JPS6232660A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPS6232660A
JPS6232660A JP17192085A JP17192085A JPS6232660A JP S6232660 A JPS6232660 A JP S6232660A JP 17192085 A JP17192085 A JP 17192085A JP 17192085 A JP17192085 A JP 17192085A JP S6232660 A JPS6232660 A JP S6232660A
Authority
JP
Japan
Prior art keywords
layer
gas channel
mesa
dimensional electron
electron gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17192085A
Other languages
Japanese (ja)
Inventor
Hidemi Takakuwa
高桑 秀美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP17192085A priority Critical patent/JPS6232660A/en
Publication of JPS6232660A publication Critical patent/JPS6232660A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • H01L29/7787Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT with wide bandgap charge-carrier supplying layer, e.g. direct single heterostructure MODFET

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To implement low contact resistance between a two-dimensional gas channel (2DEG) layer and ohmic alloy layers, by directly contacting the 2DEG layer and a low resistance semiconductor layer. CONSTITUTION:This HEMT is composed of the following parts: a mesa part, which comprises a GaAs layer 1 and an n-AlGaAs layer 2 that undergo mesa etching in a trapezoidal shape; a low resistance semiconductor layer 20 comprising n<+> GaAs and the like; ohmic alloy layers 11 and 12; two-dimensional gas channel layer (2DEG layer) 6; and a gate electrode 13. At least a part of the 2DEG layer 6 is exposed to the side wall of the mesa part. The low resistance semiconductor layer 20 is directly contacted with the exposed part of the 2DEG layer 6. The layer 20 is located between the ohmic alloy layers 11 and 12, which are to become source and drain electrodes, and the 2DEG layer. Since the low resistance semiconductor layer is provided between the ohmic electrodes, which are to become the source and the drain, and the two-dimensional gas channel layer, the low contact resistance can be implemented with good reproducibility.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体装置及びその製造方法に関し、特に2
次元電子ガスチャンネル層を有する半導体装置の低接触
抵抗化を実現する技術に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a semiconductor device and a method for manufacturing the same, and particularly relates to a semiconductor device and a method for manufacturing the same.
The present invention relates to a technique for realizing low contact resistance of a semiconductor device having a dimensional electron gas channel layer.

〔発明の概要〕[Summary of the invention]

従来のこの種の半導体装置にあっては、低抵抗性を再現
性良く達成することが困難であったが、本発明は、2次
元電子ガスチャンネル層とN″GaAs層等の低抵抗半
導体層とを直接接触させることにより、低抵抗性を実現
したものである。
In conventional semiconductor devices of this type, it has been difficult to achieve low resistance with good reproducibility, but the present invention provides a two-dimensional electron gas channel layer and a low resistance semiconductor layer such as an N''GaAs layer. Low resistance is achieved by bringing them into direct contact.

〔従来の技術及びその問題点〕[Conventional technology and its problems]

従来の半導体装置、例えばHEMT (HighあるS
i等をドープしたfi、1GaAs層2を積層形成する
とともに、ソース、ドレイン電極 (オーミック電極)
3.4をn−AlGaAs層2がらGaAs層1にかけ
て形成し、さらにn −A I GaAs層2上にゲー
ト電極5を形成した構成を有し°ζいる。
Conventional semiconductor devices, such as HEMT (High S
Fi, 1GaAs layers 2 doped with i, etc. are laminated, and source and drain electrodes (ohmic electrodes) are formed.
3.4 is formed from the n-AlGaAs layer 2 to the GaAs layer 1, and the gate electrode 5 is further formed on the n-AI GaAs layer 2.

n  A I GaAs層1! 2中のSiから放出さ
れた電子は、n −A I GaAs層2との界面のG
 a A s層l側にたまって2次元電子ガスチャンネ
ル層6を形成する。
n A I GaAs layer 1! The electrons emitted from the Si in the n-A I GaAs layer 2 are
The two-dimensional electron gas channel layer 6 is formed by accumulating on the side of the a As layer l.

GaAs層1は高純度で不純物が少ないため、不純物と
電子との衝突による移動度低下が少なくなり、2次元電
子ガスチャンネル層6内における電子の移動度が大きい
ものとなる。ごのようなHEMTにおいて、オーミック
電極3,4は例えばAuGe/Ni合金によって構成さ
れ、図示のような状態でオーミック電極と2次元電子ガ
スチャンネルN6との接触(オーミック接触)が行われ
る。
Since the GaAs layer 1 has high purity and contains few impurities, the decrease in mobility due to collisions between impurities and electrons is reduced, and the mobility of electrons in the two-dimensional electron gas channel layer 6 is increased. In a HEMT such as this, the ohmic electrodes 3 and 4 are made of, for example, an AuGe/Ni alloy, and contact (ohmic contact) between the ohmic electrodes and the two-dimensional electron gas channel N6 is made in the state shown in the figure.

しかしながら従来のHEMTにあっては、n −A I
 GaAs層2中のAlがオーミック電極に与える影響
により、あるいは2次元電子ガスチャンネル層とオーミ
ックアロイ層との接触領域が不均一であったり、接触面
積が狭い等の原因によって、接触抵抗(寄生抵抗)が増
大して低抵抗性を再現性良く実現することを困難にして
いた。
However, in conventional HEMT, n −A I
Contact resistance (parasitic resistance) may increase due to the influence of Al in the GaAs layer 2 on the ohmic electrode, or due to non-uniform or narrow contact areas between the two-dimensional electron gas channel layer and the ohmic alloy layer. ) increases, making it difficult to achieve low resistance with good reproducibility.

〔発明が解決しようとす゛る問題点〕[Problem that the invention seeks to solve]

上述したように、従来技術には2次元電子ガスチャンネ
ル層とオーミックアロイ層との接触領域が不均一である
、接触面積が狭い等の原因によって、接触抵抗が大きく
なるという問題がある。
As described above, the conventional technology has a problem in that the contact resistance increases due to non-uniform contact areas between the two-dimensional electron gas channel layer and the ohmic alloy layer, narrow contact areas, and the like.

本発明の目的は、このような問題を解決して接触抵抗の
低減化を達成することができる半導体装置及び製造方法
を提供するものである。
An object of the present invention is to provide a semiconductor device and a manufacturing method that can solve such problems and reduce contact resistance.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の半導体装置は、2次元電子ガスチャンネル層を
有する半導体装置において、上記2次元電子ガスチャン
ネル層の少なくとも一部分を表面に露出させてメサ状部
とし、該メサ状部の該2次元電子ガスチャンネル層に直
接接触させて形成した低抵抗半導体層を、ソース、ドレ
イン電極となるオーミック電極と該2次元電子ガスチャ
ンネル層との間に介在させて成ることによって上記目的
を達成することができる。
The semiconductor device of the present invention is a semiconductor device having a two-dimensional electron gas channel layer, in which at least a portion of the two-dimensional electron gas channel layer is exposed on the surface to form a mesa-shaped portion, and the two-dimensional electron gas channel layer in the mesa-shaped portion is The above object can be achieved by interposing a low resistance semiconductor layer formed in direct contact with the channel layer between the two-dimensional electron gas channel layer and ohmic electrodes serving as source and drain electrodes.

また、本発明方法は、2次元電子ガスチャンネル層を有
する半導体装置をメサエッチして、側部に上記2次元電
子ガスチャンネル層の少なくとも一部分を露出させる工
程と、上記メサエッチングした基板上に低抵抗半導体層
をエピタキシャル成長させる工程と、メサ状部の上記低
抵抗半導体層を所定のマスクを用いてオーバーエツチン
グする工程と、上記マスクを用いてゲート電極を斜め蒸
着で形成する工程とを備えたことによって上記目的を達
成することができる。
The method of the present invention also includes a step of mesa-etching a semiconductor device having a two-dimensional electron gas channel layer to expose at least a part of the two-dimensional electron gas channel layer on the side, and a step of mesa-etching a semiconductor device having a two-dimensional electron gas channel layer to expose at least a portion of the two-dimensional electron gas channel layer on the side; By comprising the steps of epitaxially growing a semiconductor layer, over-etching the low-resistance semiconductor layer in the mesa-shaped portion using a predetermined mask, and forming a gate electrode by oblique evaporation using the mask. The above purpose can be achieved.

〔発明の作用〕[Action of the invention]

すなわち本発明の半導体装置は、メサ状部の2次元電子
ガ、スチャンネル層に直接接触させて形成した低抵抗半
導体層を、ソース、ドレインとなるオーミック電極と該
2次元電子ガスチャンネル層との間に介在させたので、
低接触抵抗性を、再現性良く実現できる。
That is, in the semiconductor device of the present invention, a low resistance semiconductor layer formed in direct contact with a two-dimensional electron gas channel layer in a mesa-shaped portion is connected to an ohmic electrode serving as a source and a drain and the two-dimensional electron gas channel layer. Because I intervened in between,
Low contact resistance can be achieved with good reproducibility.

また、本発明に係る製造方法は、低抵抗半導体層をエピ
タキシャル成長させ、かつゲート電極を斜め蒸着で形成
するので、上記の如き半導体装置を高性能で、かつ容易
に製造できる。
Further, in the manufacturing method according to the present invention, a low-resistance semiconductor layer is epitaxially grown and a gate electrode is formed by oblique vapor deposition, so that the above semiconductor device can be easily manufactured with high performance.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の一実施例を説明する。この実施例は、本発
明をFET、特にHEMTであるFETに適用したもの
である。
An embodiment of the present invention will be described below. In this embodiment, the present invention is applied to an FET, particularly an FET that is a HEMT.

第1図は本発明の一実施例に係る半導体装置としてのH
EMTの構成を示す説明図である。このHEMTは台形
状にメサエッチングされたGaAs層1およびn −A
 It GaAs層2とから成るメサ状部と、n ”G
aAs等の低抵抗半導体層20と、オーミックアロイ層
(オーミック電極) 11.12と、2次元電子ガスチ
ャンネル層(以下2DEC層という)6と、。
FIG. 1 shows an H as a semiconductor device according to an embodiment of the present invention.
It is an explanatory diagram showing the composition of EMT. This HEMT consists of a trapezoidal mesa-etched GaAs layer 1 and an n-A
A mesa-shaped portion consisting of an It GaAs layer 2 and an n ”G
A low resistance semiconductor layer 20 such as aAs, an ohmic alloy layer (ohmic electrode) 11, 12, and a two-dimensional electron gas channel layer (hereinafter referred to as 2DEC layer) 6.

ゲート電極13とから成る。2DEG層6の少なくとも
一部はメサ状部の側壁に露出され、低抵抗半導体層20
は2DEG層6の該露出部に直接接触するとともに、ソ
ース、ドレイン電極となるオーミックアロイ層11.1
2と2DEG層との間に位置している。
It consists of a gate electrode 13. At least a portion of the 2DEG layer 6 is exposed on the sidewall of the mesa-shaped portion, and the low resistance semiconductor layer 20
The ohmic alloy layer 11.1 is in direct contact with the exposed portion of the 2DEG layer 6 and serves as the source and drain electrodes.
2 and the 2DEG layer.

第2図(イ)〜(ニ)は実施例の半導体装置の製造工程
の説明図である。第3図はこの製造工程を示すフロー図
である。
FIGS. 2(A) to 2(D) are explanatory diagrams of the manufacturing process of the semiconductor device of the embodiment. FIG. 3 is a flow diagram showing this manufacturing process.

第2図(イ)は第1のEp (エピタキシャル)工程を
示し、この工程は第3図の工程Iaに該当する。第2図
(イ)に示す如<、Si等からなる半導体基板15上に
は不純物をトープしていないGaAsN1及びn −A
 ffGaAs層2が順次積層されている。
FIG. 2(a) shows a first Ep (epitaxial) step, which corresponds to step Ia in FIG. 3. As shown in FIG. 2(A), on a semiconductor substrate 15 made of Si or the like, GaAsN1 and n-A, which are not doped with impurities, are used.
ffGaAs layers 2 are sequentially stacked.

n −A !! GaAs層2は活性であるためこれが
露出状態にあると、酸化するおそれがあるため、n  
A I GaAsFJ 2の表面上にGaAs等のCa
pH(保護膜)16を形成しておくのが好ましい、また
、例えばn−/’FiGaAs層2とGaAs層1との
間に不純物をドープしていないn−Aj2GaAs等か
らなるスペーサ層18を介在させておくと、スペーサ層
18内における電子移動度が高いため有利である。スペ
ーサ層18を介在させた場合、このスペーサJli18
を介してn−AEGaAs層2中のSt等の不純物の電
子がGaAs層1内に入り込むことによって2DEG層
6が形成されることになる。
n-A! ! Since the GaAs layer 2 is active, there is a risk of oxidation if it is exposed.
A I GaAs FJ 2 has Ca such as GaAs on the surface
It is preferable to form a pH (protective film) 16, and for example, a spacer layer 18 made of n-Aj2GaAs not doped with impurities is interposed between the n-/'FiGaAs layer 2 and the GaAs layer 1. This is advantageous because the electron mobility within the spacer layer 18 is high. When the spacer layer 18 is interposed, this spacer Jli18
Electrons from impurities such as St in the n-AEGaAs layer 2 enter the GaAs layer 1 through the 2DEG layer 6.

第2図(ロ)はメサエッチング工程(第3図の工程I)
及び第2のEp工程(同、工程■)を示。
Figure 2 (B) shows the mesa etching process (Step I in Figure 3)
and the second Ep step (same, step ■).

す。ここでは第1のEl)工程で基板上に積層形成され
たGaAsjiil、n −A I GaAs層2を、
一旦Ep炉から取り出してからメサエッチングによって
例えばメサ状(断層状の側壁19は垂直であってもよい
)に加工することによって2DEG層6をメサ状部の側
壁19から露出させておき(以上メサエッチング工程I
)、再び炉内でその上からN ’GaAsN2OをEp
成長させて積層形成する(以上第2のEp工程11r)
、ZDEG層6を露出させる手段としてはメサエッチン
グのように断層状の露出部を形成する以外にも、種々の
方法の適用が可能である。Ep工程時の加熱によってN
’GaAs層(低抵抗半導体層)20中のSt等の不純
物のN゛がGaAs層1及びn −A ji GaAs
層2の面上から内部に向って拡散して導電121を形成
するので、2DEG層とN ”GaAs層20との接触
はより完全なものとなる。
vinegar. Here, the GaAsjiil, n-A I GaAs layer 2 laminated on the substrate in the first El) step,
Once removed from the Ep furnace, the 2DEG layer 6 is exposed from the side wall 19 of the mesa-shaped portion by etching it into a mesa shape (the fault-shaped side wall 19 may be vertical). Etching process I
), then Ep N'GaAsN2O from above in the furnace again.
Grow and form a layer (above, second Ep step 11r)
As a means for exposing the ZDEG layer 6, various methods can be used in addition to forming a tomographic exposed portion such as mesa etching. N due to heating during the Ep process
'N' of impurities such as St in the GaAs layer (low resistance semiconductor layer) 20 is the GaAs layer 1 and n -A ji GaAs
Since the conductive layer 121 is diffused inward from the surface of the layer 2, the contact between the 2DEG layer and the N''GaAs layer 20 becomes more complete.

なお、Ep時の加熱によって2DEG層内にまで拡散が
行われると2DEG層内の電子移動度が低減するおそれ
もあるが、この問題はスペーサの介在或いは第2のEp
工程における加熱温度の低減等によって、回避可能であ
る。また、2DEG層6のμ(透電率)低減は第1のE
p工程におけるGaAs層1の設計によって回避するこ
とができる。
Note that if the heating during Ep causes diffusion into the 2DEG layer, the electron mobility within the 2DEG layer may be reduced, but this problem can be solved by intervening a spacer or by using the second Ep.
This can be avoided by reducing the heating temperature in the process. Furthermore, the reduction in μ (transmittance) of the 2DEG layer 6 is due to the first E
This can be avoided by designing the GaAs layer 1 in the p process.

次に、第2図(ハ)はオーバーエツチング工程(第3図
の工程■)及び゛ゲート形成工程(同、工程■)を示す
。まずフォトレジスト25を用いて台形状部の上面26
に位置するN″GaAs層20をオーバーエツチングす
ることによって、フォトレジスト25の両エツジ25a
がひさし状になる開口部20aを形成し、N″GaAs
GaAs層6を露出する(工程■)。その上に図示する
ようなゲートメタル13を斜め蒸着形成する(工程■)
。この実施例ではゲートメタル13はN’GsAsj!
!20の開口部20a内壁の一部から上面26にかけて
固着されているが、このような構成であると電気抵抗を
少なくすることができる。このような斜め蒸着によれば
、実効ゲート値を短くして耐電圧値を高めることもでき
る。
Next, FIG. 2(c) shows an over-etching step (step ① in FIG. 3) and a gate forming step (step ① in the same figure). First, using a photoresist 25, the upper surface 26 of the trapezoidal part is
Both edges 25a of the photoresist 25 are etched by over-etching the N''GaAs layer 20 located at
forms an eave-like opening 20a, and N″GaAs
The GaAs layer 6 is exposed (step ①). A gate metal 13 as shown in the figure is formed on it by diagonal vapor deposition (step ■)
. In this embodiment, the gate metal 13 is N'GsAsj!
! Although it is fixed from a part of the inner wall of the opening 20a of 20 to the upper surface 26, such a structure can reduce electrical resistance. According to such oblique vapor deposition, it is also possible to shorten the effective gate value and increase the withstand voltage value.

また、上記エツチングにおいては、上面26が多少前ら
れることがあっても差支えない。なお、N′″GaAs
1i20は、ゲートメタル形成時におけるリフトオフ用
のスペーサとしても利用できるため、N″GaAsH2
Oの厚さはプロセスに応じて任意に調節することが好ま
しい。さらにリフトオフによってゲートを形成する場合
、フォトレジスト25の開口部の両エツジ25aを使う
ことによってゲート長を短くすることができる。
Further, in the etching described above, there is no problem even if the upper surface 26 is slightly moved forward. Note that N′″GaAs
1i20 can also be used as a lift-off spacer during gate metal formation, so N''GaAsH2
It is preferable to arbitrarily adjust the thickness of O depending on the process. Furthermore, when forming a gate by lift-off, the gate length can be shortened by using both edges 25a of the opening of the photoresist 25.

第2図(ニ)はオーミック形成工程を示し、ゲート13
を間にはさんでN″GaAs層20上にソースとドレイ
ンを構成するオーミックアロイ1J11.12を通常の
GaAs技術によって形成する。なお、図示のようにオ
ーミックアロイtill、 12はN”GaAs1i2
0を貫通しても差支えない。
FIG. 2(d) shows the ohmic formation process, and the gate 13
Ohmic alloy 1J11.12 constituting the source and drain is formed on the N''GaAs layer 20 with the ohmic alloy 1J11.12 in between as shown in the figure.
There is no problem even if it passes through 0.

なお、当然のことではあるが、本発明は上述の実施例に
限定されない。
Note that, as a matter of course, the present invention is not limited to the above-described embodiments.

〔発明の効果〕〔Effect of the invention〕

上述の如く、本発明の半導体装置及びその製造方法はZ
DEG層と低抵抗半導体層とを直接接触させることによ
って、2DEC;Jiとオーミックアロイ層との間の低
接触抵抗を実現することができる。
As described above, the semiconductor device and the manufacturing method thereof of the present invention are Z
By directly contacting the DEG layer and the low resistance semiconductor layer, low contact resistance between the 2DEC; Ji and the ohmic alloy layer can be realized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の構成説明図、第2図(イ)
〜(ニ)は同実施例の製造についてをその形成工程順に
夫々示す説明図、第3図はその製造手順を示す工程フロ
ー図である。第4図は従来のHEMTの構成説明図であ
る。 1− G a A s層、2− n −A I G a
 A s層、3゜4・・・オーミック電極、5・・・ゲ
ート、6−・・2次元電子ガスチャンネル層、11.1
2・・・オーミックアロイ層、13・・・y−ト、16
・・・Cap層、18・・・スペーサ層19・・・側壁
、20・・・低抵抗半導体層。 ■・・・メサエッチング工程、■・・・低抵抗半導体層
の成長工程、■・・・オーバーエツチング工程、■・・
・ゲート形成工程。
Figure 1 is an explanatory diagram of the configuration of an embodiment of the present invention, Figure 2 (a)
-(d) are explanatory diagrams showing the manufacturing steps of the same embodiment in the order of their formation steps, and FIG. 3 is a process flow diagram showing the manufacturing procedure. FIG. 4 is an explanatory diagram of the configuration of a conventional HEMT. 1-G a As layer, 2- n -A I Ga
As layer, 3゜4... Ohmic electrode, 5... Gate, 6-... Two-dimensional electron gas channel layer, 11.1
2... Ohmic alloy layer, 13... Y-to, 16
... Cap layer, 18 ... Spacer layer 19 ... Side wall, 20 ... Low resistance semiconductor layer. ■... Mesa etching process, ■... Low resistance semiconductor layer growth process, ■... Over etching process, ■...
・Gate formation process.

Claims (1)

【特許請求の範囲】 1、2次元電子ガスチャンネル層を有する半導体装置に
おいて、 上記2次元電子ガスチャンネル層の少なくとも一部分を
表面に露出させてメサ状部とし、 該メサ状部の該2次元電子ガスチャンネル層に直接接触
させて形成した低抵抗半導体層を、ソース、ドレイン電
極となるオーミック電極と該2次元電子ガスチャンネル
層との間に介在させて成ることを特徴とする半導体装置
。 2、2次元電子ガスチャンネル層を有する半導体装置を
メサエッチして、側部に上記2次元電子ガスチャンネル
層の少なくとも一部分を露出させる工程と、 上記メサエッチングした基板上に低抵抗半導体層をエピ
タキシャル成長させる工程と、 メサ状部の上記低抵抗半導体層を所定のマスクを用いて
オーバーエッチングする工程と、 上記マスクを用いてゲート電極を斜め蒸着で形成する工
程と、 を備えた半導体装置の製造方法。
[Scope of Claims] A semiconductor device having a one- and two-dimensional electron gas channel layer, wherein at least a portion of the two-dimensional electron gas channel layer is exposed on the surface to form a mesa-shaped portion, and the two-dimensional electron gas channel layer in the mesa-shaped portion A semiconductor device characterized in that a low resistance semiconductor layer formed in direct contact with a gas channel layer is interposed between ohmic electrodes serving as source and drain electrodes and the two-dimensional electron gas channel layer. 2. mesa-etching a semiconductor device having a two-dimensional electron gas channel layer to expose at least a portion of the two-dimensional electron gas channel layer on the side; and epitaxially growing a low-resistance semiconductor layer on the mesa-etched substrate. A method for manufacturing a semiconductor device, comprising the steps of: over-etching the low-resistance semiconductor layer in the mesa-shaped portion using a predetermined mask; and forming a gate electrode by oblique vapor deposition using the mask.
JP17192085A 1985-08-06 1985-08-06 Semiconductor device and manufacture thereof Pending JPS6232660A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17192085A JPS6232660A (en) 1985-08-06 1985-08-06 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17192085A JPS6232660A (en) 1985-08-06 1985-08-06 Semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS6232660A true JPS6232660A (en) 1987-02-12

Family

ID=15932294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17192085A Pending JPS6232660A (en) 1985-08-06 1985-08-06 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS6232660A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0741417A2 (en) * 1995-05-04 1996-11-06 Motorola, Inc. Heterostructure field effect device having refractory ohmic contact directly on channel layer and method of making
US5818078A (en) * 1994-08-29 1998-10-06 Fujitsu Limited Semiconductor device having a regrowth crystal region

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5818078A (en) * 1994-08-29 1998-10-06 Fujitsu Limited Semiconductor device having a regrowth crystal region
US6121153A (en) * 1994-08-29 2000-09-19 Fujitsu Limited Semiconductor device having a regrowth crystal region
EP0741417A2 (en) * 1995-05-04 1996-11-06 Motorola, Inc. Heterostructure field effect device having refractory ohmic contact directly on channel layer and method of making

Similar Documents

Publication Publication Date Title
JPH05121448A (en) Compound semiconductor device and its manufacture
JPH0766959B2 (en) Method of manufacturing integrated circuit
JPS6232660A (en) Semiconductor device and manufacture thereof
JPS63174374A (en) Manufacture of field-effect semiconductor device
JPH08330325A (en) Fabrication of field effect transistor
JPS5828753B2 (en) Method of manufacturing vertical field effect transistor
JPS592385B2 (en) Mesa-type inactive V-gate GaAs field effect transistor and its manufacturing method
JPS61147578A (en) Semiconductor device
JPH0523497B2 (en)
KR100261461B1 (en) Method of making compound semiconductor device with asymmetry recess structure
JPS62115781A (en) Field-effect transistor
JPS62274675A (en) Manufacture of field-effect transistor
JPS61177781A (en) Field effect transistor
JP2526492B2 (en) Method for manufacturing semiconductor device
JPH0855861A (en) Field-effect transistor and its manufacture
JPS61170073A (en) Field-effect transistor
JPS5833714B2 (en) Method for manufacturing gallium arsenide Schottky barrier gate field effect transistor
KR910004319B1 (en) Manufacturing method of high electron mobility transistor
JPH10270463A (en) Field effect transistor
JPH04122033A (en) Manufacture of field effect transistor
JPH0797634B2 (en) Field effect transistor and manufacturing method thereof
JPH01265573A (en) Manufacture of semiconductor device
JPS60136264A (en) Manufacture of semiconductor device
JPH04145629A (en) Field effect transistor and its manufacture
JPS5946109B2 (en) Method for manufacturing insulated gate field effect transistor