JPS5831582A - Semiconductor integrated circuit device - Google Patents

Semiconductor integrated circuit device

Info

Publication number
JPS5831582A
JPS5831582A JP12937681A JP12937681A JPS5831582A JP S5831582 A JPS5831582 A JP S5831582A JP 12937681 A JP12937681 A JP 12937681A JP 12937681 A JP12937681 A JP 12937681A JP S5831582 A JPS5831582 A JP S5831582A
Authority
JP
Japan
Prior art keywords
layer
gaas
fet
type
active layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12937681A
Other languages
Japanese (ja)
Inventor
Shutaro Nanbu
修太郎 南部
Masahiro Hagio
萩尾 正博
Masahiro Nishiuma
西馬 正博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP12937681A priority Critical patent/JPS5831582A/en
Publication of JPS5831582A publication Critical patent/JPS5831582A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0605Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits made of compound material, e.g. AIIIBV

Abstract

PURPOSE:To obtain a preferable field effect transistor (FET) characteristics without deteriorating the characteristics of an active layer or the boundary between an active layer and a high resistance layer by forming the FET with an epitaxially grown GaAs single crystal by ion implanting a resistor and a capacitor. CONSTITUTION:The monolithic IC circuit of this embodiment is a negative feedback type amplifier using an FET, a GaAs single cyrstal is epitaxially grown with N type GaAs 2 on a semi-insulating substrate 1, and an N type GaAs is further continuously grown. An N type GaAs layer is mesa etched, thereby forming a mesa 3 for the FET and a mesa 42 for a feedback capacity. Then, an Si is implanted as an N type impurity in an N type buffer layer, is then annealed, thereby activating the implanted region 41 as a feedback resistor Rf. A reliable vapor epitaxial single crystal is used for the FET part required for high frequency characteristics, and the ion implantation and the merits can be utilized for the other passive circuit parts required for the reproducibility of the thickness of the active layer.

Description

【発明の詳細な説明】 本発明は、電界効果トランジスタをエピタキシャル成長
GaAs単結晶で、また抵抗および容量をイオン注入で
形成した半導体集積回路装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor integrated circuit device in which a field effect transistor is formed of epitaxially grown GaAs single crystal, and a resistor and a capacitor are formed by ion implantation.

GaAs単結晶を用いた電界効果トランジスタは、高周
波特性が優れておシ、すでに実用化されている。そして
、このGaAsを用いた電界効果トランジスタを基本体
とする集積回路の開発も盛んに行なわれるようになって
きた。これは、GaAsを用いると、Siでは不可能で
ある半絶縁性単結晶の製作が可能となるため、寄生容量
を小さくでき、したがって高速動作のモノリシックIC
が製作できるためである。
Field effect transistors using GaAs single crystals have excellent high frequency characteristics and are already in practical use. Integrated circuits based on field effect transistors using GaAs have also been actively developed. This is because GaAs allows the fabrication of semi-insulating single crystals, which is not possible with Si, which reduces parasitic capacitance and allows high-speed monolithic ICs to be fabricated.
This is because it can be manufactured.

商品化されているGaAs FETは、一般に、半絶縁
性GaA s基板上にn−形の高抵抗GaAsバッファ
層を2〜4μm厚で形成し、その上に0.8〜2.0X
IO”Cm−3のn形の動作層を気相エピタキシャル単
結晶成長法により01〜05μm厚で形成したGaAs
単結晶層上に、第1図に示すような構造に構成されてい
る。図において、lは半絶縁性QaAs基板、2けn−
形バッファ層、3は活性層であるメサ、4はソース、5
はドレイン、6はダート電極であって、この活性層であ
るメサ3の厚みは、化学的なエツチングを利用して所望
の値に制御されている。
Commercially available GaAs FETs generally have an n-type high resistance GaAs buffer layer formed with a thickness of 2 to 4 μm on a semi-insulating GaAs substrate, and a 0.8 to 2.0×
IO"Cm-3 n-type active layer formed with a thickness of 01 to 05 μm by vapor phase epitaxial single crystal growth method.
A structure as shown in FIG. 1 is formed on a single crystal layer. In the figure, l is a semi-insulating QaAs substrate, 2 digits n-
shaped buffer layer, 3 is the mesa which is the active layer, 4 is the source, 5
1 is a drain, 6 is a dirt electrode, and the thickness of mesa 3, which is an active layer, is controlled to a desired value using chemical etching.

そしてGaAs ICの場合、この活性層には電界効果
トランジスタだけでなく、抵抗、容量力との受動回路素
子をも含めて多数の素子が形成されるので、この活性層
の厚みの制御性は、極めて重要なファクターとなる。し
かし、GaAs気相エピタキシャル単結晶では、どうし
ても、この厚みの均一性が悪く、問題と々る。このため
、活性層を、半絶縁性GaA sもしくはn″″GaA
s LlCn形不純物のSi、Se。
In the case of GaAs IC, many elements are formed in this active layer, including not only field effect transistors but also passive circuit elements such as resistors and capacitors, so the controllability of the thickness of this active layer is This is an extremely important factor. However, GaAs vapor phase epitaxial single crystals inevitably have poor uniformity in thickness, which poses a problem. For this reason, the active layer is made of semi-insulating GaAs or n''''GaAs.
s LlCn type impurity Si, Se.

Sなどをイオン注入で作ろうとする試みがある。There are attempts to create S and other materials by ion implantation.

イオン注入によれば、活性層厚みの制御性は極めて良く
々るが、同時に次のような問題もある。
Although ion implantation provides extremely good controllability of the active layer thickness, it also has the following problems.

一般に半絶縁性GaAs単結晶は、成長中の81による
汚染を、CrあるいはCrOにより補償することで半絶
縁性を得ている。イオン注入の場合には、注入後に75
0〜950’Cの高温でアニールすることによシ、電子
を活性化して高い移動度を得ているが、この高温でのア
ニールにょF) Crが拡散してしまうため、活性層あ
るいは、活性層と高抵抗層との界面の特性を悪化させて
しまい、良好なFET特性を得ることが困難となる。こ
のため、様様々アニール法、あるいは、Crの濃度が低
いが、もしくはCrを全く含ま々い半絶縁性GaA s
単結晶の成長が研究されている。
Generally, semi-insulating GaAs single crystals obtain semi-insulating properties by compensating for contamination by 81 during growth with Cr or CrO. In the case of ion implantation, 75
By annealing at a high temperature of 0 to 950'C, electrons are activated and high mobility is obtained. This deteriorates the characteristics of the interface between the layer and the high-resistance layer, making it difficult to obtain good FET characteristics. For this reason, various annealing methods or semi-insulating GaAs with low Cr concentration or no Cr are used.
Single crystal growth has been studied.

本発明の目的は、このような不都合を解消するための、
GaAsモノリシック半導体集積回路装置を提供するこ
とである。
The purpose of the present invention is to solve such inconveniences,
An object of the present invention is to provide a GaAs monolithic semiconductor integrated circuit device.

すなわち、従来、注入が半絶縁性QaAsあるいは半絶
縁性GaA s上に成長させたn′″GaAsバッファ
層に行われており、FETや他の受動回路部品のすべて
を注入で形成していたのに対し、本発明では半絶縁性G
aAs上にn −GaA sバッファ層、nGaAs層
を連続エピタキシャル成長させたGaA s単結晶に注
入し、FET部分は、このnGaAaエピタキシャル単
結晶を用い、注入はFET以外の回路部品、抵抗、容量
、ダイオード等の形成にのみ用いること&特徴とするも
のである。第2図は本発明の詳細な説明する図であって
、(a)はn−GaAs t4ッファ層のイオン注入領
域11に注入を行なう場合、(b)はnGaAs層のイ
オン注入領域12に注入を行々う場合を示す。
That is, traditionally, implantation was performed in an n''' GaAs buffer layer grown on semi-insulating QaAs or semi-insulating GaAs, and all FETs and other passive circuit components were formed by implantation. In contrast, in the present invention, semi-insulating G
An n-GaAs buffer layer and an nGaAs layer are implanted into a GaAs single crystal that is continuously epitaxially grown on aAs, and this nGaAa epitaxial single crystal is used for the FET part. It is used only for the formation of etc. and is characterized by FIG. 2 is a diagram explaining the present invention in detail, in which (a) shows the case where the ion implantation region 11 of the n-GaAs t4 buffer layer is implanted, and (b) shows the case where the ion implantation region 12 of the n-GaAs layer is implanted. The following shows the case where the following is carried out.

これは、750℃以上の高温アニールが、高い電子移動
度が要求されるFETの形成にのみ必要で、他の回路部
品の場合には、高移動度がそれ程必要とされ々いとの知
見に基づくものである。
This is based on the knowledge that high-temperature annealing of 750°C or higher is only necessary to form FETs that require high electron mobility, and that high mobility is not required for other circuit components. It is something.

本発明では、 (1)  このn−バッファ層の厚みを、通常の3〜4
μmよりも厚く、5〜10μmに形成し、これにょシア
ニール時の半絶縁性基板からのCrの拡散のnエピタキ
シャル層に与える影響を少くしている。
In the present invention, (1) The thickness of this n-buffer layer is increased from the usual 3 to 4
It is formed to have a thickness of 5 to 10 .mu.m, which is thicker than .mu.m, to reduce the influence of Cr diffusion from the semi-insulating substrate during cyan annealing on the n epitaxial layer.

(2)  注入後のアニールを、750℃以下の低温、
もしくは高温で短時間だけおこなうことによってCrの
拡散を少くする。
(2) Post-implantation annealing is performed at a low temperature of 750°C or less.
Alternatively, the diffusion of Cr can be reduced by performing the process at a high temperature for a short period of time.

(3)  半絶縁性基板のCrの濃度を通常の気相エピ
タキシャル成長に用いられている2〜6 Wt p、p
、mよりも大幅に低い 02〜1.5 Wt p、p、
mとする。
(3) Adjust the Cr concentration of the semi-insulating substrate to 2 to 6 Wt p, p, which is used in normal vapor phase epitaxial growth.
, significantly lower than m 02-1.5 Wt p, p,
Let it be m.

以上の三条性は、必ずしも全てを満さなくても、どれか
ひとつだけを使用しても、注入後のアニールによって、
nGaAsエピタキシャル層が変成しないことが実験的
に確認された。注入に用いるイオンは、n形不純物の場
合、S+ −S 、 Seであシ、またp形不純物の場
合、Zn * Cd 、 Mg 、 Mn 、 13e
などいずれの元素をも使用することが可能である。
The above three-line properties do not necessarily have to be satisfied, even if only one of them is used, by annealing after implantation,
It was experimentally confirmed that the nGaAs epitaxial layer does not undergo metamorphosis. The ions used for implantation are S+-S, Se for n-type impurities, and Zn*Cd, Mg, Mn, 13e for p-type impurities.
It is possible to use any element such as.

このようにして、注入、アニールを行なえば、高い周波
数特性が要求されるFET部分には、信頼性のある気相
エピタキシャル単結晶を用い、活性層厚さの再現性が要
求される他の受動回路部品にはイオン注入と、2つの活
性層形成法のそれぞれの長所を生かし々がら、GaAs
デバイスの製造が可能となる。
By performing implantation and annealing in this way, reliable vapor phase epitaxial single crystals can be used for FET parts that require high frequency characteristics, and other passive parts that require reproducibility of active layer thickness can be used. GaAs is used for circuit components by taking advantage of the advantages of ion implantation and two active layer formation methods.
It becomes possible to manufacture devices.

次に、本発明を用いて試作したGaAaモノリノツタI
C実施例について述べる。
Next, we will discuss the GaAa monolithic ivy I, which was prototyped using the present invention.
Example C will be described.

こめモノリシックICの基本回路構成を、第3図に示す
。この回路は、FETを用いた負帰還形増幅器であって
、31はFET、32は帰還抵抗Rf、33は帰還回路
に流れる直流電流1壜止用のコンデンサCfである。F
ET 31のgmlおよび帰還回路の抵抗を最適に設計
することにより、入出力インピーダンスを、広い帯域に
わたって任意の値に設計できる。本実施例では入出力イ
ンピーダンス50Ωの場合は、17m=90〜100 
ms 、 R(= 200〜400Ω、C,=20pF
〜50pFに、また入出力インピーダンス75Ωの場合
、gm=: 50 ms 〜100m5゜Rf=100
〜700Ω、C,=20pF〜50pFと2棹類のもの
を本発明を用いて、第4図に示すごとく試作した。
The basic circuit configuration of the monolithic IC is shown in FIG. This circuit is a negative feedback amplifier using FETs, 31 is an FET, 32 is a feedback resistor Rf, and 33 is a capacitor Cf for stopping one DC current flowing through the feedback circuit. F
By optimally designing the gml of the ET 31 and the resistance of the feedback circuit, the input/output impedance can be designed to any value over a wide band. In this example, if the input/output impedance is 50Ω, 17m = 90 to 100
ms, R(=200~400Ω, C,=20pF
~50pF and input/output impedance 75Ω, gm=: 50 ms ~100m5°Rf=100
Using the present invention, a prototype of two rods with ~700 Ω, C, = 20 pF ~ 50 pF, as shown in FIG. 4, was fabricated.

このときに使用されたGaA !l単結晶は、Cr濃度
が1.5 Wt、p、p、m以下の半絶縁性基板上にノ
ンドー7’ n−GaAsを4〜6μmの厚さにエピタ
キシャル成長させ、さらに1〜2.5×10crrL 
のnGaA s  を連続成長させたものである。まず
このnGaAs層をn”’GaAa層まで、メサエッチ
ングして、FET用のメサ3および帰還容量Cf用のメ
サ42を形成する。
GaA used at this time! The single crystal is made by epitaxially growing non-doped 7' n-GaAs to a thickness of 4 to 6 μm on a semi-insulating substrate with a Cr concentration of 1.5 Wt, p, p, m or less, and then growing it to a thickness of 1 to 2.5×. 10crrL
This is a result of continuous growth of nGaAs. First, this nGaAs layer is mesa-etched up to the n'''GaAa layer to form mesa 3 for FET and mesa 42 for feedback capacitance Cf.

しかるのち、n形不純物としてSiを、n″″バッファ
″2777層中!′m−2のドーズ量、150 keV
の加速電圧で注入した後、700℃で30分間のアニー
ルをおこなって活性化を行々う。この結果、注入領域4
1は2〜3X10”cm−3の濃度にまで活性化される
。しかる後通常のプロセスによりオーミック電極4,5
、ダート・ショットキ電極6、絶縁膜8、配線用リード
7および帰還容量用ショットキ電極43を形成する。こ
の注入領域41が帰還抵抗R7と々る。
Thereafter, Si was added as an n-type impurity in the 2777 layer of the n''buffer at a dose of !'m-2 and 150 keV.
After implantation at an acceleration voltage of , activation is performed by annealing at 700° C. for 30 minutes. As a result, the injection area 4
1 is activated to a concentration of 2 to 3 x 10"cm-3. Thereafter, ohmic electrodes 4, 5 are formed by a conventional process.
, a dirt Schottky electrode 6, an insulating film 8, a wiring lead 7, and a Schottky electrode 43 for feedback capacitance are formed. This injection region 41 corresponds to the feedback resistor R7.

以上のように、本発明を用いることにより、帰還抵抗R
fの抵抗値の制御性を高めることができる。
As described above, by using the present invention, the feedback resistance R
The controllability of the resistance value of f can be improved.

この結果、このモノリンツクICの高周波特性の分布を
小さくすることができる。
As a result, the distribution of high frequency characteristics of this monolink IC can be reduced.

以上の説明では、n−バッファ層に注入したが、第2図
0)に示すようにnGaAs中に注入しても良い。
In the above explanation, the implantation was made into the n-buffer layer, but it may also be implanted into nGaAs as shown in FIG. 2(0).

この場合は、よシ比抵抗の小さな抵抗の形成が可能で、
また注入をメサ形成前に行なうことができる。
In this case, it is possible to form a resistor with a low specific resistance,
Also, implantation can be performed before mesa formation.

上述の実施例では、注入によるn層を抵抗の形成に用い
たが、帰還容量42用のGaAg層中にも選択注入する
ことで、よシ小さい面積で容量の形成が可能になる。
In the above-described embodiment, the implanted n-layer was used to form the resistor, but by selectively implanting it also into the GaAg layer for the feedback capacitor 42, the capacitor can be formed in a much smaller area.

以上述べたごとく、本発明は実用上極めて大きな価値を
有するものである。
As described above, the present invention has extremely great practical value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来のGaA s単結晶基板を用いた電界効
果トランジスタの構造を示す断面図、第2図は、本発明
の半導体集積回路の原理を説明するためのGaAsモノ
リシックICの断面図、第3図は、モノリンツクICに
よる増幅回路図、第4図は、本発明に基づく半導体集積
回路の一実施例を示す断面図である。 ■・・・半絶縁性QaAs基板、2・・・n″″″形パ
ァ層、3・・・活性層、4・・・ソース電極、5・・・
ドレイン電極、6・・・ダート電極、7・・・配線用リ
ード、8・・・絶縁膜、11.12・・・イオン注入領
域、31・・・FET、32・・・帰還抵抗、33.4
2・・・帰還に挿入された容量、41・・・注入領域、
43・・・帰還容量用ショットキ電極。
FIG. 1 is a sectional view showing the structure of a conventional field effect transistor using a GaAs single crystal substrate, and FIG. 2 is a sectional view of a GaAs monolithic IC for explaining the principle of the semiconductor integrated circuit of the present invention. FIG. 3 is a diagram of an amplifier circuit using a monolink IC, and FIG. 4 is a sectional view showing an embodiment of a semiconductor integrated circuit according to the present invention. ■... Semi-insulating QaAs substrate, 2... n'''' type pass layer, 3... active layer, 4... source electrode, 5...
Drain electrode, 6... Dirt electrode, 7... Wiring lead, 8... Insulating film, 11.12... Ion implantation region, 31... FET, 32... Feedback resistor, 33. 4
2...Capacitance inserted in return, 41...Injection region,
43... Schottky electrode for feedback capacitance.

Claims (1)

【特許請求の範囲】[Claims] 半絶縁性GaAs基板上に形成され、少くとも電界効果
トランジスタを含む半導体集積回路装置において、前記
電界効果トランジスタは、前記半絶縁性基板上にバッフ
ァ層を介してエピタキシャル成長させたGaA1単結晶
層を活性層として形成され、前記電界効果トランジスタ
以外の受動回路部品は、前記バッファ層または前記Ga
As単結晶層にイオン注入によシ形成されていることを
特徴とする半導体集積回路装置。
In a semiconductor integrated circuit device formed on a semi-insulating GaAs substrate and including at least a field effect transistor, the field effect transistor activates a GaA1 single crystal layer epitaxially grown on the semi-insulating substrate via a buffer layer. Passive circuit components other than the field effect transistor are formed as a layer, and passive circuit components other than the field effect transistor are formed as a layer of the buffer layer or the Ga layer.
A semiconductor integrated circuit device characterized in that it is formed in an As single crystal layer by ion implantation.
JP12937681A 1981-08-20 1981-08-20 Semiconductor integrated circuit device Pending JPS5831582A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12937681A JPS5831582A (en) 1981-08-20 1981-08-20 Semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12937681A JPS5831582A (en) 1981-08-20 1981-08-20 Semiconductor integrated circuit device

Publications (1)

Publication Number Publication Date
JPS5831582A true JPS5831582A (en) 1983-02-24

Family

ID=15008047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12937681A Pending JPS5831582A (en) 1981-08-20 1981-08-20 Semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPS5831582A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59169182A (en) * 1983-03-16 1984-09-25 Fujitsu Ltd Semiconductor device
JPS6230360A (en) * 1985-04-05 1987-02-09 Fujitsu Ltd Superhigh frequency integrated circuit device
JPS62111475A (en) * 1985-11-08 1987-05-22 Matsushita Electric Ind Co Ltd Semiconductor device
JPS62111476A (en) * 1985-11-08 1987-05-22 Matsushita Electric Ind Co Ltd Semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59169182A (en) * 1983-03-16 1984-09-25 Fujitsu Ltd Semiconductor device
JPS6230360A (en) * 1985-04-05 1987-02-09 Fujitsu Ltd Superhigh frequency integrated circuit device
JPS62111475A (en) * 1985-11-08 1987-05-22 Matsushita Electric Ind Co Ltd Semiconductor device
JPS62111476A (en) * 1985-11-08 1987-05-22 Matsushita Electric Ind Co Ltd Semiconductor device

Similar Documents

Publication Publication Date Title
JPS62262466A (en) Manufacture of mes-fet
JPH0324782B2 (en)
JPH01175265A (en) Field-effect transistor and its manufacture
JPS6356710B2 (en)
JPS5831582A (en) Semiconductor integrated circuit device
JP3169066B2 (en) Field effect transistor and method of manufacturing the same
EP0093557B1 (en) High-speed complementary semiconductor integrated circuit
JP2688678B2 (en) Field effect transistor and method of manufacturing the same
KR910006751B1 (en) Semiconductor integrated circuit device and its manufacturing method
JPH0212927A (en) Manufacture of mesfet
JP2504785B2 (en) Semiconductor integrated circuit and manufacturing method thereof
JPS5918679A (en) Semiconductor device
JPS6357946B2 (en)
JP2503594B2 (en) Semiconductor integrated device and manufacturing method thereof
JPS58147164A (en) Field effect transistor and manufacture thereof
JP2996267B2 (en) Method for manufacturing insulated gate field effect transistor
JPH028458B2 (en)
JPS59207669A (en) Manufacture of field effect transistor
JPH0472384B2 (en)
JPS6068661A (en) Semiconductor device
JP3210533B2 (en) Method for manufacturing field effect transistor
JPS60136264A (en) Manufacture of semiconductor device
JPS62171165A (en) Field-effect transistor
JPS63301568A (en) Semiconductor integrated circuit device and manufacture thereof
JPH02135743A (en) Manufacture of field effect transistor