JPS63174374A - Manufacture of field-effect semiconductor device - Google Patents

Manufacture of field-effect semiconductor device

Info

Publication number
JPS63174374A
JPS63174374A JP647187A JP647187A JPS63174374A JP S63174374 A JPS63174374 A JP S63174374A JP 647187 A JP647187 A JP 647187A JP 647187 A JP647187 A JP 647187A JP S63174374 A JPS63174374 A JP S63174374A
Authority
JP
Japan
Prior art keywords
insulating film
opening
etching
semiconductor substrate
deposited
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP647187A
Other languages
Japanese (ja)
Inventor
Satoru Asai
了 浅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP647187A priority Critical patent/JPS63174374A/en
Publication of JPS63174374A publication Critical patent/JPS63174374A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To make possible the compatibility of the characteristics of a gate breakdown voltage and a source resistance by a method wherein a semiconductor substrate is etched ranging from the opening part of an insulating film on the substrate surface up to the lower part of the insulating film and a second insulating film is deposited on an etching part. CONSTITUTION:A non-doped GaAs layer 2, an N-type AlGaAs layer 3 and an N-type GaAs layer 4 are epitaxially grown in order on a semiinsulative GaAs substrate 1. Then, a first insulating film 6 is deposited on the layer 4 and after an opening 6a is made in the film 6, an etching is performed and a side etching is performed up to the lower part of the film 6 on the periphery of the opening 6a to form a recess structure. After that, a second insulating film 8 is deposited on the substrate and an etching is performed vertically on the film 8 to form an opening 8a. Moreover, a gate electrode 10 and source and drain electrodes 5 are formed.

Description

【発明の詳細な説明】 〔概要〕 この発明は、電界効果型半導体装置を製造するに際して
、 半導体基体面上の第1の絶縁膜に第1の開口を形成し、
第1の開口及びその近傍の第1の絶縁膜下の半導体基体
をエツチングしてリセスを形成し、第2の絶縁膜をリセ
スの第1の絶縁膜下の空間まで堆積し、第2の絶縁膜に
形成した第2の開口で半導体基体にショットキ接合する
ゲート電極を形成することにより、 短ゲート長のゲート構造に効果的なリセスを形成して、
ゲート耐圧とソース抵抗等の特性の両立を可能とする。
[Detailed Description of the Invention] [Summary] The present invention, when manufacturing a field effect semiconductor device, comprises forming a first opening in a first insulating film on a semiconductor substrate surface;
A recess is formed by etching the semiconductor substrate under the first insulating film in the first opening and the vicinity thereof, and a second insulating film is deposited up to the space under the first insulating film in the recess. By forming a gate electrode that makes a Schottky junction with the semiconductor substrate through the second opening formed in the film, an effective recess is formed in the gate structure with a short gate length.
This makes it possible to achieve both characteristics such as gate breakdown voltage and source resistance.

〔産業上の利用分野〕[Industrial application field]

本発明は電界効果型半導体装置の製造方法、特にそのシ
ョットキ接合形ゲート構造の製造方法の改善に関する。
The present invention relates to a method for manufacturing a field effect semiconductor device, and particularly to an improvement in a method for manufacturing a Schottky junction gate structure.

〔従来の技術〕[Conventional technology]

砒化ガリウム(GaAs)を半導体材料とするショット
キ接合形電界効果トランジスタ(MES FET)がマ
イクロ波帯域等において多数用いられており、更に空間
分離ドーピングと電子の2次元状態化により一層の高移
動度を実現した高電子移動度電界効果トランジスタ(H
EMT)の実用化が始まっている。
Schottky junction field effect transistors (MES FETs), which use gallium arsenide (GaAs) as a semiconductor material, are widely used in the microwave band, etc., and have even higher mobility through spatial separation doping and two-dimensional electron stateing. High electron mobility field effect transistor (H
EMT) has begun to be put into practical use.

これらのFETは、ゲート長を短縮して遮断周波数等の
周波数特性を向上すること、リセス長を短縮してソース
抵抗(ソース−ゲート間の寄生抵抗)を減少し、伝達コ
ンダクタンスg、を増大すること、しかもゲート耐圧を
確保することなどを目的として微細加工技術を駆使して
製造されるが、従来の製造方法の1例を第2図の工程順
模式側断面図を参照して説明する。
These FETs shorten the gate length to improve frequency characteristics such as cutoff frequency, shorten the recess length to reduce source resistance (parasitic resistance between source and gate), and increase transfer conductance g. In addition, it is manufactured by making full use of microfabrication technology for the purpose of ensuring gate breakdown voltage, etc., and an example of a conventional manufacturing method will be described with reference to the schematic side sectional view of the process order in FIG. 2.

〔図(a)〕チャネル層等を備えた半導体基体21上に
ソース、ドレイン電極25を配設し、その上に第1の絶
縁膜26を堆積してレジストマスク27を形成し、絶縁
膜26に開口26aを通常ドライエツチングによって形
成する。現在のホトリソグラフィ技術ではこの開口26
aの寸法11は最短0.5−程度である。
[Figure (a)] Source and drain electrodes 25 are provided on a semiconductor substrate 21 having a channel layer etc., a first insulating film 26 is deposited thereon to form a resist mask 27, and the insulating film 26 is An opening 26a is formed by dry etching. With current photolithography technology, this opening 26
The dimension 11 of a is about 0.5 - at the shortest.

〔図(b)〕 レジストマスク27を剥離して、プラズ
マCVD法等により第2の絶縁膜28を厚さ0.2μm
程度に堆積する。この第2の絶縁膜28は図示の様に、
開口26aの側面及び半導体基体210表出面にも堆積
して中央がくぼんだ形状となる。
[Figure (b)] The resist mask 27 is peeled off, and a second insulating film 28 is formed to a thickness of 0.2 μm using a plasma CVD method or the like.
It accumulates to a certain extent. As shown in the figure, this second insulating film 28 is
It also accumulates on the side surfaces of the opening 26a and the exposed surface of the semiconductor substrate 210, resulting in a shape with a concave center.

〔図(C)〕第2の絶縁膜28を基板面に垂直方向にド
ライエツチングし、半導体基体21が表出する状態とす
る。この状態では第1の絶縁膜26の側端面に第2の絶
縁膜2日が残って側壁28Wとなり、例えば開口26a
の寸法i、が0.5四のとき、側壁28−間の開口28
aの寸法12は約0.2−となる。
[Figure (C)] The second insulating film 28 is dry etched in a direction perpendicular to the substrate surface, so that the semiconductor substrate 21 is exposed. In this state, two portions of the second insulating film remain on the side end surfaces of the first insulating film 26, forming the side walls 28W, for example, the opening 26a.
When the dimension i of is 0.54, the opening 28 between the side wall 28 and
The dimension 12 of a is approximately 0.2-.

このエツチング後の清浄化処理により開口28aに表出
する半導体基体表面が通常僅かにエツチングされるが、
積極的に開口28aの近傍の半導体基体をリセスエッチ
ングしてもよい。
The surface of the semiconductor substrate exposed in the opening 28a is usually slightly etched by this cleaning treatment after etching.
The semiconductor substrate near the opening 28a may be actively recess-etched.

〔図(d)〕通常逆テーパー状の開口をこの開口28a
上に形成したレジストマスク29を設け、ゲート金属を
堆積してゲート電極30を形成する。このときレジスト
マスク29上にゲート金属の堆積30’ ができる。
[Figure (d)] This opening 28a usually has an inverted tapered shape.
A resist mask 29 formed above is provided, and gate metal is deposited to form a gate electrode 30. At this time, a gate metal deposit 30' is formed on the resist mask 29.

〔図(e)〕 レジストマスク29を剥離除去して、そ
の上のゲート金属の堆積30゛ をリフトオフする。
[Figure (e)] The resist mask 29 is peeled off and the deposited gate metal 30' thereon is lifted off.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述の従来の製造方法において、側壁間の開口28aに
表出する半導体基体21が清浄化処理で工・7チングさ
れてもその量は僅かであり、この開口を介して半導体基
体を積極的にリセスエッチングしても幅の制限から深さ
が制約される。
In the conventional manufacturing method described above, even if the semiconductor substrate 21 exposed in the opening 28a between the side walls is etched in the cleaning process, the amount is very small, and the semiconductor substrate is actively etched through this opening. Even with recess etching, the depth is restricted due to the width restriction.

従ってリセス構造の効果は得難く、ゲート電極とのショ
ットキ接合が半導体基体の表面領域に形成されるか或い
は極く近接してゲート耐圧の確保が困難であり、ゲート
耐圧を考慮すれば特性に大きく影響する半導体基体の表
面領域の構成、不純物濃度などが制約され、ソース抵抗
、オーミックコンタクト抵抗の増大などの問題を生じて
いる。
Therefore, it is difficult to obtain the effect of the recessed structure, and the Schottky junction with the gate electrode is formed on the surface area of the semiconductor substrate or is very close to the semiconductor substrate, making it difficult to ensure the gate breakdown voltage. The configuration and impurity concentration of the surface region of the semiconductor substrate that are affected are restricted, leading to problems such as an increase in source resistance and ohmic contact resistance.

〔問題点を解決するための手段〕[Means for solving problems]

前記問題点は、半導体基体面上に第1の絶縁膜を堆積し
、該第1の絶縁膜に第1の開口を形成し、該第1の開口
及びその近傍の該第1の絶縁膜下の該半導体基体をエツ
チングし、第2の絶縁膜を該エツチングによる該第1の
絶縁膜下の空間まで堆積し、該第1の開口内で該第2の
絶縁膜に第2の開口を形成し、該第2の開口に表出する
該半導体基体にショットキ接合し、該接合面近傍におい
て該第2の絶縁膜に画定されるゲート電極を形成する本
発明による電界効果型半導体装置の製造方法により解決
される。
The problem is that a first insulating film is deposited on the surface of a semiconductor substrate, a first opening is formed in the first insulating film, and a portion under the first insulating film in and near the first opening is formed. etching the semiconductor substrate, depositing a second insulating film to the space under the first insulating film formed by the etching, and forming a second opening in the second insulating film within the first opening. and forming a Schottky junction on the semiconductor substrate exposed in the second opening, and forming a gate electrode defined on the second insulating film in the vicinity of the junction surface. It is solved by

〔作 用〕[For production]

本発明の製造方法では、リソグラフィ法によって第1の
絶縁膜に形成される相対的に大きい第1の開口を形成し
た時点で、半導体基体を絶縁膜下までリセスエッチング
し、第2の絶縁膜をこの第1の絶縁膜下の空間まで堆積
する。
In the manufacturing method of the present invention, when the relatively large first opening is formed in the first insulating film by lithography, the semiconductor substrate is recess-etched to below the insulating film, and the second insulating film is formed. It is deposited up to the space below this first insulating film.

例えばゲート長を0.25μm程度とする場合に、この
開口幅は前記従来例の側壁形成後の開口幅の2倍程度で
あるために、このエツチング処理で深ざ及び絶縁膜下の
サイドエツチング幅が0.05〜061μm程度の効果
的なリセス形成が容易に可能であり、ゲート耐圧とソー
ス抵抗等の特性を両立させるなどの効果が得られる。
For example, when the gate length is about 0.25 μm, this opening width is about twice the opening width after sidewall formation in the conventional example, so this etching process reduces the depth and the side etching width under the insulating film. Effective recess formation with a diameter of about 0.05 to 061 μm is easily possible, and effects such as achieving both characteristics such as gate breakdown voltage and source resistance can be obtained.

〔実施例〕〔Example〕

以下本発明を実施例により具体的に説明する。 The present invention will be specifically explained below using examples.

第1図fa)乃至(f)はII E M Tにかかる本
発明の実施例を示す工程順模式側断面図である。
FIGS. 1fa) to 1(f) are schematic side sectional views in the order of steps showing an embodiment of the present invention according to II EMT.

第1図(a)参照二 半絶縁性GaAs基板1上に、厚
さ0.5〜1μm程度のノンドープのGaAs層2、S
iを2 X 10’ 8cm−3程度にドープした厚さ
40nm程度のn型砒化アルミニウムガリウム(AIG
aAs)IW 3、これと同程度以上にSiをドープし
た厚さ例えば1201m程度のn型GaAs層4を順次
エピタキシャル成長する。このノンドープのGaAs層
2のn型AlGaAs層3とのへテロ接合界面近傍に2
次元電子ガス2eが形成される。
See FIG. 1(a) 2. On a semi-insulating GaAs substrate 1, a non-doped GaAs layer 2 with a thickness of about 0.5 to 1 μm, S
n-type aluminum gallium arsenide (AIG) with a thickness of about 40 nm doped with i to about 2
aAs)IW 3, and an n-type GaAs layer 4 doped with Si to the same degree or more and having a thickness of, for example, about 1201 m, are sequentially epitaxially grown. In the vicinity of the heterojunction interface between this non-doped GaAs layer 2 and the n-type AlGaAs layer 3,
Dimensional electron gas 2e is formed.

この半導体基体上に第1の絶縁膜6として、例えばCV
D法等によりSiO□を厚さ0.3μm程度に堆積する
。更にゲート形成位置で幅I!、が例えば0.5μmの
溝状をなす開口を設けたレジストマスク7をこの5iO
z絶縁膜6上に設け、例えばCHF3、CF4等により
ドライエツチングして、Si0g絶縁膜6に開口6aを
形成する。
A first insulating film 6, for example, CV
SiO□ is deposited to a thickness of about 0.3 μm using the D method or the like. Furthermore, the width I at the gate formation position! For example, a resist mask 7 provided with a groove-shaped opening of 0.5 μm is coated with this 5iO
An opening 6a is formed in the Si0g insulating film 6 by providing it on the z insulating film 6 and dry etching it using, for example, CHF3, CF4 or the like.

第1図(b)参照: このレジストマスク7およびSi
O□絶縁膜6をマスクとして、例えばCCI□F2によ
るリアクティブイオンエツチング、或いは弗酸と過酸化
水素水によるウェットエツチング等を行い、例えば深さ
が開口6a下で0.1μm% sto□絶縁膜6下への
サイドエツチング最大幅0.1−1従って半導体基体表
面の幅L=0.7−程度のリセス構造4Rを形成する。
See FIG. 1(b): This resist mask 7 and Si
Using the O□ insulating film 6 as a mask, reactive ion etching using, for example, CCI□F2, or wet etching using hydrofluoric acid and hydrogen peroxide, etc., is performed to form a sto□ insulating film with a depth of, for example, 0.1 μm% below the opening 6a. 6 downward side etching to form a recess structure 4R having a maximum width of about 0.1-1, so the width L of the surface of the semiconductor substrate is about 0.7-.

第1図(C1参照: レジストマスク7を剥離した後、
プラズマCVD法等によりこの基体上に第2の絶縁膜8
としてSiO□を再度堆積する。このSiO□絶縁膜8
は図示の如くリセス構造4Rのサイドエツチング部分を
充填する。
FIG. 1 (see C1: After peeling off the resist mask 7,
A second insulating film 8 is formed on this substrate by plasma CVD method or the like.
Then, SiO□ is deposited again. This SiO□insulating film 8
fills the side etched portion of the recess structure 4R as shown.

第1図(dl参照: スパッタエツチング法等により基
体面に垂直方向にSiO□絶縁膜8をエツチングして開
口8aを形成する。この結果側壁8讐が残置され、開口
8aの幅12は本実施例では約0.25−となっている
FIG. 1 (see dl: The SiO□ insulating film 8 is etched in a direction perpendicular to the substrate surface using a sputter etching method or the like to form an opening 8a. As a result, side walls 8 are left and the width 12 of the opening 8a is the same as in this embodiment. In the example, it is approximately 0.25-.

第1図(el参照: この開口8a上に逆テーパー状の
開口を形成したレジストマスク9を設け、ゲート電極層
として例えばチタン/白金/金(Ti/Pt/Au)等
を厚さ0.5um程度に堆積して、ゲート電極1oを形
成する。開口外のレジストマスク9上にはゲート金属層
10゛ が堆積する。
FIG. 1 (see el: A resist mask 9 with an inverted tapered opening is provided over the opening 8a, and a gate electrode layer made of, for example, titanium/platinum/gold (Ti/Pt/Au) is formed to a thickness of 0.5 um. A gate metal layer 10' is deposited on the resist mask 9 outside the opening.

第1図(f)参照: レジストマスク9を剥離してゲー
ト金属層10″をリフトオフした後、本実施例ではゲー
ト電極10をマスクとして第1の絶縁膜6をエツチング
する。
Refer to FIG. 1(f): After removing the resist mask 9 and lifting off the gate metal layer 10'', in this embodiment, the first insulating film 6 is etched using the gate electrode 10 as a mask.

次いでオーミックコンタクト電極層として例えば金ゲル
マニウム/ニッケル/金(AuGe/Ni/Au)層を
堆積し、バターニング後例えば温度400’C12分間
程度の熱処理を行って、半導体基体との間の合金領域5
Aが2次元電子ガス2eに達するソース、ドレイン電極
5を形成する。なお5゛はゲート電極1゜上に堆積した
AuGe/Ni/Au層である。
Next, for example, a gold-germanium/nickel/gold (AuGe/Ni/Au) layer is deposited as an ohmic contact electrode layer, and after buttering, heat treatment is performed at a temperature of, for example, 400'C for about 12 minutes to form an alloy region 5 between it and the semiconductor substrate.
Source and drain electrodes 5 are formed where A reaches the two-dimensional electron gas 2e. Note that 5° is an AuGe/Ni/Au layer deposited on 1° of the gate electrode.

本実施例のソース抵抗は約0.8Ωmm、ゲート−ドレ
イン間の耐圧は約6Vで、ソース抵抗が等しい従来例の
この耐圧約3■の2倍となり、本発明の効果が実証され
ている。
The source resistance of this embodiment is about 0.8 Ωmm, and the breakdown voltage between the gate and drain is about 6V, which is twice the breakdown voltage of about 3cm in the conventional example with the same source resistance, thus proving the effectiveness of the present invention.

〔発明の効果〕〔Effect of the invention〕

以上説明した如く本発明によれば、絶縁膜を再度堆積し
て側壁を設けることによりゲート長を短縮する電界効果
型半導体装置の製造方法においても、効果的なリセス構
造を形成することが容易に可能となり、ゲート耐圧とソ
ース抵抗、オーミックコンタクト抵抗等の特性を両立さ
せるなどの効果が得られ、電界効果型半導体装置の特性
の向上に大きく寄与する。
As explained above, according to the present invention, an effective recess structure can be easily formed even in a method for manufacturing a field effect semiconductor device in which the gate length is shortened by depositing an insulating film again to provide a sidewall. This makes it possible to obtain effects such as achieving both characteristics such as gate breakdown voltage, source resistance, and ohmic contact resistance, which greatly contributes to improving the characteristics of field-effect semiconductor devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例の工程順模式側断面図、第2図は従来例
の工程順模式側断面図である。 図において、 1は半絶縁性G a、A s基板、 2はノンドープのGaAs層、2eは2次元電子ガス、
3はn型A]GaAs層、    4はn型GaAs層
、4Rはリセス構造、 5はソース、ドレイン電極、 6は第1の絶縁膜、   6aはその開口、7.9はレ
ジストマスク、 8は第2の絶縁膜、   8aはその開口、8Wは第2
の絶縁膜による側壁、 10はゲート電極を示す。
FIG. 1 is a schematic side sectional view of the process order of the embodiment, and FIG. 2 is a schematic side sectional view of the process order of the conventional example. In the figure, 1 is a semi-insulating Ga, As substrate, 2 is a non-doped GaAs layer, 2e is a two-dimensional electron gas,
3 is an n-type GaAs layer, 4 is an n-type GaAs layer, 4R is a recess structure, 5 is a source and drain electrode, 6 is a first insulating film, 6a is an opening thereof, 7.9 is a resist mask, 8 is a resist mask 8a is the opening of the second insulating film, 8W is the second insulating film;
10 indicates a gate electrode.

Claims (1)

【特許請求の範囲】[Claims] 半導体基体面上に第1の絶縁膜を堆積し、該第1の絶縁
膜に第1の開口を形成し、該第1の開口及びその近傍の
該第1の絶縁膜下の該半導体基体をエッチングし、第2
の絶縁膜を該エッチングによる該第1の絶縁膜下の空間
まで堆積し、該第1の開口内で該第2の絶縁膜に第2の
開口を形成し、該第2の開口に表出する該半導体基体に
ショットキ接合し、該接合面近傍において該第2の絶縁
膜に画定されるゲート電極を形成することを特徴とする
電界効果型半導体装置の製造方法。
Depositing a first insulating film on a surface of the semiconductor substrate, forming a first opening in the first insulating film, and depositing the semiconductor substrate under the first insulating film in and near the first opening. Etched and second
an insulating film is deposited to the space under the first insulating film by the etching, a second opening is formed in the second insulating film within the first opening, and the second insulating film is exposed in the second opening. A method for manufacturing a field effect semiconductor device, comprising forming a Schottky junction on the semiconductor substrate and forming a gate electrode defined in the second insulating film near the junction surface.
JP647187A 1987-01-14 1987-01-14 Manufacture of field-effect semiconductor device Pending JPS63174374A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP647187A JPS63174374A (en) 1987-01-14 1987-01-14 Manufacture of field-effect semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP647187A JPS63174374A (en) 1987-01-14 1987-01-14 Manufacture of field-effect semiconductor device

Publications (1)

Publication Number Publication Date
JPS63174374A true JPS63174374A (en) 1988-07-18

Family

ID=11639369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP647187A Pending JPS63174374A (en) 1987-01-14 1987-01-14 Manufacture of field-effect semiconductor device

Country Status (1)

Country Link
JP (1) JPS63174374A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0430289A2 (en) * 1989-12-01 1991-06-05 Hughes Aircraft Company Fabrication of self-aligned, T-gate hemt
JPH03190246A (en) * 1989-12-20 1991-08-20 Matsushita Electric Ind Co Ltd Semiconductor device and manufacture thereof
JPH05190869A (en) * 1992-01-13 1993-07-30 Nec Corp Quantum small-cage wire type field-effect transistor and manufacture thereof
EP0592064A2 (en) * 1992-08-19 1994-04-13 Mitsubishi Denki Kabushiki Kaisha Field effect transistor and method of production
US5391899A (en) * 1991-10-29 1995-02-21 Mitsubishi Denki Kabushiki Kaisha Compound semiconductor device with a particular gate structure
US5548144A (en) * 1993-03-05 1996-08-20 Mitsubishi Denki Kabushiki Kaisha Recessed gate field effect transistor
US6159861A (en) * 1997-08-28 2000-12-12 Nec Corporation Method of manufacturing semiconductor device
US6337262B1 (en) * 2000-03-06 2002-01-08 Chartered Semiconductor Manufacturing Ltd. Self aligned T-top gate process integration

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5772384A (en) * 1980-10-24 1982-05-06 Nippon Telegr & Teleph Corp <Ntt> Manufacture of field-effect transistor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5772384A (en) * 1980-10-24 1982-05-06 Nippon Telegr & Teleph Corp <Ntt> Manufacture of field-effect transistor

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0430289A2 (en) * 1989-12-01 1991-06-05 Hughes Aircraft Company Fabrication of self-aligned, T-gate hemt
EP0430289A3 (en) * 1989-12-01 1995-08-16 Hughes Aircraft Co Fabrication of self-aligned, t-gate hemt
JPH03190246A (en) * 1989-12-20 1991-08-20 Matsushita Electric Ind Co Ltd Semiconductor device and manufacture thereof
US5391899A (en) * 1991-10-29 1995-02-21 Mitsubishi Denki Kabushiki Kaisha Compound semiconductor device with a particular gate structure
JPH05190869A (en) * 1992-01-13 1993-07-30 Nec Corp Quantum small-cage wire type field-effect transistor and manufacture thereof
EP0592064A2 (en) * 1992-08-19 1994-04-13 Mitsubishi Denki Kabushiki Kaisha Field effect transistor and method of production
US5358885A (en) * 1992-08-19 1994-10-25 Mitsubishi Denki Kabushiki Kaisha Method of manufacturing a field effect transistor with a T-shaped gate electrode and reduced capacitance
EP0592064A3 (en) * 1992-08-19 1995-08-16 Mitsubishi Electric Corp Field effect transistor and method of production
US5548144A (en) * 1993-03-05 1996-08-20 Mitsubishi Denki Kabushiki Kaisha Recessed gate field effect transistor
US6159861A (en) * 1997-08-28 2000-12-12 Nec Corporation Method of manufacturing semiconductor device
US6337262B1 (en) * 2000-03-06 2002-01-08 Chartered Semiconductor Manufacturing Ltd. Self aligned T-top gate process integration

Similar Documents

Publication Publication Date Title
JPS63174374A (en) Manufacture of field-effect semiconductor device
JPH05326563A (en) Semiconductor device
JPS6315475A (en) Manufacture of field effect semiconductor device
JP2685026B2 (en) Field effect transistor and manufacturing method
JPH0797635B2 (en) Method for manufacturing semiconductor device
JPS5832513B2 (en) Method of manufacturing field effect transistor
JPS60165764A (en) Manufacture of compound semiconductor device
JPH0523497B2 (en)
JP2003059949A (en) Field effect transistor and production method therefor
JP3077653B2 (en) Field effect transistor and method of manufacturing the same
JPS63228762A (en) Manufacture of semiconductor device
JPH0797634B2 (en) Field effect transistor and manufacturing method thereof
JPS63171A (en) Manufacture of semiconductor device
JPH04274332A (en) Manufacture of semiconductor device
JPS62213173A (en) Semiconductor device and manufacture thereof
JPH0574814A (en) Manufacture of schottky-gate type field-effect transistor
JPS62260370A (en) Field-effect transistor
JPS6232660A (en) Semiconductor device and manufacture thereof
JPH0758715B2 (en) Method for manufacturing field effect transistor
JPS6257257A (en) Manufacture of field effect type semiconductor device
JPH0523496B2 (en)
JPS60198869A (en) Manufacture of semiconductor device
JPH1092846A (en) Semiconductor device and manufacture thereof
JP2002170949A (en) Field effect transistor
JPH02119232A (en) Manufacture of compound semiconductor device