JPS60134434A - Manufacture of semiconductor integrated circuit - Google Patents

Manufacture of semiconductor integrated circuit

Info

Publication number
JPS60134434A
JPS60134434A JP58242189A JP24218983A JPS60134434A JP S60134434 A JPS60134434 A JP S60134434A JP 58242189 A JP58242189 A JP 58242189A JP 24218983 A JP24218983 A JP 24218983A JP S60134434 A JPS60134434 A JP S60134434A
Authority
JP
Japan
Prior art keywords
layer
integrated circuit
semiconductor integrated
film
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58242189A
Other languages
Japanese (ja)
Inventor
Kazunari Oota
一成 太田
Masaru Kazumura
数村 勝
Tatsuo Otsuki
達男 大槻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58242189A priority Critical patent/JPS60134434A/en
Publication of JPS60134434A publication Critical patent/JPS60134434A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Element Separation (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To enable to more enhance the integration degree of a semiconductor integrated circuit while a disconnection, etc., of gate wirings are eliminated in the manufacture thereof by a method wherein, when an interelement isolation of the integrated circuit made with a III-V compound semiconductor is performed, an isolating region between elements is brought into a high-resistance state by selectively implanting ions therein. CONSTITUTION:An I-type InP buffer layer 2, an N type In0.53Ga0.47As active layer 3 and an N<+> type InP electrode layer 4 are laminatedly grown on a semiinsulative InP substrate 1. Then, when an interelement isolation is performed on this wafer obtained, a high resistive layer 8, which intrudes into the layer 2 by selectively implanting B<+> ions, is formed and a part of the active layer 3 of about 0.05OMEGA.cm or thereabout, where is included in the layer 8, is raised to a resistivity of about 5,000OMEGA.cm. After that, an AuGeNi/Au film 5 is adhered on the whole surface, an alloyed thermal treatment is performed for enabling the film 5 to make an ohmic contact to the layer 4, Si3N4 films 6 are provided on gate parts, the exposed parts of the layer 4 are removed using the Si3N4 films 6 as masks, and gate electrodes 7 are mounted on the exposed parts of the layer 3. In such a way, the MISFET is not constituted in a mesa structure. As a result, a disconnection, etc., of the electrodes 7 can be eliminated.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、半導体集積回路の製造方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method of manufacturing a semiconductor integrated circuit.

(従来例の構成とその問題点) ■−■化合物半導体はSLや Geなどの■族単体元素
の半導体に比べ高い移動度を有し、また材料的には容易
にMES構造が得られるため、優れた高周波特性を持つ
MESFET材料として研究開発が進められている。ま
だStやGeで得にくかった半絶縁性の結晶が容易に得
られるため、集積デバイスの材料として注目を集めてい
る。
(Structure of conventional example and its problems) ■-■ Compound semiconductors have higher mobility than semiconductors of group ■ simple elements such as SL and Ge, and MES structures can be easily obtained in terms of materials. Research and development is progressing as a MESFET material with excellent high frequency characteristics. It is attracting attention as a material for integrated devices because semi-insulating crystals, which have been difficult to obtain with St and Ge, can be easily obtained.

■−■化合物半導体によるMESFETは、半絶縁性(
S・工・)基板上に無添加のi型バッファ層を介して 
゛活性層を載置し、FETを構成する各種電極が形成さ
れる。従来FET間の分離はバッファ層に達するメサエ
ッチングで行なっていたが、この工程で生じる段差のむ
らや段差の存在そのものが、メタルの配線切れを生ずる
原因となっていた。そのため、高集積化された、ICデ
バイスを得ることができなかった。
■-■ MESFETs using compound semiconductors are semi-insulating (
S・Engineering・) via an additive-free i-type buffer layer on the substrate
゛An active layer is placed thereon, and various electrodes constituting the FET are formed. Conventionally, separation between FETs has been carried out by mesa etching that reaches the buffer layer, but the unevenness of the step or the very existence of the step that occurs in this process causes metal wiring to break. Therefore, it was not possible to obtain a highly integrated IC device.

(発明の目的) 本発明は、上記の問題を克服し高集積化を可能ならしめ
る半導体集積回路の製造方法を提供するものである。
(Object of the Invention) The present invention provides a method for manufacturing a semiconductor integrated circuit that overcomes the above problems and enables high integration.

(発明の構成) 本発明は■−■化合物半導体基板上に構成されるMES
FBTを個別に分離するに際し、イオン注入された高抵
抗半導体層を分離層としたものである。
(Structure of the Invention) The present invention provides an MES constructed on a ■-■ compound semiconductor substrate.
When separating the FBTs individually, the ion-implanted high-resistance semiconductor layer is used as a separation layer.

(実施例の説明) 図は、本発明の一実施例によシ製造した半導体集積回路
の断面図である。
(Description of Embodiment) The figure is a sectional view of a semiconductor integrated circuit manufactured according to an embodiment of the present invention.

半絶縁性InP基板l上にi、型InPバッファ層2を
1.0μm、の厚さに設け、その上に活性層n ”’ 
I n”o、’ s”aG a o、47 A 8層3
を80 ’0 X%電極層n −InPn種層2000
Xそれぞれ成長する。成長は膜厚制御の容易なMBE法
、MOCVD法外とを用いるが、本実施例ではMl法に
よシ成長を行なった。基板温度は500℃、Gaセル温
度1100℃、工nセル温度1200℃、A8セル温度
250℃、Pセル温度250℃とし、n型不純物として
はSnを使い、そのセル温度は780℃とした。1−I
nP層2、n−InGaAs層3、n −InPn種層
各層の成長Q、5:l 0.47 時間はそれぞれ1時間、6分、5分であった。
An i-type InP buffer layer 2 with a thickness of 1.0 μm is provided on a semi-insulating InP substrate l, and an active layer n'' is formed on it.
I n”o,' s”aG ao, 47 A 8 layer 3
80'0 x% electrode layer n -InPn seed layer 2000
Each of the X grows. Although the MBE method and MOCVD method, which allows easy control of film thickness, are used for growth, in this example, the Ml method was used for growth. The substrate temperature was 500°C, the Ga cell temperature was 1100°C, the engineering n cell temperature was 1200°C, the A8 cell temperature was 250°C, and the P cell temperature was 250°C. Sn was used as the n-type impurity, and the cell temperature was 780°C. 1-I
The growth time of the nP layer 2, n-InGaAs layer 3, and n-InPn seed layer was 1 hour, 6 minutes, and 5 minutes, respectively.

得られたウェハーの素子間分離を行なうため、選択イオ
ン注入によシ活性層3を部分的に高抵抗化して高抵抗層
8を形成した。注入イオンとしてはB+を用いた。加速
電圧150 kV、ドーズ量lXl014cIn−2の
条件で注入を行なうことによシρ=O,05Ω−αの活
性層3がρ′=500OΩ−鋸の抵抗率となシ、良好な
分離特性を得た。ドレイン・ソースへの電流注入用コン
タクトとしてはAuGeNi/Au−膜5を蒸着し、電
極層n −InPn種層オーミック接触をとるため、合
金化熱処理を行なう。
In order to isolate the elements of the obtained wafer, a high resistance layer 8 was formed by partially increasing the resistance of the active layer 3 by selective ion implantation. B+ was used as the implanted ion. By performing the implantation under the conditions of an accelerating voltage of 150 kV and a dose of lXl014cIn-2, the active layer 3 with ρ = O, 05Ω-α has a resistivity of ρ' = 500OΩ-saw, and good isolation characteristics are obtained. Obtained. An AuGeNi/Au film 5 is deposited as a contact for current injection to the drain and source, and an alloying heat treatment is performed to establish ohmic contact with the n-InPn seed layer of the electrode layer.

り゛−ト部分は813N4膜6に形成した開孔部を通し
て電極層n+−I nP層4のエツチングを行なう。エ
ツチング液としてはHC1/1120液を用いた。この
エツチング液により”0.53Ga0.4□AsとIn
Pとの選択エツチングが可能であるので、エツチングは
活性層Lno、s3Gag、47A8層3と電極層n−
InP層4との界面で停止する。従ってダート電極7の
直下のチャネル厚さt。′はちょうどn −I n o
、s 3G a o、4 □A 83の膜厚に等しい。
In the rear portion, the electrode layer n+-I nP layer 4 is etched through the opening formed in the 813N4 film 6. HC1/1120 solution was used as the etching solution. With this etching solution, “0.53Ga0.4□As and In”
Since selective etching with P is possible, etching is performed on active layers Lno, s3Gag, 47A8 layer 3 and electrode layer n-
It stops at the interface with the InP layer 4. Therefore, the channel thickness directly below the dart electrode 7 is t. ' is just n −I no
, s 3G a o, 4 □A equal to the film thickness of 83.

結晶成長は膜厚の面内均一性および制御性に優れている
MBE成長でなされているだめ、t、’=800Xが常
にウェハーのどの場所でも成りたち、そのため、非常に
再現性よくノーマリオフ特性が得られる。ショットキゲ
ート電極7はAt蒸着およびリフトオフ技術によ多形成
する。この時、従来のメサ構造では、ダート電極7が〜
1μmと細いため、段差部での配線切れが問題となるが
、本実施例ではイオン注入による分離を行なっているた
め、段差が存在せず、配線切れは全く問題とならなくな
った。以上のようにして図のMESFETが得られる。
Since crystal growth is performed by MBE growth, which has excellent in-plane film thickness uniformity and controllability, t,' = 800X is always formed at any location on the wafer, and as a result, normally-off characteristics are achieved with excellent reproducibility. can get. The Schottky gate electrode 7 is formed by At vapor deposition and lift-off technique. At this time, in the conventional mesa structure, the dart electrode 7 is
Since it is as thin as 1 μm, wire breakage at the stepped portion poses a problem, but in this example, separation is performed by ion implantation, so there is no step, and wire breakage is no longer a problem. The MESFET shown in the figure is obtained in the above manner.

本実施例での各層の不純物濃度は活性層3がl X l
 017cm−3、電極層4がl X l Q19ca
r−3である。
In this example, the impurity concentration of each layer is l x l in the active layer 3.
017cm-3, electrode layer 4 is l X l Q19ca
It is r-3.

n+−InPn種層lXl019on−”の高濃度であ
シ、比抵抗は5X10−’Ω−mと低く、従って、ダー
ト・ソース間の抵抗はInPn種層サイドエツチングに
よって生じた活性層n ”−I n 6.53 Ga 
o47As層3の抵抗分だけとなり、数Ωの低抵抗であ
る。この様に、従来のメサエッチに代シ、イオン注入に
よシ素子分離を行っているので、ダートメタルの段差部
での切れが無くなシ、従来のデート歩留p 800/1
000に対し1000/1000と100チの歩留りが
得られ、素子間電流リークも従来と同程度の2μm間隔
でiov印加時に1μA程度であシ、高集積化が可能と
なった。
The high concentration of the n+-InPn seed layer lXl019on-'' has a low specific resistance of 5X10-'Ω-m, and therefore the resistance between the dirt and the source is due to the active layer n''-I produced by side etching of the InPn seed layer. n 6.53 Ga
The resistance is only the resistance of the o47As layer 3, which is a low resistance of several ohms. In this way, since element isolation is performed by ion implantation instead of the conventional mesa etch, there is no breakage at the step part of the dirt metal, and the conventional date yield is 800/1.
A yield of 1000/1000 compared to 0.000 was obtained, and current leakage between elements was about 1 μA when IOV was applied at 2 μm intervals, which was the same as in the conventional method, making it possible to achieve high integration.

得られたMKSFETの静特性として、しきい値ゲート
電圧VT=0.1V(ドレイン電流20μA)コンメク
タンス箱= 150 mS /mm 、オン抵抗150
Ω伝播遅延速度20 psが得られた。また素子間平面
最小距離が2μm間隔で素子間リークも1μm/IOV
と小さく、特性歩留pt00%の高集積化が達成できた
O なお、以上の説明で述べた注入イオンはBに限らず、A
r+、 O+、H+、 Fe+等でも可能である。また
FETのチャネル型もnチャネルに限定されるものでは
ない。更に、FET特性もノーマリオフ型に限らず、ノ
ーマリオン型でもよい。
The static characteristics of the obtained MKSFET are as follows: threshold gate voltage VT = 0.1V (drain current 20μA) conmecance box = 150 mS /mm , on-resistance 150
An Ω propagation delay rate of 20 ps was obtained. In addition, the minimum plane distance between elements is 2μm, and the leakage between elements is 1μm/IOV.
The implanted ions mentioned in the above explanation are not limited to B, but also A.
It is also possible to use r+, O+, H+, Fe+, etc. Furthermore, the channel type of the FET is not limited to n-channel. Furthermore, the FET characteristics are not limited to normally-off type, but may be normally-on type.

(発明の効果) 以上のように、本発明は、分離層としてイオン注入によ
シ高抵抗化した半導体層を用いることにより、ゲート配
線切れが無くなυ、高い集積度を持つ素子の配置が可能
となった。
(Effects of the Invention) As described above, the present invention uses a semiconductor layer whose resistance has been increased by ion implantation as a separation layer, so that it is possible to eliminate υ without disconnection of gate wiring, and to arrange elements with a high degree of integration. It has become possible.

【図面の簡単な説明】[Brief explanation of drawings]

図は、本発明の一実施例の半導体集積回路の断面図であ
る・ l・・・半絶縁性InP基板、2・・・バッファ層1−
InPs3・・・活性層n”’ I n 6.5a G
il o、47A 8層、4・・・電極層n+InP層
、5・・・ソース、およびドレイン用AuGeNi/A
u膜、6・・・スペーサS 1 aN4膜、7・・・ダ
ート電極、8・・・1オン注入高抵抗層。
The figure is a cross-sectional view of a semiconductor integrated circuit according to an embodiment of the present invention. l... Semi-insulating InP substrate, 2... Buffer layer 1-
InPs3...Active layer n"' I n 6.5a G
il o, 47A 8 layers, 4... Electrode layer n+InP layer, 5... AuGeNi/A for source and drain
u film, 6... Spacer S 1 aN4 film, 7... Dirt electrode, 8... 1 ON implantation high resistance layer.

Claims (1)

【特許請求の範囲】[Claims] ■−■化合物半導体を用いた半導体集積回路の素子間分
離を、前記素子間に選択的イオン注入を行って高抵抗化
するによシ行なうことを特徴とする半導体集積回路の製
造方法。
(1)-(2) A method for manufacturing a semiconductor integrated circuit, characterized in that isolation between elements of a semiconductor integrated circuit using a compound semiconductor is achieved by selectively implanting ions between the elements to increase resistance.
JP58242189A 1983-12-23 1983-12-23 Manufacture of semiconductor integrated circuit Pending JPS60134434A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58242189A JPS60134434A (en) 1983-12-23 1983-12-23 Manufacture of semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58242189A JPS60134434A (en) 1983-12-23 1983-12-23 Manufacture of semiconductor integrated circuit

Publications (1)

Publication Number Publication Date
JPS60134434A true JPS60134434A (en) 1985-07-17

Family

ID=17085623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58242189A Pending JPS60134434A (en) 1983-12-23 1983-12-23 Manufacture of semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPS60134434A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01184874A (en) * 1988-01-13 1989-07-24 Nec Corp Compound semiconductor integrated circuit
JPH01238137A (en) * 1988-03-18 1989-09-22 Fujitsu Ltd Manufacture of semiconductor device
JPH0846181A (en) * 1994-07-28 1996-02-16 Nec Corp Manufacture of semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01184874A (en) * 1988-01-13 1989-07-24 Nec Corp Compound semiconductor integrated circuit
JPH01238137A (en) * 1988-03-18 1989-09-22 Fujitsu Ltd Manufacture of semiconductor device
JPH0846181A (en) * 1994-07-28 1996-02-16 Nec Corp Manufacture of semiconductor device

Similar Documents

Publication Publication Date Title
US4603469A (en) Fabrication of complementary modulation-doped filed effect transistors
US4327475A (en) Method of manufacturing a FET device disposed in a compound s/c layer on a semi-insulating substrate
EP0165433A2 (en) High-speed field-effect transistor
JPS60134434A (en) Manufacture of semiconductor integrated circuit
JPH03181138A (en) Compound semiconductor device
JP2645993B2 (en) Field effect type semiconductor device and method of manufacturing the same
JPS63161677A (en) Field effect transistor
JPS5861675A (en) Semiconductor device
JPS594083A (en) Manufacture of semiconductor device
JP3090451B2 (en) Semiconductor device
JP2867472B2 (en) Semiconductor device
JP2728427B2 (en) Field effect transistor and its manufacturing method
JPS5918679A (en) Semiconductor device
JPH10173036A (en) Semiconductor device and method of realizing high-resistance semiconductor
JPS59112658A (en) Field effect transistor and manufacture thereof
JP2867557B2 (en) Semiconductor device and manufacturing method thereof
JP2569626B2 (en) Semiconductor integrated circuit device
JP2819673B2 (en) Field effect transistor
JP2861086B2 (en) Field effect transistor and method of manufacturing the same
JPS5955074A (en) Manufacture of semiconductor integrated circuit device
JP2682032B2 (en) Method for manufacturing semiconductor device
KR20010014864A (en) Semiconductor device and manufacturing method therefor
JPH028454B2 (en)
JPS58124276A (en) Schottky gate field effect transistor and manufacture thereof
JPS59127871A (en) Manufacture of semiconductor device