JP3090451B2 - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JP3090451B2
JP3090451B2 JP01136036A JP13603689A JP3090451B2 JP 3090451 B2 JP3090451 B2 JP 3090451B2 JP 01136036 A JP01136036 A JP 01136036A JP 13603689 A JP13603689 A JP 13603689A JP 3090451 B2 JP3090451 B2 JP 3090451B2
Authority
JP
Japan
Prior art keywords
layer
substrate
semiconductor
gaas
back surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01136036A
Other languages
Japanese (ja)
Other versions
JPH033336A (en
Inventor
伸隆 渕上
信一郎 高谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Solutions Technology Ltd
Original Assignee
Hitachi Ltd
Hitachi ULSI Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi ULSI Systems Co Ltd filed Critical Hitachi Ltd
Priority to JP01136036A priority Critical patent/JP3090451B2/en
Publication of JPH033336A publication Critical patent/JPH033336A/en
Application granted granted Critical
Publication of JP3090451B2 publication Critical patent/JP3090451B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Junction Field-Effect Transistors (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 エピタキシヤル成長で動作層を形成する電界効果トラ
ンジスタを有する半導体装置に関する。
The present invention relates to a semiconductor device having a field-effect transistor for forming an operation layer by epitaxial growth.

〔従来の技術〕[Conventional technology]

従来、化合物半導体素子は半絶縁性基板上に形成する
為、裏面からの基板バイアス効果は考慮されておらず、
半絶縁性基板を流れるリーク電流についての研究も素子
間が中心であつた。これは、素子間隔が数μmのオーダ
ーであるのに対して、素子と裏面との間隔は500〜1000
μmもある為である。
Conventionally, since the compound semiconductor element is formed on a semi-insulating substrate, the substrate bias effect from the back surface is not considered,
Research on the leakage current flowing through the semi-insulating substrate has been mainly focused on between elements. This means that while the element spacing is on the order of several μm, the spacing between the element and the backside is 500-1000.
This is because there is also μm.

半絶縁性基板上の素子間を高抵抗化する従来例として
は、No.387応用電子物性分科会講演会予稿集(1981)、
第21頁から第24頁において、Crイオンの注入によつて素
子間に深い準位を形成し、高抵抗化を図る方法が論じら
れている。
As a conventional example of increasing the resistance between elements on a semi-insulating substrate, see the No. 387 Proceedings of the Subcommittee of Applied Electronic Properties,
Pages 21 to 24 discuss a method of forming a deep level between elements by implanting Cr ions to increase the resistance.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

上記従来技術は半絶縁性基板上の素子間での高抵抗化
に関するものであり、素子と基板裏面での高抵抗化に関
しては何の配慮もなされていない。
The above prior art relates to increasing the resistance between elements on a semi-insulating substrate, and no consideration is given to increasing the resistance between the element and the back surface of the substrate.

又、導電性の基板を用いるSi半導体で問題とされる基
板バイアス効果は、半絶縁性基板を用いる化合物半導体
のMESFET(Metal Semicondvctor Field Effect Transis
tor)、JFET(Junction Field Effect Transis tor)、
MISFET(Metal Insulator Semiconductor FET)、HEMT
(High Electron Mobility Transistor)等では配慮さ
れていない。
In addition, the substrate bias effect, which is a problem in a Si semiconductor using a conductive substrate, is based on a compound semiconductor using a semi-insulating substrate such as MESFET (Metal Semicondvctor Field Effect Transis).
tor), JFET (Junction Field Effect Transis tor),
MISFET (Metal Insulator Semiconductor FET), HEMT
(High Electron Mobility Transistor) is not considered.

ところで、MESFETやJFET等ではチヤネルを流れる電子
の基板方向への廻り込みといつた2次元効果の抑制や、
ソフトエラーの原因となるα線で誘起される電荷の低減
の目的で動作層と逆の導電型をもつ層を動作層の下に設
けるようになつた。GaAsMESFETにおいては、「埋込p
層」として知られているが、この埋込p層の形成によつ
て半絶縁性基板が低抵抗化し、裏面からの基板バイアス
効果に対して脆弱化するという問題が発生することがわ
かつた。
By the way, in the MESFET, JFET, etc., suppression of the two-dimensional effect such as the electron flowing through the channel toward the substrate direction,
A layer having a conductivity type opposite to that of the operation layer has been provided under the operation layer for the purpose of reducing charges induced by α-rays that cause a soft error. In GaAs MESFETs, the "buried p
Although known as a "layer," it has been found that the formation of this buried p-layer causes a problem that the semi-insulating substrate has a low resistance and is vulnerable to a substrate bias effect from the back surface.

第2図にGaAsFESFETを例にとつて、閾値電圧(Vth
の基板バイアス効果を示す。(A)は埋込p層がない場
合、(B)は埋込p層を設けた場合で、p層のアクセプ
タ濃度を大きくすれば基板バイアスによる閾値電圧の変
動は更に大きくなる。基板結晶はどちらもアンドープの
GaAs結晶で、厚さは約500μmである。
FIG. 2 shows the threshold voltage (V th ) of a GaAsFESFET as an example.
3 shows the substrate bias effect of FIG. (A) shows the case where there is no buried p-layer, and (B) shows the case where the buried p-layer is provided. If the acceptor concentration of the p-layer is increased, the fluctuation of the threshold voltage due to the substrate bias is further increased. Both substrate crystals are undoped
It is a GaAs crystal and has a thickness of about 500 μm.

半導体装置では基板中の浮遊電荷が誤動作を起こさな
いように裏面を接地して使用するので、半導体装置中の
FET素子は回路に応じて様々な電位をとつている。従つ
て基板電位による閾値電圧の変動が大きい場合は、FET
側からみた基板の電位(実際には基板は接地されてお
り、FETの方が回路に応じた電位をとつている。)によ
つて閾値電圧を設計値からずれ、正常な回路動作を困難
にする。
In semiconductor devices, the back surface is grounded so that floating charges in the substrate do not cause malfunctions.
FET elements take various potentials depending on the circuit. Therefore, if the fluctuation of the threshold voltage due to the substrate potential is large,
The threshold voltage deviates from the design value due to the potential of the substrate viewed from the side (actually, the substrate is grounded and the FET takes the potential according to the circuit), making normal circuit operation difficult. I do.

そこで、本発明の目的は、裏面からの電圧による閾値
電圧の変動(基板バイアス効果)を小さくし、安定な回
路動作を可能とする半導体装置を提供することを目的と
する。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a semiconductor device capable of reducing a change in threshold voltage (substrate bias effect) due to a voltage from the back surface and enabling a stable circuit operation.

〔課題を解決するための手段〕[Means for solving the problem]

上記目的を達成する為に、基板上の素子と基板の裏面
との間に中間層として高抵抗層を設けることとしたもの
である。上記高抵抗層の形成方法としては、エピタキシ
ヤル成長の際の混晶比を調整する方法がある。
In order to achieve the above object, a high resistance layer is provided as an intermediate layer between an element on a substrate and a back surface of the substrate. As a method of forming the high-resistance layer, there is a method of adjusting a mixed crystal ratio during epitaxial growth.

〔作用〕[Action]

一例として、基板上にエピタキシヤル成長によつて、
バツフア層,p層、動作層を積み重ねることで素子を形成
する半導体装置において、バツフア層の下、或いは上に
設ける中間層は、基板の裏面から素子へ、或いは素子か
ら基板の裏面へ注入されるキヤリアを阻止して基板の裏
面と素子との間のアイソレーシヨンを向上させ、基板バ
イアス効果を低減する。
As an example, by epitaxial growth on a substrate,
In a semiconductor device in which an element is formed by stacking a buffer layer, a p layer, and an operation layer, an intermediate layer provided below or above the buffer layer is injected from the back surface of the substrate to the element or from the element to the back surface of the substrate. The carrier is prevented, the isolation between the back surface of the substrate and the element is improved, and the substrate bias effect is reduced.

〔実施例〕〔Example〕

以下、本発明の一実施例としてエピタキシヤル成長で
動作層を形成するGaAs MESFET(Metal Semicondvctor
Field Effect Transistor)の場合を第1図により説明
する。
Hereinafter, as an embodiment of the present invention, a GaAs MESFET (Metal Semicondvctor) forming an operation layer by epitaxial growth will be described.
The case of Field Effect Transistor) will be described with reference to FIG.

半絶縁性GaAs基板1上に、バツフア層3,埋込4p層,動
作層5を順にエピタキシヤル成長で積み重ねていくこと
で製造するMESFETにおいて、中間層2をバツフア層3の
下(第1図(a))、或いは上(第1図(b))に設け
る。
In a MESFET manufactured by sequentially stacking a buffer layer 3, a buried 4p layer, and an operation layer 5 on a semi-insulating GaAs substrate 1 by epitaxial growth, an intermediate layer 2 is formed below the buffer layer 3 (see FIG. 1). (A)) or above (FIG. 1 (b)).

バツフア層3はアンドープのGaAsで、厚さは約400n
m、埋込p層4はアクセプタ不純物として、Beイオンを
約3×1016cm-8ドープして厚さは約300nmである。動作
層5はドナー不純物として、Si+イオンを約2×1018cm
-3ドープして厚さは約30nmである。
The buffer layer 3 is made of undoped GaAs and has a thickness of about 400 n.
m, the buried p layer 4 is doped with Be ion as an acceptor impurity by about 3 × 10 16 cm -8 and has a thickness of about 300 nm. The operation layer 5 contains Si + ions of about 2 × 10 18 cm as donor impurities.
The thickness is about 30 nm with -3 doping.

バッファ層3を3種以上の元素からなる化合物半導体
より形成する場合は、バッファ層3形成の際に混晶比を
調整して、バッファ層3と混晶比の異なる高抵抗層を付
随的に形成し、これを中間層2とすることも可能であ
る。
When the buffer layer 3 is formed from a compound semiconductor composed of three or more elements, the mixed crystal ratio is adjusted when the buffer layer 3 is formed, and a high-resistance layer having a different mixed crystal ratio from the buffer layer 3 is added. It is also possible to form it and use it as the intermediate layer 2.

動作層5は、FETのチヤネル層となる領域だけ残し
て、その他の領域ではウエツト・エツチングによつて除
去する。ゲートの材料としてWSi(タングステン・シリ
サイド)をスパツタ蒸着した後、ドライ・エツチングで
加工して、ゲート7を形成する。
The active layer 5 is removed by wet etching in the other regions, leaving only the region to be the channel layer of the FET. After WSi (tungsten silicide) is sputter-deposited as a gate material, the gate 7 is formed by dry etching.

ソース,ドレインとして、n+−GaAs6をMOCVD(有機金
属化学気相成長法)で選択成長させて形成する。ドナー
不純物としてSiを約3×1018cm-3ドープする。n+層6の
厚さは約300nmである。ソース,ドレインのオーミツク
電極8としてAuGeをリフトオフ法によつて被着する。こ
の後、電極の配線を行なうことで本発明によるGaAsMESF
ETを用いた半導体装置は完成する。
The source and drain are formed by selectively growing n + -GaAs6 by MOCVD (metal organic chemical vapor deposition). About 3 × 10 18 cm −3 of Si is doped as a donor impurity. The thickness of the n + layer 6 is about 300 nm. AuGe is deposited as a source and drain ohmic electrode 8 by a lift-off method. Thereafter, wiring of the electrodes is performed, whereby the GaAs MESF according to the present invention is formed.
A semiconductor device using ET is completed.

本実施例での基板バイアスに対する閾値電圧の変化を
示したものを第2図の(c)に示す。(B)の場合より
も改善されたことがわかる。
FIG. 2C shows the change in the threshold voltage with respect to the substrate bias in this embodiment. It can be seen that it is improved as compared with the case of (B).

本発明の他の実施例として、GaAs以外の化合物半導
体、或いはSiやGe等の半導体を用いることは可能であ
り、又、MESFET以外にもMISFET,IGFET,JFET等の適用す
ることも可能である。半導体基板1は、アモルフアス基
板、或いはガラス基板とすることも可能である。
As another embodiment of the present invention, it is possible to use a compound semiconductor other than GaAs, or a semiconductor such as Si or Ge, and it is also possible to apply MISFET, IGFET, JFET, etc. other than MESFET. . The semiconductor substrate 1 can be an amorphous substrate or a glass substrate.

〔発明の効果〕〔The invention's effect〕

本発明によれば、基板と素子との間のアイソレーシヨ
ンを向上できるので基板バイアス効果を低減する効果が
ある。
According to the present invention, the isolation between the substrate and the element can be improved, so that there is an effect of reducing the substrate bias effect.

基板バイアス効果の低減によつて、回路に使用されて
いるFETが回路中での電位によつて異なる特性をもつこ
とが少なくなり、回路の信頼性を向上できる効果があ
る。
By reducing the body bias effect, the FET used in the circuit is less likely to have different characteristics depending on the potential in the circuit, and there is an effect that the reliability of the circuit can be improved.

【図面の簡単な説明】[Brief description of the drawings]

第1図(a)および第1図(b)は各々本発明の一実施
例のエピタキシヤル成長で作るGaAsMSFETの断面図で、
第1図(a)はバツフア層の上に中間層を設けた場合の
断面図、第1図(b)はバツフア層の下に中間層を設け
た場合の断面図、第2図は本発明および従来技術におい
て裏面電圧を変えた時の閾値電圧の変動を示す図であ
り、(A)は従来技術で埋込p層のない場合、(B)は
従来技術で埋込p層がある場合、(C)は本発明であ
る。 1……半導体基板、2……中間層、3……緩衝層(i−
GaAs)、4……p−GaAs、5……動作層(n−GaAs)、
6……オーミツク層(n+−GaAs)、7……ゲート電極、
8……オーミツク電極。
FIGS. 1 (a) and 1 (b) are cross-sectional views of a GaAs MSFET formed by epitaxial growth according to an embodiment of the present invention.
1 (a) is a cross-sectional view in which an intermediate layer is provided on a buffer layer, FIG. 1 (b) is a cross-sectional view in which an intermediate layer is provided below a buffer layer, and FIG. 7A and 7B are diagrams showing a change in threshold voltage when the back surface voltage is changed in the related art, and FIG. 7A shows a case where there is no buried p layer in the related art, and FIG. , (C) are the present invention. 1 ... semiconductor substrate, 2 ... intermediate layer, 3 ... buffer layer (i-
GaAs), 4... P-GaAs, 5... Operating layer (n-GaAs),
6 ... ohmic layer (n + -GaAs), 7 ... gate electrode,
8. Ohmic electrode.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高谷 信一郎 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (56)参考文献 特開 昭61−131565(JP,A) 特開 平1−223773(JP,A) 特開 平1−223776(JP,A) 特開 昭60−263472(JP,A) 特開 昭63−104484(JP,A) 特開 昭63−308965(JP,A) 特開 平2−2637(JP,A) 特開 昭57−53927(JP,A) 特開 昭61−274369(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 21/338 H01L 29/812 ────────────────────────────────────────────────── ─── Continuing from the front page (72) Inventor Shinichiro Takaya 1-280 Higashi Koikebo, Kokubunji-shi, Tokyo Inside the Central Research Laboratory, Hitachi, Ltd. (56) References JP-A-61-131565 (JP, A) JP-A-1 JP-A-223773 (JP, A) JP-A-1-223776 (JP, A) JP-A-60-263472 (JP, A) JP-A-63-104484 (JP, A) JP-A-63-308965 (JP, A) JP-A-2-2637 (JP, A) JP-A-57-53927 (JP, A) JP-A-61-274369 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01L 21/338 H01L 29/812

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】能動層が半導体基板上にエピタキシャル成
長で形成された電界効果トランジスタを有する半導体装
置において、上記能動層と上記半導体基板との間に上記
半導体基板側から順に高抵抗アイソレーション層および
バッファ層が形成されており、上記高抵抗アイソレーシ
ョン層および上記バッファ層は混晶比が異なる化合物半
導体からなることを特徴とする半導体装置。
In a semiconductor device having a field-effect transistor in which an active layer is formed on a semiconductor substrate by epitaxial growth, a high-resistance isolation layer and a buffer are sequentially arranged between the active layer and the semiconductor substrate from the semiconductor substrate side. A semiconductor layer, wherein the high resistance isolation layer and the buffer layer are made of compound semiconductors having different mixed crystal ratios.
JP01136036A 1989-05-31 1989-05-31 Semiconductor device Expired - Fee Related JP3090451B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01136036A JP3090451B2 (en) 1989-05-31 1989-05-31 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01136036A JP3090451B2 (en) 1989-05-31 1989-05-31 Semiconductor device

Publications (2)

Publication Number Publication Date
JPH033336A JPH033336A (en) 1991-01-09
JP3090451B2 true JP3090451B2 (en) 2000-09-18

Family

ID=15165682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01136036A Expired - Fee Related JP3090451B2 (en) 1989-05-31 1989-05-31 Semiconductor device

Country Status (1)

Country Link
JP (1) JP3090451B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2730541B2 (en) 1996-02-29 1998-03-25 日本電気株式会社 Compound semiconductor device
JP2011249776A (en) * 2010-04-30 2011-12-08 Sumitomo Chemical Co Ltd Semiconductor substrate, manufacturing method of semiconductor substrate, electronic device, manufacturing method of electronic device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61274369A (en) * 1985-05-22 1986-12-04 Fujitsu Ltd Field effect type semiconductor device
JP2721513B2 (en) * 1988-08-03 1998-03-04 富士通株式会社 Method for manufacturing compound semiconductor device

Also Published As

Publication number Publication date
JPH033336A (en) 1991-01-09

Similar Documents

Publication Publication Date Title
US4471366A (en) Field effect transistor with high cut-off frequency and process for forming same
JPH0624208B2 (en) Semiconductor device
JP4142114B2 (en) Complementary heterojunction device and manufacturing method thereof
US5153682A (en) HEMT device with doped active layer
JPH0324782B2 (en)
EP0449620B1 (en) Semiconductor devices having a silicon/silicon-germanium heterostructure and methods of making the same
US4764796A (en) Heterojunction field effect transistor with two-dimensional electron layer
EP0165433A2 (en) High-speed field-effect transistor
US5227644A (en) Heterojunction field effect transistor with improve carrier density and mobility
JP3090451B2 (en) Semiconductor device
US5900641A (en) Field effect semiconductor device having a reduced leakage current
US4965645A (en) Saturable charge FET
US5389807A (en) Field effect transistor
JPS594083A (en) Manufacture of semiconductor device
GB2239557A (en) High electron mobility transistors
JPS6068661A (en) Semiconductor device
JPS6034073A (en) Manufacture of schottky gate type field-effect transistor
JP3347837B2 (en) Compound semiconductor field effect transistor
JP2695832B2 (en) Heterojunction field effect transistor
JP2569626B2 (en) Semiconductor integrated circuit device
JP2658898B2 (en) field effect transistor
JP2834172B2 (en) Field effect transistor
JP2671553B2 (en) Field effect semiconductor device
JP2616032B2 (en) Method for manufacturing field effect transistor
JPH06151464A (en) Field effect transistor

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees