JPH02266569A - Field-effect transistor - Google Patents

Field-effect transistor

Info

Publication number
JPH02266569A
JPH02266569A JP1087691A JP8769189A JPH02266569A JP H02266569 A JPH02266569 A JP H02266569A JP 1087691 A JP1087691 A JP 1087691A JP 8769189 A JP8769189 A JP 8769189A JP H02266569 A JPH02266569 A JP H02266569A
Authority
JP
Japan
Prior art keywords
region
gaas
substrate
type
type gaas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1087691A
Other languages
Japanese (ja)
Inventor
Shoji Kitamura
祥司 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP1087691A priority Critical patent/JPH02266569A/en
Publication of JPH02266569A publication Critical patent/JPH02266569A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/517Insulating materials associated therewith the insulating material comprising a metallic compound, e.g. metal oxide, metal silicate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/26Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, elements provided for in two or more of the groups H01L29/16, H01L29/18, H01L29/20, H01L29/22, H01L29/24, e.g. alloys
    • H01L29/267Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, elements provided for in two or more of the groups H01L29/16, H01L29/18, H01L29/20, H01L29/22, H01L29/24, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To achieve an improved breakdown strength and large current characteristics and allow a transistor to be produced inexpensively by providing a GaAs insulated gate field-effect transistor on an Si substrate. CONSTITUTION:An n-type GaAs first region 3 is formed on an n<+> type Si substrate 2, p<+> type GaAs and p<-> type GaAs second regions 4 and 5 are formed on the surface of the first region 3 selectively, and an n<+> type GaAs third region 6 is formed on the surface of the second regions 4 and 5 selectively. A CaF2 gate insulating film 7 is formed on one part of the first region 3 and the third region 6 and one part 5 of the second region sandwiched by them and then an Al gate electrode 8 is formed on it. AuZn/Au and AuGe source electrodes 10b and 10a are formed so that they may contact the surface of another part of the second region 4 and another part of the third region 6 simultaneously and Al drain electrode is formed on the rear surface of the GaAs substrate 2. Thus, it becomes inexpensive to produce an Si substrate and becomes possible to achieve high speed, low power controllability, improved breakdown strength, and large current owing to a vertical type MIS structure using GaAs basically.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電界効果トランジスタに関し、さらに詳しく
は、GaAs絶縁ゲート電界効果トランジスタ(以下、
MISFETと称す)の素子構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to field effect transistors, and more particularly to GaAs insulated gate field effect transistors (hereinafter referred to as
(referred to as MISFET).

〔従来の技術〕[Conventional technology]

現在、電力用スイッチング素子として、2重拡散技術を
用いたS1パワ−MO5FETが使われている。しかし
、この素子は、高耐圧構造ではON抵抗が高くなってし
まい大電流を流すのが難しい。
Currently, an S1 power MO5FET using double diffusion technology is used as a power switching element. However, this element has a high withstand voltage structure and has a high ON resistance, making it difficult to flow a large current.

これに対して、導電変調型MO3FETが提案されてい
るが、素子構造1作製プロセス等の問題がある。
In response to this, a conductivity modulation type MO3FET has been proposed, but there are problems such as the manufacturing process of the element structure 1.

そこでSiに代わって、高移動度を有するGaAsを用
いればS1パワ−MO3FETに比べて大電流。
Therefore, if GaAs, which has high mobility, is used instead of Si, the current will be larger than that of the S1 power MO3FET.

高耐圧の素子が実現できる可能性がある。There is a possibility that devices with high breakdown voltage can be realized.

GaAsを用いた場合のチャネル構造としては、GaA
s /^1GaAs等の半導体ヘテロ界面の2次元電子
を利用するもの、CaF2/GaAs等の弗化物とGa
As界面の反転層を利用するものが考えられる。
The channel structure when using GaAs is GaAs.
s/^1 Those that utilize two-dimensional electrons at the hetero interface of semiconductors such as GaAs, fluorides such as CaF2/GaAs, and Ga
One possibility is to use an inversion layer at the As interface.

しかし、ウェハーコスト、ウェハーサイズ、強度、熱伝
導1重さ等で、SilまGaAsよりも優れてふリ、)
−9ルコ:2.トチGaAs −M I S F E 
TはSr・MOSFETに対し充分な優位性を持たない
と考えられる。
However, it is superior to Sil or GaAs in terms of wafer cost, wafer size, strength, heat conduction, weight, etc.)
-9 Luko: 2. Horse chestnut GaAs-M I S F E
It is considered that T does not have sufficient superiority over Sr MOSFET.

エピタキシャル成長させたCaF2膜をゲート絶縁膜と
して用いて製作されたGaAs−MISFETを第3r
i!Jに示す。
A GaAs-MISFET fabricated using an epitaxially grown CaF2 film as a gate insulating film was
i! Shown in J.

他方、SI基板上へのGaAsのヘテロエピタキシー技
術が最近注目されている。すなわち、Si基板とGaA
s成長層間の格子不整合(格子定数差4.1%)を緩和
するだめのバッファ層形成技術として、2段階成長法や
、歪超格子を用いる方法等が提案されている。前者は成
長層と同じ材料のnm程度のごく薄い膜(バッファ層)
を低温でまず成長させ、次に通常の成長温度でエピタキ
シャル成長を行うもの、後者は超格子をバッファ層とす
るものであり、ともにバッファ層でミスフィツト転移を
吸収し、良質の成長層を得ようとするものである。
On the other hand, GaAs heteroepitaxy technology on SI substrates has recently attracted attention. That is, Si substrate and GaA
A two-step growth method, a method using a strained superlattice, and the like have been proposed as techniques for forming a buffer layer to alleviate the lattice mismatch (difference in lattice constant of 4.1%) between the s-grown layers. The former is a very thin film (buffer layer) on the order of nanometers made of the same material as the growth layer.
The latter method uses a superlattice as a buffer layer to absorb misfit transitions and obtain a high-quality growth layer. It is something to do.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来、第3図に示す如き構造のGaAs−M T S 
FETが製作されているが、充分な高耐圧性、大型に特
性を得られない問題点があった。
Conventionally, GaAs-MTS with a structure as shown in FIG.
Although FETs have been manufactured, they have had the problem of not being able to achieve sufficiently high voltage resistance and characteristics in large sizes.

また、ウェハーコスト、ウェハーサイズ、強度熱伝導1
重さ等では、むしろGaAsを用いるとSiよりも劣る
問題点があった。
In addition, wafer cost, wafer size, strength thermal conductivity 1
In terms of weight, etc., the use of GaAs actually had the problem of being inferior to Si.

従って、本発明の目的とするところはGaAsを用いて
充分な高耐圧性と大電流特性とを得ることができると共
に、Slの利点をも取り入れた構造のMISFETを提
供することにある。
Therefore, an object of the present invention is to provide a MISFET having a structure that can obtain sufficient high voltage resistance and large current characteristics using GaAs, and also incorporates the advantages of Sl.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の電界効果トランジスタは、第1導電型のSi基
板上に形成された第1導電型GaAsの第1領域と、そ
の第1領域の表面に選択的に形成された第2導電型Ga
ASの第2領域と、この第2領域の表面に選択的に形成
された高不純物濃度で第1導電型GaAsの第3領域と
、前記第1領域と第3領域の一部とそれらの間に挟まれ
た第2領域の一部の上に形成されたゲート絶縁膜と、そ
のゲート絶縁膜の上に形成さたゲート電極と、前記第2
領域の他の一部と前記第3領域の他の一部の表面に同時
にコンタクトするよう形成されたソース電極と、前記G
aAs基板の表面に形成されたドレイン電極とを具備し
てなり、前記ゲート絶縁膜とのヘテロ界面での反転層を
チャネルとすることを構成上の特徴とするものである。
The field effect transistor of the present invention includes a first region of first conductivity type GaAs formed on a first conductivity type Si substrate, and a second conductivity type GaAs selectively formed on the surface of the first region.
a second region of AS, a third region of first conductivity type GaAs with a high impurity concentration selectively formed on the surface of the second region, and a portion of the first region and the third region and between them. a gate insulating film formed on a part of the second region sandwiched by the second region; a gate electrode formed on the gate insulating film;
a source electrode formed to simultaneously contact the surface of another part of the third region and the other part of the third region;
A drain electrode is formed on the surface of an aAs substrate, and the structure is characterized in that an inversion layer at the hetero interface with the gate insulating film serves as a channel.

〔作用〕[Effect]

Si基板を用いることで、コスト等を低減できる。 By using a Si substrate, costs etc. can be reduced.

また、FET特性はS1上のGaAS部で決まり、以下
のように高耐圧、大電流化が可能となる。すなわち、ゲ
ート電圧によりゲート絶縁膜とGaAsの界面にポテン
シャルの井戸すなわち反転層が形成され、チャネルとな
る。電流は、ドレイン電極からGaAs基板および第1
領域内を流れ、前記チャネルを通ってソース電極に流れ
る。この縦型構造のためON抵抗が低くなり大電流特性
が得られる。また、ドレイン電圧が上昇すると、空乏層
が第1領域に広がって電圧を保持するので、高耐圧特性
が得られる。
Further, the FET characteristics are determined by the GaAS portion on S1, and as described below, high breakdown voltage and large current are possible. That is, a potential well or inversion layer is formed at the interface between the gate insulating film and GaAs by the gate voltage, and becomes a channel. The current flows from the drain electrode to the GaAs substrate and the first
flow within the region and through the channel to the source electrode. This vertical structure reduces ON resistance and provides large current characteristics. Further, when the drain voltage increases, the depletion layer spreads to the first region and maintains the voltage, resulting in high breakdown voltage characteristics.

〔実施例〕〔Example〕

以下、図に示す実施例により本発明をさらに詳しく説明
する。なお、これにより本発明が限定されるものではな
い。
Hereinafter, the present invention will be explained in more detail with reference to embodiments shown in the drawings. Note that the present invention is not limited thereby.

第1図は本発明の一実施例のMISFETIを示すもの
であって、n+型Si基板2上にn型GaAsの第1領
域3が形成され、その第1領域3の表面に選択的にp+
型GaAsとp−型GaAsの第2領域4゜5が形成さ
れ、その第2領域4,50表面に選択的に n゛型Ga
Asの第3領域6が形成されている。
FIG. 1 shows a MISFET I according to an embodiment of the present invention, in which a first region 3 of n-type GaAs is formed on an n+-type Si substrate 2, and p+
A second region 4.5 of type GaAs and p-type GaAs is formed, and n-type Ga is selectively formed on the surfaces of the second regions 4 and 50.
A third region 6 of As is formed.

第1領域3と第3領域6の一部とそれらの間に挟まれた
第2領域の一部5の上にはCaF2のゲート絶縁膜7が
形成され、その上にA1のゲート電極8が形成されてい
る。また、第2領域4の他の一部4と第3領域6の他の
一部の表面に同時にコンタクトするように^uZn /
^Uと^uGeのソース電極10b。
A gate insulating film 7 of CaF2 is formed on a part of the first region 3 and a part of the third region 6 and a part 5 of the second region sandwiched between them, and a gate electrode 8 of A1 is formed thereon. It is formed. Further, ^uZn/
^U and ^uGe source electrodes 10b.

10aが形成され、また、GaAs基板2の裏面には^
lのドレイン電極が形成されている。さらに、SiO□
のアイソレーション層11が形成されている。
10a is formed, and on the back surface of the GaAs substrate 2,
1 drain electrodes are formed. Furthermore, SiO□
An isolation layer 11 is formed.

第3図(a)〜(i)は、上記MISFETの製造工程
を各々示したものである。以下、順に説明する。
FIGS. 3(a) to 3(i) each show the manufacturing process of the above-mentioned MISFET. Below, they will be explained in order.

(a)  n”型Si (I XIO”c+a−’、 
300μm)を基板2上にn型GaAs(〜l XIO
”cll−’、 40 μm)をMOCVD法を用いた
2段階成長法でエピタキシャル成長させて第1領域3を
形成する。すなわち、まず第1段階として、Si基板を
高温(900℃)で処理し、その後450℃ないしそれ
以下でバッファ層(20nm程度)の低温成長を行い、
次に第2段階として、成長温度750℃でn−GaAs
を成長させた。
(a) n" type Si (I XIO"c+a-',
300 μm) on the substrate 2 and n-type GaAs (~1XIO
"cll-', 40 μm)" is epitaxially grown using a two-step growth method using MOCVD to form the first region 3. That is, in the first step, the Si substrate is treated at high temperature (900° C.), After that, low-temperature growth of a buffer layer (about 20 nm) is performed at 450°C or lower,
Next, in the second step, n-GaAs was grown at a growth temperature of 750°C.
grew.

(b)  第1領域30表面にSlO□をスパッタまた
は蒸着し、フォトエツチングでマスクを形成し、口また
はZnのインプラ (ドーズI I XIO”cm−’
、深さ3μm程度)を行い、p+型GaAsの第2領域
4を選択的に形成する。
(b) SlO□ is sputtered or vapor-deposited on the surface of the first region 30, a mask is formed by photoetching, and a hole or Zn implant (dose I
, to a depth of about 3 μm) to selectively form the second region 4 of p+ type GaAs.

(c) Sin、のマスクの一部を除去し、更にMgま
たは7口のインプラ (ドーズI I X 10” c
m−’ 、  深さ1μm)を行い、p−型GaAsの
第2領域5を形成する。
(c) Remove a part of the Sin mask and add Mg or 7 implants (dose I
m-', depth 1 μm) to form a second region 5 of p-type GaAs.

(d)  アニールにより、第2領域4,5を活性化す
る。
(d) Activate the second regions 4 and 5 by annealing.

(e) 5in2のマスクを除去し、再び全面にSin
、を被着し、フォトエツチングでマスク形成後、Slの
インプラ (ドーズ量I XIO”cm−2,深さ0.
5 μm)  を行い、n+型GaAsの第3領域6を
形成する。
(e) Remove the 5in2 mask and apply Sin to the entire surface again.
, and after forming a mask by photo-etching, implantation of Sl (dose: I XIO" cm-2, depth 0.
5 μm) to form the third region 6 of n+ type GaAs.

(f)  アニールにより活性化し、5in2のマスク
を除去し、全面に[:aF、をエピタキシャル成長する
。具体的には、MBE法を用い、表面を化学処理後、基
板温度450℃でCaFzを成長した。 そして、フォ
トエツチングにより、図に示す如き部分以外のCaF2
を除去する。これによりゲート絶縁膜7が形成される。
(f) Activate by annealing, remove the 5in2 mask, and epitaxially grow [:aF] on the entire surface. Specifically, after chemically treating the surface using the MBE method, CaFz was grown at a substrate temperature of 450°C. Then, by photo-etching, CaF2 was removed in areas other than those shown in the figure.
remove. As a result, gate insulating film 7 is formed.

(g) 表面および裏面にAIを被着し、表面側は図に
示す部分のみを残すようにエツチングする。ゲート絶縁
膜7上のA1層がゲート電極8となり、裏面のA1層が
ドレイン電極9となる。
(g) Apply AI to the front and back sides, and etch the front side so that only the portion shown in the figure remains. The A1 layer on the gate insulating film 7 becomes the gate electrode 8, and the A1 layer on the back surface becomes the drain electrode 9.

(h)  次にフォトエツチング工程を経て、第2領域
4上のみにAuZn/^Uを被着する。前記第3領域6
上のA1層と共にソース電極10a、10bとなる。
(h) Next, AuZn/^U is deposited only on the second region 4 through a photo-etching process. Said third area 6
Together with the upper A1 layer, these become source electrodes 10a and 10b.

(i)  フォトエツチング工程を経て、S+Oaのア
イソレーション層11を図に示すように形成する。
(i) Through a photoetching process, an isolation layer 11 of S+Oa is formed as shown in the figure.

以上によりMISFETIが製造される。なお、ゲート
絶縁膜7として、CaF、の代わりに他の弗化物または
AINのような窒化物を用いる場合でも同様なプロセス
で実現できる。
MISFETI is manufactured through the above steps. It should be noted that the same process can be used to form the gate insulating film 7 using other fluorides or nitrides such as AIN instead of CaF.

また、^’XGa+−xASまたはZn5eを用いる場
合にも、電極との間にn+型GaAs層を形成する以外
は、上記と同様なプロセスで実現できる。また、エピタ
キシャル成長法は、MBE法、VPE法でも可能である
Further, when using ^'XGa+-xAS or Zn5e, it can be realized by the same process as above except that an n+ type GaAs layer is formed between the electrodes. Further, the epitaxial growth method can also be an MBE method or a VPE method.

本発明の電界効果トランジスタは31基板を用いること
で安価である。
The field effect transistor of the present invention is inexpensive because it uses a 31 substrate.

また、基本的にはGaAs縦型FETであるためドレイ
ン電流が大きく、半導体表面の利用効率が良い。また、
第1領域3が高耐圧化のための低濃度領域として働く。
Furthermore, since it is basically a GaAs vertical FET, the drain current is large and the semiconductor surface is used efficiently. Also,
The first region 3 functions as a low concentration region for increasing the breakdown voltage.

さらに、Slより高移動度でバンドギャップの大きいG
aAsを用いているから、高周波特性が良好となり、O
N抵抗も低くなり、高温動作も可能となる。
Furthermore, G has a higher mobility and a larger bandgap than Sl.
Since aAs is used, high frequency characteristics are good and O
N resistance is also lowered, and high temperature operation is also possible.

第1表に上記MISFETIの特性を示す。また、比較
のためにSi・MOSFET(耐圧500 V /電流
容量10A、同1000V15A)の特性を例示する。
Table 1 shows the characteristics of the above MISFETI. Further, for comparison, the characteristics of a Si MOSFET (withstand voltage 500 V/current capacity 10 A, 1000 V 15 A) are illustrated.

第1表から理解されるように、チップ当たりの電流容攪
が3倍になると共に、アンペア当たりのコストも1/3
に低減し得る。
As can be seen from Table 1, the current capacity per chip is tripled and the cost per ampere is reduced to 1/3.
can be reduced to

また、同−Si基板上でのSi素子との複合化も可能で
ある。
Further, it is also possible to combine it with a Si element on the same -Si substrate.

第  1  表 〔発明の効果〕 本発明の電界効果トランジスタは、Si基板を用いるこ
とで安価である。また、基本的にはGaAsを用いた縦
型のMIS構造であるため、高速、低電力制御性、高耐
圧、大電流化に優れており、電力用スイッチング素子と
して極めて有用である。
Table 1 [Effects of the Invention] The field effect transistor of the present invention is inexpensive because it uses a Si substrate. Moreover, since it basically has a vertical MIS structure using GaAs, it is excellent in high speed, low power controllability, high withstand voltage, and large current, and is extremely useful as a power switching element.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例のMISFETの断面図、第
2図(a)〜(1)は第1図に示すMISFETの製造
工程を示す断面図、第3図は従来公知のGaAs −M
 I S F E Tの断面図である。 1−M T S F E T、 2−3+基板、3 第
1領域、4.5 第2領域、6 第3領域、7 ゲート
絶縁膜、8 ゲート電極、9 ドレイン電極、l0a1
0b ソース電極、11  アイソレーション層。 第 図 (その1) (その2)
FIG. 1 is a cross-sectional view of a MISFET according to an embodiment of the present invention, FIGS. 2(a) to (1) are cross-sectional views showing the manufacturing process of the MISFET shown in FIG. 1, and FIG. 3 is a conventionally known GaAs- M
It is a sectional view of ISFET. 1-MTSFET, 2-3+ substrate, 3 first region, 4.5 second region, 6 third region, 7 gate insulating film, 8 gate electrode, 9 drain electrode, l0a1
0b source electrode, 11 isolation layer. Figure (Part 1) (Part 2)

Claims (1)

【特許請求の範囲】[Claims] 1)第1導電型のSi基板上に形成された第1導電型G
aAsの第1領域と、その第1領域の表面に選択的に形
成された第2導電型GaAsの第2領域と、この第2領
域の表面に選択的に形成された高不純物濃度で第1導電
型GaAsの第3領域と、前記第1領域と第3領域の一
部とそれらの間に挟まれた第2領域の一部の上に形成さ
れたゲート絶縁膜と、そのゲート絶縁膜の上に形成され
たゲート電極と、前記第2領域の他の一部と前記第3領
域の他の一部の表面に同時にコンタクトするよう形成さ
れたソース電極と、前記GaAs基板の裏面に形成され
たドレイン電極とを具備してなり、前記ゲート絶縁膜と
のヘテロ界面での反転層をチャネルとすることを特徴と
する電界効果トランジスタ。
1) First conductivity type G formed on a first conductivity type Si substrate
A first region of aAs, a second region of second conductivity type GaAs selectively formed on the surface of the first region, and a first region of high impurity concentration selectively formed on the surface of the second region. a third region of conductive type GaAs; a gate insulating film formed on a portion of the first region and the third region; and a portion of the second region sandwiched therebetween; a gate electrode formed on the top, a source electrode formed so as to simultaneously contact the surfaces of another part of the second region and another part of the third region, and a source electrode formed on the back surface of the GaAs substrate. 1. A field-effect transistor, comprising a drain electrode, and an inversion layer at a hetero-interface with the gate insulating film serves as a channel.
JP1087691A 1989-04-06 1989-04-06 Field-effect transistor Pending JPH02266569A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1087691A JPH02266569A (en) 1989-04-06 1989-04-06 Field-effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1087691A JPH02266569A (en) 1989-04-06 1989-04-06 Field-effect transistor

Publications (1)

Publication Number Publication Date
JPH02266569A true JPH02266569A (en) 1990-10-31

Family

ID=13921952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1087691A Pending JPH02266569A (en) 1989-04-06 1989-04-06 Field-effect transistor

Country Status (1)

Country Link
JP (1) JPH02266569A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995032525A1 (en) * 1994-05-19 1995-11-30 The Government Of The United States Of America, Represented By The Secretary Of The Navy BaF2/GaAs ELECTRONIC COMPONENTS
US6077775A (en) * 1998-08-20 2000-06-20 The United States Of America As Represented By The Secretary Of The Navy Process for making a semiconductor device with barrier film formation using a metal halide and products thereof
US6083818A (en) * 1998-08-20 2000-07-04 The United States Of America As Represented By The Secretary Of The Navy Electronic devices with strontium barrier film and process for making same
US6171953B1 (en) 1998-08-20 2001-01-09 The United States Of America As Represented By The Secretary Of The Navy Processes for making electronic devices with rubidum barrier film
US6208001B1 (en) 1994-05-19 2001-03-27 The United States Of America As Represented By The Secretary Of The Navy Gallium arsenide semiconductor devices fabricated with insulator layer
US6291876B1 (en) 1998-08-20 2001-09-18 The United States Of America As Represented By The Secretary Of The Navy Electronic devices with composite atomic barrier film and process for making same
US6351036B1 (en) 1998-08-20 2002-02-26 The United States Of America As Represented By The Secretary Of The Navy Electronic devices with a barrier film and process for making same
US6465887B1 (en) 2000-05-03 2002-10-15 The United States Of America As Represented By The Secretary Of The Navy Electronic devices with diffusion barrier and process for making same
US6720654B2 (en) 1998-08-20 2004-04-13 The United States Of America As Represented By The Secretary Of The Navy Electronic devices with cesium barrier film and process for making same
US6734558B2 (en) 1998-08-20 2004-05-11 The United States Of America As Represented By The Secretary Of The Navy Electronic devices with barium barrier film and process for making same

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6208001B1 (en) 1994-05-19 2001-03-27 The United States Of America As Represented By The Secretary Of The Navy Gallium arsenide semiconductor devices fabricated with insulator layer
US5932006A (en) * 1994-05-19 1999-08-03 The United States Of America As Represented By The Secretary Of The Navy BaF2 /GaAs electronic components
US6306212B1 (en) 1994-05-19 2001-10-23 The United States Of America As Represented By The Secretary Of The Navy Gallium arsenide semiconductor devices fabricated with insulator layer
WO1995032525A1 (en) * 1994-05-19 1995-11-30 The Government Of The United States Of America, Represented By The Secretary Of The Navy BaF2/GaAs ELECTRONIC COMPONENTS
US6291876B1 (en) 1998-08-20 2001-09-18 The United States Of America As Represented By The Secretary Of The Navy Electronic devices with composite atomic barrier film and process for making same
US6171953B1 (en) 1998-08-20 2001-01-09 The United States Of America As Represented By The Secretary Of The Navy Processes for making electronic devices with rubidum barrier film
US6188134B1 (en) 1998-08-20 2001-02-13 The United States Of America As Represented By The Secretary Of The Navy Electronic devices with rubidium barrier film and process for making same
US6144050A (en) * 1998-08-20 2000-11-07 The United States Of America As Represented By The Secretary Of The Navy Electronic devices with strontium barrier film and process for making same
US6083818A (en) * 1998-08-20 2000-07-04 The United States Of America As Represented By The Secretary Of The Navy Electronic devices with strontium barrier film and process for making same
US6077775A (en) * 1998-08-20 2000-06-20 The United States Of America As Represented By The Secretary Of The Navy Process for making a semiconductor device with barrier film formation using a metal halide and products thereof
US6351036B1 (en) 1998-08-20 2002-02-26 The United States Of America As Represented By The Secretary Of The Navy Electronic devices with a barrier film and process for making same
US6566247B2 (en) 1998-08-20 2003-05-20 The United States Of America As Represented By The Secretary Of The Navy Electronic devices with composite atomic barrier film and process for making same
US6720654B2 (en) 1998-08-20 2004-04-13 The United States Of America As Represented By The Secretary Of The Navy Electronic devices with cesium barrier film and process for making same
US6734558B2 (en) 1998-08-20 2004-05-11 The United States Of America As Represented By The Secretary Of The Navy Electronic devices with barium barrier film and process for making same
US6465887B1 (en) 2000-05-03 2002-10-15 The United States Of America As Represented By The Secretary Of The Navy Electronic devices with diffusion barrier and process for making same
US6881669B2 (en) 2000-05-03 2005-04-19 The United States Of America As Represented By The Secretary Of The Navy Process for making electronic devices having a monolayer diffusion barrier

Similar Documents

Publication Publication Date Title
JP6041139B2 (en) Transistor with semiconductor interconnect layer and semiconductor channel layer of different semiconductor materials
US5479033A (en) Complementary junction heterostructure field-effect transistor
JPS63252478A (en) Insulated-gate semiconductor device
JPH0371776B2 (en)
KR920003799B1 (en) Semiconductor device
JPH02266569A (en) Field-effect transistor
JP2009076673A (en) Field-effect transistor using group iii nitride semiconductor
JPS60134481A (en) Semiconductor device
WO2019019395A1 (en) Silicon carbide switch device and manufacturing method therefor
JPS61147577A (en) Complementary semiconductor device
JPH02246121A (en) Hetero junction shut-in channel fet
JPH02201934A (en) Manufacture of gaas fet using channel limiting lager
JPH02111073A (en) Insulated gate fet and integrated circuit device thereof
JP2504782B2 (en) Method for manufacturing field effect transistor
JPH01257372A (en) Insulated gate field effect transistor
JPH0793323B2 (en) Field effect transistor
JP2680821B2 (en) Heterostructure field effect transistor
JPS5918679A (en) Semiconductor device
JPS6329569A (en) Manufacture of semiconductor device and substrate thereof
KR930009811B1 (en) Mes fet transistor and manufacturing method thereof
JPS59213158A (en) Semiconductor device
JPS61102069A (en) Field-effect transistor
JPH0199263A (en) Semiconductor integrated circuit and manufacture thereof
JPS6399579A (en) Manufacture of field effect transistor
JPS60140875A (en) Semiconductor device