electrode 22 on the gate electrode 24 side. The withstand voltage is also improved.

また前記実施例においては酸素イオン濃度のプロファイ
ルの最大値をチャネル層であるn型QaAs RE 1
−3の深さ方向の中央位fi¥ K 設定しているが、
この酸素イオンのが°大濃度をn型GaAsI岐13の
上表面もしくけ更に」一方に設定して、キャリアC度制
御@域15内のキャリア濃度をその上表面において濃度
が趨小であり、深さ方向に次第に濃四′が増加するプロ
ファイルとするならば。
Further, in the above embodiment, the maximum value of the oxygen ion concentration profile is determined by the n-type QaAs RE 1 which is the channel layer.
-3 is set at the center position in the depth direction fi¥K, but
By setting a large concentration of oxygen ions on the upper surface of the n-type GaAsI branch 13, the carrier concentration in the carrier C degree control area 15 is set to a smaller concentration on the upper surface. If we assume a profile in which the density increases gradually in the depth direction.

所要のゲート電、圧−ソースドレイン電流特性を占えて
更にゲート耐電圧を向上させることができる。。
It is possible to obtain the required gate voltage and voltage-source-drain current characteristics and further improve the gate withstand voltage. .

オた以上説明した実施例においては、n型GaAs層1
3f、ディプリーション形F’ETに適合する不純物濃
度にエピタキシャル成長せ[2めてエンハンスメント形
FETについてはキャリア濃度を減少させているが、n
型 GaAs層13をエンハンスメント形FETに適合
する不純物濃度にエピタキシャル成長せしめて、ディプ
リーション形FETのゲート電極形成領域について不純
物を添加する方法によっても、前記例に近い効果を得る
ことができる。
In the embodiment described above, the n-type GaAs layer 1
3f, epitaxial growth to an impurity concentration compatible with depletion type F'ET [2nd, carrier concentration is reduced for enhancement type FET, but n
An effect similar to the above example can also be obtained by epitaxially growing the GaAs layer 13 to an impurity concentration suitable for an enhancement-type FET and adding impurities to the gate electrode forming region of the depletion-type FET.

(g)  発明の詳細 な説明した如く本発明によれば、結晶性が優れかつ不鈍
物濃度分布の均一性も優れているエピタキシャル成長層
及び接合界面に対する損傷を避は難い、イオン注入法に
よる不純物導入を必要最小限度に止めること、更に加熱
処理温度を低下し得ることなどによって、化合物半導体
FET特にこれを含む集積回路装置に関して、その特性
特に特性の再現性を向上し、故障率の低減が可能となる
(g) As described in detail, according to the present invention, impurities are removed by ion implantation, which inevitably causes damage to the epitaxial growth layer and the junction interface, which have excellent crystallinity and excellent uniformity of impurity concentration distribution. By keeping the introduction to the minimum necessary and further reducing the heat treatment temperature, it is possible to improve the characteristics, especially the reproducibility of characteristics, and reduce the failure rate of compound semiconductor FETs, especially for integrated circuit devices containing them. becomes.

【図面の簡単な説明】[Brief explanation of drawings]

飢]図けGaAsFETを含む集積回路装置の従来例を
示す断面図、第2図(、l)乃至(d)t′i本発明に
よる半導体装置の製迭工程を示す断面図である。 図において、111半絶縁性QaAs基板。 】2はGaASバッフ71J 13tjn型QaASI
4゜15はキャリ゛γ濃度制御領域、191d素子分離
領Q、20及び21ijソース電極、22及び23けド
レイン電極、24及び25はゲート電極金示す。 第 1 田 躬 2 図
2(a) to 2(d) are cross-sectional views showing a manufacturing process of a semiconductor device according to the present invention; FIGS. In the figure, 111 semi-insulating QaAs substrate. ]2 is GaAS buffer 71J 13tjn type QaASI
4.15 is a carrier gamma concentration control region, 191d is an element isolation region Q, 20 and 21ij are source electrodes, 22 and 23 are drain electrodes, and 24 and 25 are gate electrodes. No. 1 Tabin 2 Diagram

Claims (1)

【特許請求の範囲】 半導体基体と、該半導体基体上に形成された半導体層と
、該半導体層上に配設されたゲー) W、極。 ソース電極及びドレイン電極とを備え、前記ゲート電極
に接する前記半導体層領域が、前記ソース電極、ドレイ
ン電極に接する半導体層領域とは異る不純物濃度とされ
てなることを特徴とする半導体装置。
[Scope of Claims] A semiconductor substrate, a semiconductor layer formed on the semiconductor substrate, and a gate electrode disposed on the semiconductor layer. 1. A semiconductor device comprising a source electrode and a drain electrode, wherein the semiconductor layer region in contact with the gate electrode has an impurity concentration different from that in the semiconductor layer region in contact with the source electrode and the drain electrode.
JP12797982A 1982-07-22 1982-07-22 Semiconductor device Pending JPS5918679A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12797982A JPS5918679A (en) 1982-07-22 1982-07-22 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12797982A JPS5918679A (en) 1982-07-22 1982-07-22 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS5918679A true JPS5918679A (en) 1984-01-31

Family

ID=14973425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12797982A Pending JPS5918679A (en) 1982-07-22 1982-07-22 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS5918679A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01236657A (en) * 1988-03-17 1989-09-21 Toshiba Corp Semiconductor device and manufacture thereof
JPH02205362A (en) * 1988-12-28 1990-08-15 American Teleph & Telegr Co <Att> Gaas integrated circuit and its manufacture
EP0553006A2 (en) * 1992-01-24 1993-07-28 Thomson-Csf Semiconducteurs Specifiques Process for manufacturing a transistor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01236657A (en) * 1988-03-17 1989-09-21 Toshiba Corp Semiconductor device and manufacture thereof
JPH02205362A (en) * 1988-12-28 1990-08-15 American Teleph & Telegr Co <Att> Gaas integrated circuit and its manufacture
EP0553006A2 (en) * 1992-01-24 1993-07-28 Thomson-Csf Semiconducteurs Specifiques Process for manufacturing a transistor
FR2686734A1 (en) * 1992-01-24 1993-07-30 Thomson Composants Microondes PROCESS FOR PRODUCING A TRANSISTOR
US5336627A (en) * 1992-01-24 1994-08-09 Thomson-Csf Semiconducteurs Specifiques Method for the manufacture of a transistor having differentiated access regions

Similar Documents

Publication Publication Date Title
EP0256363B1 (en) Algaas/gaas complementary ic structure
EP0206274B1 (en) High transconductance complementary ic structure
KR920003799B1 (en) Semiconductor device
JPH02266569A (en) Field-effect transistor
JPS5918679A (en) Semiconductor device
JPH0467337B2 (en)
JPS61147577A (en) Complementary semiconductor device
JPH02111073A (en) Insulated gate fet and integrated circuit device thereof
JP2000208753A (en) Semiconductor device and its manufacture
JPS5831582A (en) Semiconductor integrated circuit device
JP2633009B2 (en) Compound semiconductor field effect transistor and method of manufacturing the same
JPH0969611A (en) Semiconductor device and its manufacturing method
JPS6215862A (en) Semiconductor device
JP3210533B2 (en) Method for manufacturing field effect transistor
JPS60134434A (en) Manufacture of semiconductor integrated circuit
JPH01227455A (en) Semiconductor device
KR910004319B1 (en) Manufacturing method of high electron mobility transistor
JP2616032B2 (en) Method for manufacturing field effect transistor
JPS63224368A (en) Manufacture of field effect transistor
JPS63226967A (en) Compound semiconductor junction type field-effect transistor and its manufacture
JPH0199263A (en) Semiconductor integrated circuit and manufacture thereof
JPH01170050A (en) Field-effect transistor
JPH0618217B2 (en) Method for manufacturing semiconductor device
JPS63308934A (en) Manufacture of compound semiconductor device
JPH01268070A (en) Heterojunction type field-effect transistor