JPS61274369A - Field effect type semiconductor device - Google Patents

Field effect type semiconductor device

Info

Publication number
JPS61274369A
JPS61274369A JP10989585A JP10989585A JPS61274369A JP S61274369 A JPS61274369 A JP S61274369A JP 10989585 A JP10989585 A JP 10989585A JP 10989585 A JP10989585 A JP 10989585A JP S61274369 A JPS61274369 A JP S61274369A
Authority
JP
Japan
Prior art keywords
type
layer
hemt
conductivity type
epitaxial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10989585A
Other languages
Japanese (ja)
Inventor
Shigeru Kuroda
黒田 滋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP10989585A priority Critical patent/JPS61274369A/en
Publication of JPS61274369A publication Critical patent/JPS61274369A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7782Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET
    • H01L29/7783Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET using III-V semiconductor material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0605Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits made of compound material, e.g. AIIIBV

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To facilitate manufacture of an epitaxial structure for a P-type/N-type HEMT formation and form an excellent complementary HEMT with a high density by a method wherein a structure in which an epitaxial layer creating a P-type channel and an epitaxial layer creating an N-type channel are laminated is formed and the lower epitaxial layer is partially exposed. CONSTITUTION:An epitaxial structure for HEMT is employed in a P-type HEMT. In an N-type HEMT, an AlzGa1-zAs layer 6 is employed as an etching stopper layer and a recessed part is formed and the AlzGa1-zAs layer 6 is removed by wet etching to expose the N-type HEMT structure. A mixture gas of CCl2F2 and H6 is used for dry etching. A two-dimensional electron gas (N-type channel) layer C1 and a two-dimensional positive hole gas (P-type channel) layer are formed in I-type (non-doped) GaAs layers 2 and 7 which have larger electron affinity than the other layers at the boundaries of semiconductor layers 2 and 3 and semiconductor layers 8 and 7. P-type side ohmic electrodes 21 and 22 and N-type side ohmic electrode 11 and 12 are formed by lift-off and finished by alloy processing. Gate electrodes 13 and 23 of P-type side and N-type side can be formed simultaneously by one evaporation process by using, for instance, Al.

Description

【発明の詳細な説明】 〔概 要〕 ヘテロ接合を用いてp及びルテヤネルを有するHEMT
構造の相補型デバイスを作製する際、該p。
[Detailed description of the invention] [Summary] HEMT having p and luteyanel using a heterojunction
When producing a complementary device of the structure, the p.

n HEMT構造用のエピタキシャル層を重ねて形成し
た構造?用い、下方のHEMT構造は上方のHEMT構
造を部分的に除去して用いるようにし、再成長工程を不
要とする。
n Structure formed by stacking epitaxial layers for HEMT structure? The lower HEMT structure is used by partially removing the upper HEMT structure, thereby eliminating the need for a regrowth process.

〔産業上の利用分野〕[Industrial application field]

本発明は相補型のHEMT (高電子、正孔移動度トラ
ンジスタ)に係り、特にそのエピタキシャル層構造の改
良に関する。
The present invention relates to complementary HEMTs (high electron, hole mobility transistors), and in particular to improvements in their epitaxial layer structure.

コンプリメンタ9・デバイス(相補型)は、低消費電力
、高集積度化が実現可能なことから、シリコンでは技術
的進歩が著しい分野である。
Complementary 9 devices (complementary type) are a field in which significant technological progress is being made in silicon because low power consumption and high integration can be achieved.

GaAs系でも相、捕型が試みられているが、Pfヤネ
ルの正孔移動度が小さいためシー、特性的C;あまり興
味のある系ではなかったが、最近へテロ接合への選択ド
ーピングC二より、GIZAJPよりはるかに高い正孔
移動度をもつ構造が研究されている。
Although phase and trapping have been attempted in the GaAs system, due to the low hole mobility of Pf layer, the characteristic C; Therefore, structures with much higher hole mobility than GIZAJP are being studied.

〔従来の技術〕[Conventional technology]

第3図(二従来例の相補型HEMTを示してあり、51
は1板であり、その上(ニル型HEMT構造■をエビタ
キVヤル成長し、次にp型HEMT (Hi !A h
a l #F7Lobility transisto
rと称されHHMTとなるが通常P型HEMTと呼ばれ
る)構造[株]を[相]の層を選択的(:除去した部分
C;成長している。■の62はバッファ層、53はアン
ドープGαAs、54はルーAIGaAz 。
Figure 3 (shows two conventional complementary HEMTs, 51
is one plate, on top of which (nil-type HEMT structure) is grown, then p-type HEMT (Hi!A h
a l #F7Labilitytransisto
The layer of [phase] is selectively grown (removed part C; 62 of ■ is a buffer layer, 53 is an undoped layer). GaAs, 54 is Lu AIGaAz.

35は3− (rXAtXAtキャラあり、電極S、D
及びゲート電極Gが設けられている。■の42はバッフ
ァ層、43はノンドープGaAz 、 44はp −A
IGaAz 。
35 is 3- (rXAtXAt character included, electrodes S, D
and a gate electrode G are provided. 42 is a buffer layer, 43 is non-doped GaAz, and 44 is p-A.
IGaAz.

45はp −GaAzキャップ層であり、電極S、D及
びゲート電極Gが形成されている。
45 is a p-GaAz cap layer, on which electrodes S, D and gate electrode G are formed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところが、上記のように選択エツチング等で除去した凹
部Cp mHEMT @造を成長する方法では、欠点と
して成長層界面の問題から成る程度以上の膜厚が必要(
〜6000A )であり、再成長l二時間がかかる。更
(こ、凹部の深さ方向界面近辺の成長面の高抵抗化のた
めに、素子部分には不用な領域(第3図のX印)が生じ
、素子面積縮小の妨げとなる。
However, the method of growing the concave Cp mHEMT structure removed by selective etching, etc., as described above, has the disadvantage of requiring a film thickness greater than that due to the problem of the interface between the grown layers (
~6000A), and regrowth takes 12 hours. Furthermore, due to the high resistance of the growth surface near the interface in the depth direction of the recess, an unnecessary region (marked by X in FIG. 3) is generated in the element portion, which becomes an obstacle to reducing the area of the element.

なお、この成長面の高抵抗化は、凹部側面の成長により
複雑な界面が形成される為と考えられており、これt避
けることはできない。
Note that this increase in the resistance of the growth surface is thought to be due to the formation of a complex interface due to the growth of the side surface of the recess, and this cannot be avoided.

また、このよう)二、再成長工程な用いること自体、製
造上の効率を悪化させる。
In addition, the use of such a regrowth process itself deteriorates manufacturing efficiency.

〔問題点を解決するための手段〕[Means for solving problems]

本発明(二おいては、相補型のHEMT構造を作製する
のに、Pf−ヤネルを生じるエピタキシャル月及びルチ
ャネルを生じるエピタキシャル層を重ねた構造を形成し
、下方のエピタキシャル層を部分的(二露出して、pも
しくはrb HEMT l;用い、上方のエピタキシャ
ル層′fjIニルもしくはp HEMT l:用いる。
In the present invention (2), to fabricate a complementary HEMT structure, a structure is formed in which an epitaxial layer producing a Pf channel and an epitaxial layer producing a channel are stacked, and the lower epitaxial layer is partially Exposed, p or rb HEMT l: used, upper epitaxial layer 'fjI' or p HEMT l: used.

〔作 用〕[For production]

上記相補型HEMT構造は一度(一連)のエビタ午ンヤ
ル成長(二より形成できる。
The above complementary HEMT structure can be formed by one (series) of two consecutive growths.

〔実施例〕〔Example〕

第2図に本発明の実施例のHEMT用エピタキシャル構
造が表わしてあり、G a A s基板1上に以下の層
がMOCVD (有機金属気相成長1法等により、典型
的な例として形成される。
FIG. 2 shows an epitaxial structure for HEMT according to an embodiment of the present invention, in which the following layers are typically formed on a GaAs substrate 1 by MOCVD (metal-organic chemical vapor deposition 1 method, etc.). Ru.

キャリア濃度    膜厚 2:アンドープGcLAJ層          6Q
QOA4ニル型傾斜組成の AIGaAz層C8番ドープ)  j、5XjO”cm
−350OA:キャリア濃度   膜厚 5  :  n  −GaAjC8iドープ)    
    2x10  cm     500A6:ア、
ドープAt 、 Ga1−2AI層         
50,47:アンドープ員AJF層         
    1000A9:p”−GaAsJtll   
   4X10”cm−’  500A上記1:おいて
、3のルーAt、Ga1−y A s層の7=0.5.
4のル型傾斜組成のAlGaAsはAlo、!t Ga
o、7AIからQ aA Jに傾斜型に変化させた層、
6のアンドープAtzGα1 +Z A JP層はz 
” Oa 5.8のp AlzGa1zAz層のX =
 O,Sとなした。
Carrier concentration Film thickness 2: Undoped GcLAJ layer 6Q
AIGaAz layer C8 doped with QOA4nyl type gradient composition) j, 5XjO”cm
-350OA: Carrier concentration Film thickness 5: n-GaAjC8i doped)
2x10 cm 500A6:A,
Doped At, Ga1-2AI layer
50, 47: Undoped AJF layer
1000A9:p”-GaAsJtll
4X10"cm-' 500A above 1:, 3 Lu At, Ga1-y As layer 7=0.5.
4, AlGaAs with a le-graded composition is Alo,! tGa
o, a layer with a gradient type change from 7AI to Q aA J,
The undoped AtzGα1 +Z A JP layer of 6 is z
” X of p AlzGa1zAz layer with Oa 5.8 =
O, S.

なお、適用可能なx、y、zの値の範囲は、0.1 <
 2 < 0.7 0.1 < y< 0.5 0.1 < z≦1 である。
Note that the applicable range of x, y, and z values is 0.1 <
2 < 0.7 0.1 < y < 0.5 0.1 < z≦1.

前記の1〜5の層は通常のrL−HEMT構造と同じで
あり、その上1;アンドープAtzGa1−ZAJF層
6を介してp −HEMT構造が形成されており、これ
らは一連の成長で作製される。P y ’同構造の間の
AtzGα1−ヱA#層は同構造間の電気的分離と、p
 −HEMT構造を均一(;エツチングするだめのエツ
チング停止層を兼ねた役割をする。
The above-mentioned layers 1 to 5 are the same as the normal rL-HEMT structure, and a p-HEMT structure is formed via an undoped AtzGa1-ZAJF layer 6, which is fabricated by a series of growths. Ru. P y 'The AtzGα1-ヱA# layer between the same structures provides electrical isolation between the same structures and p
- Uniform HEMT structure (also serves as an etching stop layer before etching).

このようなエピタキシャル層構造をとれば、エピタキシ
ャル成長時間は従来の約ン「:短縮され、再成長界面の
問題もないので良好なデバイス作鰻につながる。
If such an epitaxial layer structure is adopted, the epitaxial growth time will be shortened compared to the conventional method, and there will be no problem with regrowth interfaces, leading to good device production.

第1図に、第2図のHEMT用エピタキシャル構造を用
いて形成した実施例の素子構造(4)及びその等価回路
(ロ)を表わしている。
FIG. 1 shows an element structure (4) of an example formed using the HEMT epitaxial structure shown in FIG. 2 and its equivalent circuit (b).

第1図(イ)を参照して、製造工程を説明する。The manufacturing process will be explained with reference to FIG. 1(a).

p −HEMTはHEMT用エピタキシャル構造をその
まま使用する。
For p-HEMT, the epitaxial structure for HEMT is used as is.

3−HEMTは、A l z G G 1−2 A 1
層6をエツチング停止層として用い、ドライエツチング
で凹部を形成し、その後AlzG”1−2”層6をウェ
ットエツチングで除去して%−HEMT構造を露出して
用いる。
3-HEMT is Al z G G 1-2 A 1
Using layer 6 as an etch stop layer, a recess is formed by dry etching, and then AlzG "1-2" layer 6 is removed by wet etching to expose the %-HEMT structure for use.

該ドライエツチングは、CCl 2 J’2 + H#
 (ガス圧1:1)の混合ガスを用いて行なう。その選
択比はAlGaAs/GaAz = 1/ 250であ
り、AlzGal−zA’層6をストッパとして均一(
二p −HEMT構造を除去することができる。
The dry etching is CCl 2 J'2 + H#
(gas pressure 1:1) using a mixed gas. The selection ratio is AlGaAs/GaAz = 1/250, and the AlzGal-zA' layer 6 is used as a stopper to uniformly (
The 2p-HEMT structure can be removed.

2次元電子ガス(3チヤネル)層C1及び2次元正孔ガ
ス<pfヤネル)層C2は、2,3及び8゜7の半導体
界面の電子親和力がより大なi(非ドープ)GaAs層
2,7に形成される。オーミック電極21 、22及び
11,12はそれぞれリフト・オフで形成後合金処理で
作製し、ゲート電極13.25は例えばAtを用いて、
P、ル側を同時に1回の蒸着で形成できる。
The two-dimensional electron gas (three-channel) layer C1 and the two-dimensional hole gas <pf channel) layer C2 are an i (undoped) GaAs layer 2, which has a larger electron affinity at the semiconductor interface of 2, 3, and 8°7. 7 is formed. The ohmic electrodes 21, 22 and 11, 12 are formed by lift-off and then alloyed, and the gate electrodes 13, 25 are made of, for example, At.
The P and L sides can be formed simultaneously in one vapor deposition.

なお、その際ゲート形成部のp −GaAs9及びn”
 −GaAz 5 fリセスして取除き、p−AlzG
a14Az層8及びルーAt、Ga1 ++y A J
F層6にゲート電極を形成している。
In addition, in this case, the p-GaAs9 and n"
-GaAz 5f recessed and removed, p-AlzG
a14Az layer 8 and Lu At, Ga1 ++y A J
A gate electrode is formed in the F layer 6.

なお、第1図(A)l二おいて@〜■と指示するのは素
子間の電気的分離領域であり、T i /Aμの500
0 A程度の膜(図示せず)7にマスクにして酸素イオ
ンを注入して形成した高抵抗領域である(本実施例は図
(5)のようにインバータを構成しているので@〜■の
分離は不用であるが、一般的な例として示しである)。
Note that in FIG. 1(A) 12, the areas indicated by @~■ are electrical isolation regions between elements, and are 500% of T i /Aμ.
This is a high resistance region formed by implanting oxygen ions into a film (not shown) 7 of about 0 A as a mask. separation is not necessary, but is shown as a general example).

以上のよう1;構成された相補型HEMTのp −HE
MTは低温下(二おいて4000 am”/V−8程度
の移動度を示し、十分高速動作が可能である。
As above 1; p-HE of the constructed complementary HEMT
MT exhibits a mobility of approximately 4000 am''/V-8 at low temperatures (2000 am''/V-8) and is capable of sufficiently high-speed operation.

なお、これまでルーHEMT用エピタキシャル構造を下
方に、p−HEMT用エピタキシャル構造全上方に形成
した例で説明し之が、これを逆にしても良いことはもち
ろんである。また、本発明は他の半導体系1例えばIn
P系にも適用できる。
Although an example has been described so far in which the R-HEMT epitaxial structure is formed below and the p-HEMT epitaxial structure is formed entirely above, it goes without saying that this may be reversed. The present invention also applies to other semiconductor systems such as In
It can also be applied to P series.

〔発明の効果〕〔Effect of the invention〕

以上のことから明らかなように、本発明によれば従来の
よう(二再成長が必要でないので、P、ルHEMT形成
用のエピタキシャル構造の作製が容易であり、再成長界
面の問題もないので良好な相補fi HEMTを高密度
に形成することが可能になる0
As is clear from the above, according to the present invention, it is easy to fabricate an epitaxial structure for forming a P, Le HEMT because two regrowths are not required, and there is no problem with the regrowth interface. 0, which makes it possible to form high-density complementary fi HEMTs.

【図面の簡単な説明】[Brief explanation of drawings]

第1因(イ)向はそれぞれ本発明の実施例の断面図及び
等価回路図、 第2図は実施例のエピタキシャル構造な示す図、第3図
は従来例の断面図である。 1・・・GaAz基板 2・・・アンドープG a A 7層 5・・・ルーAt、Ga1 +yA z層4 ・−n 
−graded AIGaAz層5…ルーGaAs層 6・・・アンドープAtzGα1−2AJP層7・・・
アンドープAtzGα1−1Aj層8、−p−Al□G
α1−2 A 1層9 …p −GaAs層
The first factor (A) direction is a cross-sectional view and an equivalent circuit diagram of an embodiment of the present invention, FIG. 2 is a diagram showing the epitaxial structure of the embodiment, and FIG. 3 is a cross-sectional diagram of a conventional example. 1... GaAz substrate 2... Undoped GaA 7 layer 5... Lu At, Ga1 +yA z layer 4 ・-n
-graded AIGaAz layer 5...Ru GaAs layer 6...Undoped AtzGα1-2AJP layer 7...
Undoped AtzGα1-1Aj layer 8, -p-Al□G
α1-2 A 1 layer 9...p -GaAs layer

Claims (1)

【特許請求の範囲】 一導電型チャネル用の第1半導体層、及びこれに格子整
合し、第1半導体層より電子親和力が小なる一導電型の
第2半導体層を有し、第1半導体層の第2半導体層との
界面に一導電型のチャネルが形成される一導電型素子用
エピタキシャル構造を備え、 該一導電型素子用エピタキシャル構造上に反対導電型チ
ャネル用の第3半導体層及びこれに格子整合し、第3半
導体層より電子親和力が小なる第4半導体層を有し、第
3半導体層の第4半導体層との界面に反対導電型のチャ
ネルが形成される反対導電型素子用エピタキシャル構造
を備え、該反対導電型素子用エピタキシャル構造に一導
電型素子用エピタキシャル構造の表面に到る凹部が備え
られ、該凹部内の一導電型素子用エピタキシヤル構造の
表面に一導電型素子用のソース、ドレイン及びゲート電
極が備えられ、 該反対導電型素子用エピタキシャル構造の表面に、反対
導電型素子用のソース、ドレイン及びゲート電極が備え
られてなることを特徴とする電界効果型半導体装置。
[Scope of Claims] A first semiconductor layer for a channel of one conductivity type, and a second semiconductor layer of one conductivity type that is lattice matched thereto and has a smaller electron affinity than the first semiconductor layer; an epitaxial structure for an element of one conductivity type in which a channel of one conductivity type is formed at an interface with a second semiconductor layer, and a third semiconductor layer for a channel of an opposite conductivity type on the epitaxial structure for an element of one conductivity type; For an element of opposite conductivity type, which has a fourth semiconductor layer that is lattice-matched and has a lower electron affinity than the third semiconductor layer, and a channel of the opposite conductivity type is formed at the interface between the third semiconductor layer and the fourth semiconductor layer. an epitaxial structure, the epitaxial structure for an element of opposite conductivity type is provided with a recess that reaches the surface of the epitaxial structure for an element of one conductivity type, and the surface of the epitaxial structure for an element of one conductivity type within the recess is provided with an element of one conductivity type. A field effect semiconductor, comprising: a source, a drain, and a gate electrode for an opposite conductivity type element, and a surface of the opposite conductivity type element epitaxial structure is provided with a source, drain, and gate electrode for an opposite conductivity type element. Device.
JP10989585A 1985-05-22 1985-05-22 Field effect type semiconductor device Pending JPS61274369A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10989585A JPS61274369A (en) 1985-05-22 1985-05-22 Field effect type semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10989585A JPS61274369A (en) 1985-05-22 1985-05-22 Field effect type semiconductor device

Publications (1)

Publication Number Publication Date
JPS61274369A true JPS61274369A (en) 1986-12-04

Family

ID=14521879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10989585A Pending JPS61274369A (en) 1985-05-22 1985-05-22 Field effect type semiconductor device

Country Status (1)

Country Link
JP (1) JPS61274369A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4963948A (en) * 1986-12-20 1990-10-16 Fujitsu Limited Semiconductor device having level shift diode
US4974038A (en) * 1987-08-05 1990-11-27 Thomson Hybrides Et Microondes Microwave transistor with double heterojunction
JPH033336A (en) * 1989-05-31 1991-01-09 Hitachi Ltd Semiconductor device
US5302840A (en) * 1991-06-20 1994-04-12 Fujitsu Limited HEMT type semiconductor device having two semiconductor well layers
GB2504614A (en) * 2012-07-17 2014-02-05 Element Six Technologies Us Corp Complimentary Heterojunction Field Effect Transistor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4963948A (en) * 1986-12-20 1990-10-16 Fujitsu Limited Semiconductor device having level shift diode
US4974038A (en) * 1987-08-05 1990-11-27 Thomson Hybrides Et Microondes Microwave transistor with double heterojunction
JPH033336A (en) * 1989-05-31 1991-01-09 Hitachi Ltd Semiconductor device
US5302840A (en) * 1991-06-20 1994-04-12 Fujitsu Limited HEMT type semiconductor device having two semiconductor well layers
GB2504614A (en) * 2012-07-17 2014-02-05 Element Six Technologies Us Corp Complimentary Heterojunction Field Effect Transistor

Similar Documents

Publication Publication Date Title
JPH02101751A (en) Semiconductor device
JP3086748B2 (en) High electron mobility transistor
JPS61274369A (en) Field effect type semiconductor device
JPS60110175A (en) Field effect transistor and method of producing same
JPS58143572A (en) Field-effect transistor
JPH01119065A (en) Iii-v compound semiconductor field-effect transistor
JP2759526B2 (en) Semiconductor device and manufacturing method thereof
JP2787589B2 (en) Semiconductor device
JP2757364B2 (en) Semiconductor device
JP3129510B2 (en) InGaP etching method and semiconductor device manufacturing method using the etching method
JP2808671B2 (en) Field effect transistor
JP3443034B2 (en) Field effect transistor
JP2621854B2 (en) High mobility transistor
JPS6115375A (en) Hetero junction fet
JP3120611B2 (en) Heterojunction type field effect transistor and method of manufacturing the same
JPS63211770A (en) Filed-effect transistor
JPH0817241B2 (en) Thin wire field effect transistor and method of manufacturing the same
JPS62113479A (en) Manufacture of field-effect semiconductor device
JPH0368143A (en) Heterojunction field-effect transistor
JPH01120871A (en) Semiconductor device
JPH07283396A (en) Heterojunction field-effect transistor
JP2890885B2 (en) Semiconductor device and manufacturing method thereof
JPH02113540A (en) Semiconductor device
JPH04142750A (en) High electron mobility transistor
JPH0797634B2 (en) Field effect transistor and manufacturing method thereof