JPS63211770A - Filed-effect transistor - Google Patents

Filed-effect transistor

Info

Publication number
JPS63211770A
JPS63211770A JP4563987A JP4563987A JPS63211770A JP S63211770 A JPS63211770 A JP S63211770A JP 4563987 A JP4563987 A JP 4563987A JP 4563987 A JP4563987 A JP 4563987A JP S63211770 A JPS63211770 A JP S63211770A
Authority
JP
Japan
Prior art keywords
layer
thickness
electrode
resistance value
semiconductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4563987A
Other languages
Japanese (ja)
Inventor
Koki Nagahama
長浜 弘毅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP4563987A priority Critical patent/JPS63211770A/en
Publication of JPS63211770A publication Critical patent/JPS63211770A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • H01L29/7787Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT with wide bandgap charge-carrier supplying layer, e.g. direct single heterostructure MODFET

Abstract

PURPOSE:To obtain a high performance 2 DEGFET, in which resistance values between a source electrode and a gate electrode and between a drain electrode and the gate electrode are sufficiently decreased, by specifying the thickness of a resistance decreasing semiconductor layer, and making only a region, where the source electrode and the drain electrode are formed, thin. CONSTITUTION:The thickness of a resistance decreasing third semiconductor layer 5a is made to be 1,000-1,500Angstrom . Only a region, where a source electrode and a drain electrode are formed, is thinly formed. When the thickness (d) of the n-type GaAs layer 5a is thin, the resistance value R1 of the n-type GaAs layer 5a becomes large. When the thickness (d) of the n-type GaAs layer 5a becomes too thick, the lateral width of a recess groove 9 increases with said increased thickness, and a resistance value R3 becomes large. In consideration of these conditions, the resistance value RS(d)/RS(d=500Angstrom ), i.e., the resistance value RS, becomes the minimum value when the thickness (d) of the GaAs layer 5a is d=1,000-1,500Angstrom .

Description

【発明の詳細な説明】 (産業上の利用分野〕 この発明は、例えばGaAsとAuGaAs界面に形成
される2次元電子ガス(2DEG)を利用した電界効果
トランジスタ(以下2DEGFETという)に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a field effect transistor (hereinafter referred to as 2DEGFET) that utilizes a two-dimensional electron gas (2DEG) formed at the interface of, for example, GaAs and AuGaAs.

〔従来の技術〕[Conventional technology]

第4図(a)〜(d)は従来から実施されている2DE
GFETの構造例を示す図である。
Figures 4(a) to (d) show the conventional 2DE
FIG. 2 is a diagram showing an example of a structure of a GFET.

これらの図において、1は半絶縁性GaAs基板、2は
第1の半導体層としてのアンドープGaAs層、3はZ
DEG層、4は第2の半導体層としてのn型Aj!Ga
As層、5は第3の半導体層としてのn型GaAs層、
6はゲート電極、7はソース電極、8はドレイン電極、
9はリセス溝である。
In these figures, 1 is a semi-insulating GaAs substrate, 2 is an undoped GaAs layer as the first semiconductor layer, and 3 is a Z
The DEG layer 4 is an n-type Aj! as a second semiconductor layer. Ga
an As layer, 5 an n-type GaAs layer as a third semiconductor layer,
6 is a gate electrode, 7 is a source electrode, 8 is a drain electrode,
9 is a recess groove.

2DEGFETには大別してプラナ構造とリセス構造の
2種類があり、第4図(a)、(b)はプラナ構造、第
4図(C)、(d)はリセス構造のものである。
There are two types of 2DEGFETs: a planar structure and a recessed structure. FIGS. 4(a) and 4(b) show the planar structure, and FIGS. 4(c) and 4(d) show the recessed structure.

第4図(a)のものは、半絶縁性GaAs基板1上にア
ンドープGaAs層2.n型AIGaAS層4をエピタ
キシャル成長させ、これらとオーミック接触するソース
電極7とドレイン電極8と、n型AJ2GaAs層4と
ショットキ接触するゲート電極6とを形成している。
In the case shown in FIG. 4(a), an undoped GaAs layer 2 is formed on a semi-insulating GaAs substrate 1. An n-type AIGaAS layer 4 is epitaxially grown to form a source electrode 7 and a drain electrode 8 that are in ohmic contact with these, and a gate electrode 6 that is in Schottky contact with the n-type AJ2GaAs layer 4.

第4図(b)のものは、その改良構造で、n型Aj!G
aAs層4とゲート電極6間にn型GaAs層5を設け
ている。
The one shown in FIG. 4(b) is an improved structure of the n-type Aj! G
An n-type GaAs layer 5 is provided between the aAs layer 4 and the gate electrode 6.

また、第4図(C)、(d)のものは、ともにゲート電
極6をリセス溝9内に形成しているが、第4図(C)の
ものはリセス溝9の底がn型AλGaAs層4にあり、
第4図(d)のものはリセス溝9の底がn型GaAs層
5にある。
4(C) and (d), the gate electrode 6 is formed in the recess groove 9, but in the case of FIG. 4(C), the bottom of the recess groove 9 is made of n-type AλGaAs. Located in layer 4,
In the case of FIG. 4(d), the bottom of the recess groove 9 is in the n-type GaAs layer 5.

2DEGFETの構造としては、このように大別して2
種類存在するが、第4図(a)、(b)のプラナ構造の
2DEGFETは、トランジスタ特性のクエへ面内での
均一性の向上が期待できる反面、エピタキシャル層の膜
厚とドーピング量の正確な制御が必要である。また、一
般にこうしたプラナ構造では、第4図(e)、(d)に
示したリセス構造の2DEGFETに較べて、ソース電
極7とゲート電極6、およびゲート電極6とドレイン電
極8間の抵抗値が高くなるので、この抵抗値の低減を図
るために、ソース電極7とドレイン電極8との間隔を第
4図(C)、(d)に示したリセス構造の2DEGFE
Tに比べて狭くしなければならないという製作上の困難
性がある。
The structure of 2DEGFET can be roughly divided into 2 types as shown below.
Although there are different types, the planar structure 2DEGFET shown in Figures 4(a) and 4(b) can be expected to improve the uniformity of the transistor characteristics within the plane. control is necessary. Also, in general, in such a planar structure, the resistance values between the source electrode 7 and the gate electrode 6, and between the gate electrode 6 and the drain electrode 8 are lower than in the recessed structure 2DEGFET shown in FIGS. 4(e) and 4(d). Therefore, in order to reduce this resistance value, the distance between the source electrode 7 and the drain electrode 8 is changed to a 2DEGFE with a recessed structure as shown in FIGS. 4(C) and 4(d).
There is a manufacturing difficulty in that it must be narrower than T.

このため、現在では第4図(c)、(d)に示したリセ
ス構造の2DEGFETが比較的多く製作されている。
For this reason, relatively many 2DEGFETs having the recess structure shown in FIGS. 4(c) and 4(d) are currently manufactured.

次に最も一般的な第4図(C)に示したリセス構造の2
DEGFETについてその動作を説明する。
The second most common recess structure shown in Figure 4 (C)
The operation of DEGFET will be explained.

ソース電極7とドレイン電極8間に電圧を印加すると、
2DEG層3を通して電流が流れるが、その際ゲート電
極6に電圧を印加すると、ゲート下の2DEG層3の濃
度が変り、トランジスタ動作をする。
When a voltage is applied between the source electrode 7 and the drain electrode 8,
A current flows through the 2DEG layer 3, and when a voltage is applied to the gate electrode 6 at this time, the concentration of the 2DEG layer 3 under the gate changes, causing a transistor operation.

したがって、ゲート電極6を形成するリセス溝9の深さ
を調整することによりトランジスタとしての初期電流値
を調整でき、所望の特性をもつ2DEGFETを製作す
ることができる。
Therefore, by adjusting the depth of the recess groove 9 forming the gate electrode 6, the initial current value of the transistor can be adjusted, and a 2DEGFET with desired characteristics can be manufactured.

また、このようなリセス構造の2DEGFET中のn型
GaAS層5は、ソース電極7とドレイン電極8を形成
する際に、電極金属との反応を促進し、ソース電極7お
よびドレイン電極8と2DEG層3との接触抵抗値を低
くする目的で用いられ、通常400〜600人の膜厚が
採用されている。これは膜厚をあまり厚くしすぎると、
ソース電極7およびドレイン電極8の電極金属の沈み込
みが充分でなくなり、ZDEG層3との接触抵抗値が増
大する懸念がある。
In addition, the n-type GaAS layer 5 in the 2DEGFET having such a recessed structure promotes the reaction with the electrode metal when forming the source electrode 7 and drain electrode 8, so that the source electrode 7 and drain electrode 8 and the 2DEG layer It is used for the purpose of lowering the contact resistance value with 3, and a film thickness of 400 to 600 is usually adopted. This is because if the film thickness is made too thick,
There is a concern that the electrode metals of the source electrode 7 and the drain electrode 8 will not sink sufficiently, and the contact resistance value with the ZDEG layer 3 will increase.

(発明が解決しようとする問題点〕 上記のような従来の2DEGFETでは、リセス構造が
ソース電極7とゲート電極6、およびドレイン電極8と
ゲート電極6間の抵抗値を低減するために採用されてい
るが、n型GaAs層5が400〜600人程度の膜厚
では、ソース電極7とゲート電極6、およびドレイン電
極8とゲート電極6間の抵抗値が充分に低減されないと
いう問題点があった。
(Problems to be Solved by the Invention) In the conventional 2DEGFET as described above, a recess structure is adopted to reduce the resistance value between the source electrode 7 and the gate electrode 6, and between the drain electrode 8 and the gate electrode 6. However, when the n-type GaAs layer 5 has a thickness of about 400 to 600 layers, there is a problem that the resistance values between the source electrode 7 and the gate electrode 6 and between the drain electrode 8 and the gate electrode 6 are not sufficiently reduced. .

この発明は、かかる問題点を解決するためになされたも
ので、ソース電極とゲート電極、およびドレイン電極と
ゲート電極間の抵抗値を充分に低減した高性能の2DE
GFETを得ることを目的とする。
The present invention was made to solve these problems, and is a high-performance 2DE with sufficiently reduced resistance values between the source electrode and the gate electrode, and between the drain electrode and the gate electrode.
The purpose is to obtain a GFET.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る2DEGFETは、低抵抗化用の第3の
半導体層の膜厚を1000〜1500人とし、ソース電
極およびドレイン電極が形成される領域のみを薄く形成
したものである。
In the 2DEGFET according to the present invention, the third semiconductor layer for reducing resistance has a thickness of 1,000 to 1,500 layers, and only the regions where the source electrode and drain electrode are formed are formed thinly.

(作用〕 この発明においては、第3の半導体層によってソース電
極およびドレイン電極と2DEG層との接触抵抗値が低
くなる。
(Function) In this invention, the contact resistance value between the source electrode and the drain electrode and the 2DEG layer is reduced by the third semiconductor layer.

〔実施例〕〔Example〕

第1図はこの発明の2DEGFETの一実施例の構造を
示す図である。
FIG. 1 is a diagram showing the structure of an embodiment of a 2DEGFET of the present invention.

この図において、5aはこの発明におけるn型GaAs
層で、膜厚が1000〜1500人と厚く形成されてい
る。また、リセス溝9の深さ、および横広がりがともに
Il、(μm)、ソース電極7とゲート電極6との間隔
が1μm、ゲート電極6の幅がW(μm)となっている
In this figure, 5a is the n-type GaAs in this invention.
It is made up of 1,000 to 1,500 thick layers. Further, the depth and lateral extent of the recess groove 9 are both Il (μm), the distance between the source electrode 7 and the gate electrode 6 is 1 μm, and the width of the gate electrode 6 is W (μm).

また、第2図(a)、(b)はソース電8i!7とゲー
ト電極6間の抵抗値のn型GaAs層5aの膜厚依存性
および第1図に示した2DEGFETを等測的に示した
図である。
In addition, FIGS. 2(a) and 2(b) show the source voltage 8i! 2 is a diagram isometrically showing the dependence of the resistance value between the gate electrode 7 and the gate electrode 6 on the thickness of the n-type GaAs layer 5a and the 2DEGFET shown in FIG. 1. FIG.

第2図(a)では、n型GaAs層5aの膜厚をd、ソ
ース電i7とゲート電極6間の抵抗値をRs  (d)
として、横軸にd、縦軸にR3(ct)/ Rs  (
d = 500人)をとっている。
In FIG. 2(a), the thickness of the n-type GaAs layer 5a is d, and the resistance value between the source electrode i7 and the gate electrode 6 is Rs (d).
, the horizontal axis is d, and the vertical axis is R3 (ct)/Rs (
d = 500 people).

また、第2図(b)において、Rcは2DEG層3への
接触抵抗値も含めた電極金属とエピタキシャル層との接
触抵抗値、R1はn型GaAs層5aの抵抗値、R2、
Rsは2DEG層3の抵抗値、各抵抗値はRCccl/
W、R,oe (1−j2)/11−W、 R2” (
1−℃)/W、 R3cei/wとなっている。
In addition, in FIG. 2(b), Rc is the contact resistance value between the electrode metal and the epitaxial layer including the contact resistance value to the 2DEG layer 3, R1 is the resistance value of the n-type GaAs layer 5a, R2,
Rs is the resistance value of the 2DEG layer 3, and each resistance value is RCccl/
W, R, oe (1-j2)/11-W, R2” (
1-℃)/W, R3cei/w.

次に第2図(b)を用いて膜厚dと抵抗値R5(d )
 / Rs  (d = 500人)との関係を説明す
る。
Next, using Figure 2(b), calculate the film thickness d and the resistance value R5(d).
/Rs (d = 500 people).

n型GaAs層5aの膜厚dが薄いときは、n型GaA
s層5aの抵抗値R1が大きく、また、n型GaAs層
5aの膜厚dが厚くなりすぎてもリセス溝9の横広がり
2が膜厚とともに大きくなり、抵抗値R3が大きくなる
。これらの条件を考慮すると、第2図(a)に示すよう
な曲線が得られ、d=1000〜1500人で抵抗値R
8(d)/Rs  (d=500人)すなわち、抵抗値
Rsが最低となる。
When the film thickness d of the n-type GaAs layer 5a is small, the n-type GaAs
Even if the resistance value R1 of the s-layer 5a is large and the film thickness d of the n-type GaAs layer 5a becomes too thick, the lateral extent 2 of the recess groove 9 increases with the film thickness, and the resistance value R3 becomes large. Considering these conditions, a curve as shown in Fig. 2(a) is obtained, and the resistance value R at d = 1000 to 1500 people.
8(d)/Rs (d=500 people) That is, the resistance value Rs is the lowest.

したがって、第2図(a)の結果からうかがわれるよう
に、n型GaAs層5aの膜厚dが従来から用し)られ
てし)る400〜600人よりも、100〜1500人
に厚くなった方が抵抗値Rs(d)を低減することがで
き、このことは、ドレイン電極8とゲート電極6間の抵
抗値についても類推できる。
Therefore, as can be seen from the results in FIG. 2(a), the film thickness d of the n-type GaAs layer 5a is thicker from 100 to 1500 than the conventionally used thickness of 400 to 600. This can reduce the resistance value Rs(d), and this can also be inferred for the resistance value between the drain electrode 8 and the gate electrode 6.

第1図に示した2DEGFETでは、n型GaAs層5
aの膜厚dを従来の2DEGFETにおける400〜6
00人に比べて厚くしている分だけリセス溝9の深さや
横広がりも大きくなっており、またn型GaAs層5a
を厚くしていることにより、前述したように、ソース電
極7またはドレイン電極8の2DEG層3への接触抵抗
値を増大させる懸念があるが、これは電極金属の形成前
にソース電極7およびドレイン電極8が形成される領域
のn型GaAs層5aを所望の厚さまでエツチングして
薄くしておくことにより防ぐ。
In the 2DEGFET shown in FIG. 1, the n-type GaAs layer 5
The film thickness d of a is 400 to 6 in the conventional 2DEGFET.
The depth and lateral spread of the recess groove 9 are also larger due to the thicker thickness compared to the n-type GaAs layer 5a.
As mentioned above, there is a concern that increasing the thickness of the source electrode 7 or drain electrode 8 may increase the contact resistance value of the source electrode 7 or drain electrode 8 to the 2DEG layer 3. This can be prevented by etching the n-type GaAs layer 5a in the region where the electrode 8 is to be formed to a desired thickness.

なお、上記実施例では、リセス溝9の底がn型AJ2G
aAs層4内にある場合を示したが、これはn型Aj2
GaAs層4の膜厚を変えることにより自由に変更する
ことができ、第3図の実施例に示すようにリセス溝9の
底がn型GaAs層5a内にある構造も製作することが
できる。
In the above embodiment, the bottom of the recess groove 9 is of n-type AJ2G.
The case where it is in the aAs layer 4 is shown, but this is an n-type Aj2
It can be freely changed by changing the thickness of the GaAs layer 4, and it is also possible to manufacture a structure in which the bottom of the recess groove 9 is within the n-type GaAs layer 5a, as shown in the embodiment of FIG.

また、この場合にもリセス溝9のない部分のn型GaA
s層5aの膜厚dが1000〜1500人となっている
Also in this case, the n-type GaA in the part without the recess groove 9
The thickness d of the S layer 5a is 1000 to 1500.

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明したとおり、低抵抗用の第3の半導
体層の膜厚を1000〜1500人とし、ソース電極お
よびドレイン電極が形成される領域のみを薄く形成した
ので、ソース電極とゲート電極、およびドレイン電極と
ゲート電極間の抵抗値を従来の素子よりも充分に低減で
きるという効果がある。
As explained above, in this invention, the thickness of the third semiconductor layer for low resistance is set to 1,000 to 1,500 layers, and only the region where the source electrode and the drain electrode are formed is thinly formed. Another advantage is that the resistance value between the drain electrode and the gate electrode can be sufficiently reduced compared to conventional elements.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の2DEGFETの一実施例の構造を
示す図、第2図はソース電極とゲート電極間の抵抗値を
説明するための図、第3図はこの発明の2DEGFET
の他の実施例の構造を示す図、第4図は従来、の2DE
GFETの構造例を示す図である。 図において、1は半絶縁性GaAs基板、2はアンドー
プGaAs層、3はZDEG層、4はn型AJ2GaA
s層、5aはn型GaAs層、6はゲート電極、7はソ
ース電極、8はドレイン電極、9はリセス溝である。 なお、各図中の同一符号は同一または相当部分を示す。 代理人 大 岩 増 雄    (外2名)第1図 !:I:すでス溝 第2図 第3図 第4図
FIG. 1 is a diagram showing the structure of an embodiment of the 2DEGFET of the present invention, FIG. 2 is a diagram for explaining the resistance value between the source electrode and the gate electrode, and FIG. 3 is the diagram of the 2DEGFET of the present invention.
FIG. 4 is a diagram showing the structure of another embodiment of the conventional 2DE
FIG. 2 is a diagram showing an example of a structure of a GFET. In the figure, 1 is a semi-insulating GaAs substrate, 2 is an undoped GaAs layer, 3 is a ZDEG layer, and 4 is an n-type AJ2GaA
s layer, 5a is an n-type GaAs layer, 6 is a gate electrode, 7 is a source electrode, 8 is a drain electrode, and 9 is a recess groove. Note that the same reference numerals in each figure indicate the same or corresponding parts. Agent: Masuo Oiwa (2 others) Figure 1! :I:Slot groove Fig. 2 Fig. 3 Fig. 4

Claims (1)

【特許請求の範囲】[Claims] アンドープの第1の半導体層と、前記アンドープの半導
体層よりもバンドギャップが大きく不純物がドーピング
された第2の半導体層とのヘテロ接合界面に形成される
2次元電子ガス層をチャネル領域とし、前記第2の半導
体層上に低抵抗化用の第3の半導体層を備え、ゲート電
極が前記第3の半導体層の一部または全部を除去したリ
セス溝内に形成された電界効果トランジスタにおいて、
前記第3の半導体層の膜厚を1000〜1500Åとし
、ソース電極およびドレイン電極が形成される領域のみ
を薄く形成したことを特徴とする電界効果トランジスタ
A two-dimensional electron gas layer formed at a heterojunction interface between an undoped first semiconductor layer and a second semiconductor layer doped with impurities and having a larger band gap than the undoped semiconductor layer is used as a channel region; A field effect transistor comprising a third semiconductor layer for lowering resistance on the second semiconductor layer, and a gate electrode formed in a recess groove from which part or all of the third semiconductor layer is removed,
A field effect transistor characterized in that the third semiconductor layer has a thickness of 1000 to 1500 Å, and only the regions where the source electrode and the drain electrode are formed are thin.
JP4563987A 1987-02-27 1987-02-27 Filed-effect transistor Pending JPS63211770A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4563987A JPS63211770A (en) 1987-02-27 1987-02-27 Filed-effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4563987A JPS63211770A (en) 1987-02-27 1987-02-27 Filed-effect transistor

Publications (1)

Publication Number Publication Date
JPS63211770A true JPS63211770A (en) 1988-09-02

Family

ID=12724936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4563987A Pending JPS63211770A (en) 1987-02-27 1987-02-27 Filed-effect transistor

Country Status (1)

Country Link
JP (1) JPS63211770A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2635918A1 (en) * 1988-08-26 1990-03-02 Mitsubishi Electric Corp FIELD EFFECT TRANSISTOR HAVING MULTIPLE COMPOSITE SEMICONDUCTOR LAYERS
US5583353A (en) * 1993-06-24 1996-12-10 Nec Corporation Heterojunction field effect transistor
US6426523B1 (en) 1996-10-30 2002-07-30 Nec Corporation Heterojunction field effect transistor
JP2005317843A (en) * 2004-04-30 2005-11-10 Furukawa Electric Co Ltd:The GaN SEMICONDUCTOR DEVICE

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2635918A1 (en) * 1988-08-26 1990-03-02 Mitsubishi Electric Corp FIELD EFFECT TRANSISTOR HAVING MULTIPLE COMPOSITE SEMICONDUCTOR LAYERS
US5583353A (en) * 1993-06-24 1996-12-10 Nec Corporation Heterojunction field effect transistor
US6426523B1 (en) 1996-10-30 2002-07-30 Nec Corporation Heterojunction field effect transistor
US6720200B2 (en) 1996-10-30 2004-04-13 Nec Corporation Field effect transistor and fabrication process thereof
JP2005317843A (en) * 2004-04-30 2005-11-10 Furukawa Electric Co Ltd:The GaN SEMICONDUCTOR DEVICE

Similar Documents

Publication Publication Date Title
JPH09181093A (en) Field-effect transistor
JPS6357947B2 (en)
JPS63211770A (en) Filed-effect transistor
JP3447438B2 (en) Field effect transistor
JPS61274369A (en) Field effect type semiconductor device
JP3038737B2 (en) Quantum wire semiconductor device and method of manufacturing the same
JP3974061B2 (en) Heterojunction field effect transistor
JPS5891681A (en) Field-effect type transistor
JPH05275453A (en) Junction fet and manufacture thereof
JP2621854B2 (en) High mobility transistor
JPH02189978A (en) Fine wiring field effect transistor and manufacture thereof
JP2903590B2 (en) Semiconductor device and manufacturing method thereof
JPS61147578A (en) Semiconductor device
JPH0714851A (en) Field effect transistor
JPS62136881A (en) Semiconductor device
JPH04145629A (en) Field effect transistor and its manufacture
JPH01265573A (en) Manufacture of semiconductor device
JPH0341462Y2 (en)
JPS6232660A (en) Semiconductor device and manufacture thereof
JP3032915B2 (en) High electron mobility transistor
JPS6284557A (en) Semiconductor device
JPS62117373A (en) Field effect transistor
JPS63155772A (en) Field effect transistor
JPH0156544B2 (en)
JPH04199644A (en) Semiconductor device