JPS63308934A - Manufacture of compound semiconductor device - Google Patents

Manufacture of compound semiconductor device

Info

Publication number
JPS63308934A
JPS63308934A JP14658187A JP14658187A JPS63308934A JP S63308934 A JPS63308934 A JP S63308934A JP 14658187 A JP14658187 A JP 14658187A JP 14658187 A JP14658187 A JP 14658187A JP S63308934 A JPS63308934 A JP S63308934A
Authority
JP
Japan
Prior art keywords
region
ion
semiconductor device
boron
high resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14658187A
Other languages
Japanese (ja)
Inventor
Kazumasa Onodera
小野寺 和正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP14658187A priority Critical patent/JPS63308934A/en
Publication of JPS63308934A publication Critical patent/JPS63308934A/en
Pending legal-status Critical Current

Links

Landscapes

  • Element Separation (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To maintain sufficiently a high resistance region, by ion-implanting proton and boron into the same region so as to isolate each element. CONSTITUTION:By implanting silicon ion, active layers 6, 7 are formed on a semi-insulative GaAs substrate 1, and therein source regions 2, 4 and drain regions 3, 5 are formed. Further, gate metals 8, 9 are formed, and an MES FET is completed. A region 10 is doped with proton and boron by an ion implantation method, and a high resistance region is completed. The ion-implated region is almost perfectly turned into an amorphous state, and annealing at a low temperature scarcely progresses. Thereby, the ion-implanted region is almost maintained in the state of high resistance, as it is.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は化合物半導体装置に係り、特にG a A s
(ガリウム砒素)のMES (Metal Sem1c
onducter )FETを基本素子として集積化し
たアイリレーション構造に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a compound semiconductor device, and in particular to a GaAs
(Gallium arsenide) MES (Metal Sem1c)
The present invention relates to an eye relation structure in which FET (onductor) is integrated as a basic element.

〔従来の技術〕[Conventional technology]

従来のMES−FET (Metal Sem1con
ducter FET)は、第3図に示すように、半絶
縁性G a A s基板1にシリコンのイオン注入を用
いてn型活性層6゜7を形成し、この活性層6,7を積
うようにゲート金属8,9を形成して、ショットキー接
合とし、この活性層6,7両端部に高濃度n+領領域形
成して、ソース領域2,4、及びドレイン領域3゜5と
したいわば半絶縁性GaAs基板1の海の中に、MES
−FETO島を形成して成り、更にGaAs1Cはこれ
らFETの集合より成る。
Conventional MES-FET (Metal Sem1con
ducter FET), as shown in FIG. 3, an n-type active layer 6.7 is formed in a semi-insulating GaAs substrate 1 by silicon ion implantation, and these active layers 6 and 7 are stacked. Gate metals 8 and 9 are formed to form a Schottky junction as shown in FIG. In the sea of semi-insulating GaAs substrate 1, MES
-FETO islands are formed, and GaAs1C is further composed of a collection of these FETs.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従って、素子間のアイソレーションは、 GaAs基板
1の半絶縁性に依する。しかしながら、現状の技術で達
成し得る絶縁性は高々10Ω・α程度であり、しかもG
 a A s基板1の抵抗値は炭素のシャロー・アクセ
プターと、EL2(深い準位に与えられた呼称;コンタ
クジョン・バンドエツジヨリ、約0.8eV程深いとこ
ろの禁1u1]帯中に準位を形成する)のディープ・ド
ナーとの補償作用(Compen−sation Ef
fect)により維持されている。しかもこれら両準位
とも現状技術では制御性を欠くので、実際に育成される
結晶のもつ抵抗値は、約10’乃至10Ω・口と広範囲
にわたる。
Therefore, isolation between elements depends on the semi-insulating property of the GaAs substrate 1. However, the insulation that can be achieved with current technology is at most about 10Ω・α, and
The resistance value of the A s substrate 1 is due to the shallow acceptor of carbon and the level in the EL2 (name given to deep level; contact band edge, about 0.8 eV deep level) band. Compensation effect with deep donor (forming Ef)
fect). Moreover, since the current state of the art lacks controllability in both of these levels, the resistance values of the actually grown crystals range over a wide range from about 10' to 10 Ω.

一方、MES−FEi−’ i基本素子とせしく)aA
sICでは、集積度が向上するにつれ、高い素子間アイ
ソレーションが要求され、しかも、適用回路によっては
高密度集積によシ接近したFET間に電源電圧、もしく
はこれに近い電位が印加されることになり1.素子間分
離の重要性が増す。
On the other hand, MES-FEi-' i basic element) aA
In sIC, as the degree of integration increases, high isolation between elements is required, and depending on the applied circuit, the power supply voltage or a potential close to this may be applied between FETs in close proximity to each other due to high density integration. Nari 1. The importance of isolation between elements increases.

実際問題としである閾値電圧以上の電圧が印加されると
、それまでオーム性を示していた基板性の電流−電圧特
性が急激に過大電流が流れ始めるため、素子間アイソレ
ーションは破綻する。この問題を解決する一つの手段と
しては、素子間にプロトン(H)をイオン注入して、高
抵抗領域を形成する方法がある。しかしながら、この方
法では、400”C近傍の低温熱処理により、高抵抗領
域が焼鈍化され、高抵抗領域が完全に保持できないとい
う難点があった。本発明の目的は、前記問題点が解決さ
れ、高抵抗領域が充分に保持できるようにする化合物半
導体装置の製造を提供することにある。
In practice, when a voltage equal to or higher than a certain threshold voltage is applied, the current-voltage characteristics of the substrate, which had previously exhibited ohmic properties, suddenly begin to allow an excessive current to flow, causing isolation between elements to fail. One way to solve this problem is to form a high resistance region by implanting protons (H) between elements. However, this method has the disadvantage that the high-resistance region is annealed due to the low-temperature heat treatment at around 400"C, and the high-resistance region cannot be maintained completely.The object of the present invention is to solve the above-mentioned problems, An object of the present invention is to provide manufacturing of a compound semiconductor device in which a high resistance region can be sufficiently maintained.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の構成は、ガリウム砒素のMES−FETを基本
素子とした化合物半導体装置の製法において、各素子間
を隔てるように、プロトン及びボロンを同一領域にイオ
ン注入する工程を有することを特徴とする。
The structure of the present invention is characterized in that a method for manufacturing a compound semiconductor device using a gallium arsenide MES-FET as a basic element includes a step of ion-implanting protons and boron into the same region so as to separate each element. .

〔実施例〕〔Example〕

次に図面を参照しながら本発明の詳細な説明する。第1
図は本発明の第1の実施例の化合物半導体装置の製法を
示す断面図である。同図において、半絶縁性の(3aA
s基板1に、シリコン(Si)のイオン注入により、活
性層領域6.7全形成し、しかるのちに、ソース領域2
,4及びドレイン領域3.5が形成され、更にゲート金
属8.9を形成して、ME S −F ETは完成する
。このとき、活性領域6,7と、ンース飴域2,4、及
びドレイン領域3,5の形成順序が逆転してもよい。プ
ロトン、及びボロンをイオン注入法により、領域10に
ドンブして、高抵抗領域は完成する。第2図は本発明の
第2の実施例の化合物半導体装置の製法を示す断面図で
ある。同図において、GaAs基板上1に、プロトン及
びボロンを領域11にイオン注入し、しかるのち低抵抗
値をもつエピタキシャル層13を形成し、以後前記第1
の実施例と同様にして、MEN−FETを形成し、しか
るのち同様に領域12にプロトン及びボロンをイオン注
入して高抵抗領域を形成し、第2の実施例は完成する。
Next, the present invention will be described in detail with reference to the drawings. 1st
The figure is a sectional view showing a method for manufacturing a compound semiconductor device according to a first embodiment of the present invention. In the same figure, semi-insulating (3aA
The entire active layer region 6.7 is formed on the s-substrate 1 by ion implantation of silicon (Si), and then the source region 2 is formed.
, 4 and a drain region 3.5 are formed, and a gate metal 8.9 is formed to complete the ME S-FET. At this time, the order of formation of the active regions 6, 7, the loose candy regions 2, 4, and the drain regions 3, 5 may be reversed. The high resistance region is completed by implanting protons and boron into the region 10 by ion implantation. FIG. 2 is a sectional view showing a method for manufacturing a compound semiconductor device according to a second embodiment of the present invention. In the figure, protons and boron are ion-implanted into a region 11 on a GaAs substrate 1, and then an epitaxial layer 13 having a low resistance value is formed.
A MEN-FET is formed in the same manner as in the second embodiment, and then proton and boron ions are similarly implanted into the region 12 to form a high resistance region, thereby completing the second embodiment.

以上箱1.第2の実施例から明白なように、まずプロト
ンイオン注入により形成し、更に同一領域にボロンを注
入するいわゆるダブルイオン注入方式を採用する。また
、プロトンとボロンとの順序は逆となってもよい。
Above box 1. As is clear from the second embodiment, a so-called double ion implantation method is adopted in which the proton ion implantation is performed first, and then boron is implanted into the same region. Furthermore, the order of protons and boron may be reversed.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明は、プロトンとボロンとの
ダブルイオン注入により、プロトンのみの場合に比較し
て、イオン注入領域ははソ完全に非晶質化され、低温で
の焼鈍化はほとんど進行せず、イオン注入領域は、はソ
高抵抗のま\保持され、従って、IC製造の後工程での
熱効果、例えはアロイ工程もしくは組立工程での400
″C前後の熱処理によっても高抵抗層は保持され、高密
度・高集積GaA s I Cのアイソレーション化は
はゾ完全に達成されるという効果がある。
As explained above, in the present invention, by double ion implantation of protons and boron, the ion implanted region becomes completely amorphous compared to the case of only protons, and annealing at low temperature is almost impossible. The ion implantation region remains highly resistive and therefore suffers from thermal effects during later stages of IC manufacturing, such as during alloying or assembly processes.
The high-resistance layer is maintained even by heat treatment before and after "C", and the effect is that isolation of the high-density, highly integrated GaAs IC is completely achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例の化合物半導体装置の製
法を示す断面図、第2図は本発明の第2の実施例の化合
物半導体装置の製法を示す断面図、第3図は従来の半導
体装置を示す断面図である。 1−GaAs基板、2 、4−・・ソース領域、3,5
・・・ドレイン領域、6.7・・・活性層領域、8,9
・・・ゲート金属、10,11.12・・・高抵抗イオ
ン注入領域、13・・・エピタキシャル層。
FIG. 1 is a cross-sectional view showing a method for manufacturing a compound semiconductor device according to a first embodiment of the present invention, FIG. 2 is a cross-sectional view showing a method for manufacturing a compound semiconductor device according to a second example of the present invention, and FIG. FIG. 2 is a cross-sectional view showing a conventional semiconductor device. 1-GaAs substrate, 2, 4--source region, 3, 5
...Drain region, 6.7...Active layer region, 8,9
. . . Gate metal, 10, 11. 12 . . . High resistance ion implantation region, 13 . . Epitaxial layer.

Claims (1)

【特許請求の範囲】[Claims] ガリウム砒素のMES・FETを基本素子とした化合物
半導体装置の製法において、各素子間を隔てるように、
プロトン及びボロンを同一領域にイオン注入する工程を
有することを特徴とする化合物半導体装置の製法。
In the manufacturing method of a compound semiconductor device using gallium arsenide MES/FET as the basic element, in order to separate each element,
1. A method for manufacturing a compound semiconductor device, comprising a step of ion-implanting protons and boron into the same region.
JP14658187A 1987-06-11 1987-06-11 Manufacture of compound semiconductor device Pending JPS63308934A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14658187A JPS63308934A (en) 1987-06-11 1987-06-11 Manufacture of compound semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14658187A JPS63308934A (en) 1987-06-11 1987-06-11 Manufacture of compound semiconductor device

Publications (1)

Publication Number Publication Date
JPS63308934A true JPS63308934A (en) 1988-12-16

Family

ID=15410936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14658187A Pending JPS63308934A (en) 1987-06-11 1987-06-11 Manufacture of compound semiconductor device

Country Status (1)

Country Link
JP (1) JPS63308934A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5166768A (en) * 1989-12-25 1992-11-24 Mitsubishi Denki Kabushiki Kaisha Compound semiconductor integrated circuit device with an element isolating region
KR100338936B1 (en) * 1999-11-09 2002-05-31 박종섭 Method for forming isolation region of semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5166768A (en) * 1989-12-25 1992-11-24 Mitsubishi Denki Kabushiki Kaisha Compound semiconductor integrated circuit device with an element isolating region
KR100338936B1 (en) * 1999-11-09 2002-05-31 박종섭 Method for forming isolation region of semiconductor device

Similar Documents

Publication Publication Date Title
CA1125924A (en) Nonalloyed ohmic contacts to n-type group iii(a)-v(a) semiconductors
US4753895A (en) Method of forming low leakage CMOS device on insulating substrate
US7187045B2 (en) Junction field effect metal oxide compound semiconductor integrated transistor devices
JPS62286283A (en) Semiconductor device
US4816893A (en) Low leakage CMOS/insulator substrate devices and method of forming the same
US4383869A (en) Method for enhancing electron mobility in GaAs
JPS61256675A (en) Manufacture of schottky gate field effect transistor
JPS61248470A (en) Iii-v group semiconductor device and manufacture thereof
JPS63308934A (en) Manufacture of compound semiconductor device
EP0056904B1 (en) High electron mobility single heterojunction semiconductor devices and methods of production of such devices
JPS5851575A (en) Manufacture of semiconductor device
JPS6317227B2 (en)
JPS5918679A (en) Semiconductor device
JPS60253217A (en) Manufacture of semiconductor device
JPH028458B2 (en)
JPH0226781B2 (en)
JP2716134B2 (en) Semiconductor transistor
KR940011738B1 (en) High temperature ohmic contact process of compound semiconductor device
CA1315018C (en) P-type buffer layers for integrated circuits
JPH0533527B2 (en)
JPS596054B2 (en) Method for manufacturing semiconductor devices
JP3210533B2 (en) Method for manufacturing field effect transistor
JPH01286308A (en) Manufacture of gallium arsenide field effect transistor
JPS63293912A (en) Manufacture of semiconductor device
JPS58148462A (en) Manufacture of compound semiconductor memory element