JPH01286308A - Manufacture of gallium arsenide field effect transistor - Google Patents

Manufacture of gallium arsenide field effect transistor

Info

Publication number
JPH01286308A
JPH01286308A JP11612388A JP11612388A JPH01286308A JP H01286308 A JPH01286308 A JP H01286308A JP 11612388 A JP11612388 A JP 11612388A JP 11612388 A JP11612388 A JP 11612388A JP H01286308 A JPH01286308 A JP H01286308A
Authority
JP
Japan
Prior art keywords
implantation
ions
carrier concentration
active area
field effect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11612388A
Other languages
Japanese (ja)
Inventor
Yuuji Tanaka
優次 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP11612388A priority Critical patent/JPH01286308A/en
Publication of JPH01286308A publication Critical patent/JPH01286308A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a carrier concentration profile optimum as an n-type active area by implanting ions of V group element with implantation energy higher than that for Si<+> ions into an area intended for an active area before or after Si<+> ion implantation and then annealing them. CONSTITUTION:An n-type active area 3 is formed by annealing ions of group V elements P and Sn after implanting them with implantation energy higher than that for Si<+> ions into the area intend for an active area 3 before or after Si<+> ion implantation. Hereby, carrier concentration at a place deeper than the peak of element concentration of Si<+> implantation can be sharply increased and further the tail part of carrier concentration can be made not to change much as when there is no implantation of the group V elements P and Sn, therefore practically high carrier concentration as an FET conductive layer can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、GaAs半絶縁性基板に形成した、GaAs
電界効果トランジスタ(FET)、特にショットキゲー
トを有するMESFETに関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a GaAs semi-insulating substrate formed on a GaAs semi-insulating substrate.
The present invention relates to field effect transistors (FETs), particularly MESFETs with Schottky gates.

〔従来の技術〕[Conventional technology]

従来、この種のMES  FETは、Si+イオンを注
、大した後で、絶縁膜を保護膜左して被着し、 800
℃以上の高温で7ニールして、注入されたSi+イオン
を電気的に活性化しn型導電層とし、能動領域とするこ
とが一般的であった。
Conventionally, this type of MES FET was made by injecting Si+ ions and enlarging them, and then depositing an insulating film as a protective film.
It was common to perform annealing at a high temperature of 7° C. or higher to electrically activate the implanted Si+ ions to form an n-type conductive layer and form an active region.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

Si+イオン注入による能動領域の形成では、Si元素
がGaAsに対して両性の不純物であるため、Asの格
子位置に置換するとp形不純物として機能し、逆にGa
格子位置に置換した場合はn形不純物として機能する。
In forming the active region by Si + ion implantation, the Si element is an amphoteric impurity with respect to GaAs, so when substituted in the lattice position of As, it functions as a p-type impurity, and conversely, it acts as a p-type impurity with respect to GaAs.
When substituted at a lattice position, it functions as an n-type impurity.

ところで、高温のアニール時にはAsの蒸発が生じ、A
s空孔を生じるため、正孔キャリアが増加し実効的な電
子キャリア濃度の大幅な減少が見られる。このため、必
要な電子濃度を得るためには、注入ドーズ量を増加させ
る必要があり、この結果、能動領域の移動度の減少を伴
い、素子の特性に悪影響を及ぼしていた。また、注入さ
れたSIは注入エネルギーとドーズ量で決定されるガウ
ス分布を示しキャリア濃度プロファイルの選定に自由度
が狭いこととあいまって、FETの導電層として実効的
に高いキャリア密度が得られなかった。
By the way, during high-temperature annealing, As evaporates and A
Due to the generation of s-vacancies, the number of hole carriers increases and the effective electron carrier concentration significantly decreases. Therefore, in order to obtain the required electron concentration, it is necessary to increase the implantation dose, which results in a decrease in the mobility of the active region, which adversely affects the characteristics of the device. In addition, the implanted SI exhibits a Gaussian distribution determined by the implantation energy and dose, and combined with the narrow degree of freedom in selecting the carrier concentration profile, it is difficult to obtain an effectively high carrier density as a conductive layer of an FET. Ta.

本発明の目的は、上記の欠点を除去し、GaA s F
ETのn形能動領域として最適のキャリア濃度プロファ
イルを得ることのできる製造方法を提供することにある
The aim of the present invention is to eliminate the above-mentioned drawbacks and to improve GaA s F
An object of the present invention is to provide a manufacturing method that can obtain an optimal carrier concentration profile for an n-type active region of an ET.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、GaAsFETのn形能動領域の形成にあた
り、GaAs半絶縁性基板にSt”イオン注入前、もし
くは後に、V族元素のイオンを、少なくとも前記の能動
領域として予定する領域に、Si+イオン注入エネルギ
ーより高い注入エネルギーで注入しておいてから、アニ
ールするようにしている。
In forming an n-type active region of a GaAsFET, the present invention implants Group V element ions into at least the region intended as the active region before or after implanting St'' ions into a GaAs semi-insulating substrate. After the implantation is performed with a higher implantation energy than the implantation energy, annealing is performed.

〔作用〕[Effect]

V族元素を7ニール前に注入することによって、As空
孔を減少させることができるので、相対的にSi+イオ
ン注入によるStのGa格子位行に置換する割合が大き
くなる。また、V族元素の注入エネルギーをSi+イオ
ン注入エネルギーより高くすることで、実施例に示すよ
うに、Si+イオン単独注入のキャリア濃度プロファイ
ルでピークを超えたところでも、キャリア濃度が増加す
る。
By implanting the V group element before 7 anneals, As vacancies can be reduced, so that the ratio of substitution of St to Ga lattice rows by Si + ion implantation becomes relatively large. Furthermore, by making the implantation energy of the V group element higher than the Si+ ion implantation energy, the carrier concentration increases even when the carrier concentration profile of Si+ ion single implantation exceeds the peak, as shown in the example.

〔実施例〕〔Example〕

以下、本発明の一実施例を図面を参照して説明する。第
1図は実施例の縦断面図である。
Hereinafter, one embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a longitudinal sectional view of the embodiment.

半絶縁性基板lにホトレジスト2を用いて開口を行ない
、3+p+を 140keV、 1.5X 1013c
m−2テ注入シた後、引続いて28Si+を?0keV
、 5 X1012cm−2で注入し多重注入層3を得
る。この後、ホトレジスト2を除去し、500℃以下で
熱CV D (1) S i O2膜4を2000A被
着し、 800”C,H2中で20分間アニールを施し
、電気的に活性化されたn形能動領域5を得た後、ショ
ットキゲートとして、AMゲート電極6を形成し、A 
u G e / N iオーミック電極7を形成する。
Openings are made in the semi-insulating substrate l using photoresist 2, and 3+p+ is set at 140 keV and 1.5X 1013c.
After m-2 injection, 28Si+ was subsequently added? 0keV
, 5×10 12 cm −2 to obtain a multiple implant layer 3. Thereafter, the photoresist 2 was removed, and a SiO2 film 4 was deposited at 2000A by thermal CVD at 500°C or below, and annealed at 800"C for 20 minutes in H2 to electrically activate it. After obtaining the n-type active region 5, an AM gate electrode 6 is formed as a Schottky gate.
A uGe/Ni ohmic electrode 7 is formed.

第2図に、イオン注入濃度およびキャリア濃度を表面か
らの深さに対して表示しである。
FIG. 2 shows the ion implantation concentration and carrier concentration relative to the depth from the surface.

注入されたイオンのプロファイルはLSS理論に従かう
分布になり、31P+のピーク値は2aSi+のピーク
値より深い所で生じている。
The profile of the implanted ions is a distribution according to the LSS theory, and the peak value of 31P+ occurs deeper than the peak value of 2aSi+.

アニール後のキャリア濃度プロファイルは283i+だ
けの注入のときと比べ、283 i+のピークを超えた
後でキャリアの増加を示し、キャリアのピーク濃度を過
ぎた後に283i+注入のみのキャリアプロファイルに
近づくことがわかる。
It can be seen that the carrier concentration profile after annealing shows an increase in carriers after exceeding the peak of 283i+ compared to when only 283i+ is implanted, and approaches the carrier profile of only 283i+ implantation after passing the peak carrier concentration. .

前記実施例では31p+を注入したが、7SAS+を同
様に用いることができる。この場合はAsの原子量が7
5と大きいため、第2図と同じキャリアプロファイルを
得るためにはAs+イオン注入のエネルギーを大幅に増
す必要がある。ただしAs+十のダブルチャージを用い
ればP十注入のときと同じエネルギーで、同様なキャリ
アプロファイルが得られる。
Although 31p+ was implanted in the above example, 7SAS+ could be used as well. In this case, the atomic weight of As is 7
5, so in order to obtain the same carrier profile as in FIG. 2, it is necessary to significantly increase the energy of As+ ion implantation. However, if a double charge of As+10 is used, a similar carrier profile can be obtained with the same energy as when P10 is implanted.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、G aA s FETの
能動領域を形成する不純物元素のS1+イオンの注入と
、これより深い注入イオン濃度のピーク深さを持つV族
元素を注入することにより、Si十注入の元素濃度のピ
ークより深い所のキャリア濃度を大幅に増加させ、さら
にキャリア濃度プロファイルの足部はV族元素の注入の
ないときとあまり変化しないようにすることができる。
As explained above, the present invention improves Si by implanting S1+ ions, which are impurity elements that form the active region of a GaAs FET, and implanting group V elements having a deeper peak depth of implanted ion concentration. It is possible to significantly increase the carrier concentration in a region deeper than the peak of the element concentration by implantation, and furthermore, the foot of the carrier concentration profile can be made not to change much from when no group V element is implanted.

これによって、FET特性の性能の目安であるトランス
コンダクタンスを大幅に改善できる効果がある。
This has the effect of significantly improving transconductance, which is a measure of the performance of FET characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の縦断面図、第2図は能動領
′域の深さ方向の注入イオンプロファイルおよびキャリ
ア濃度プロファイルである。 1・・・半絶縁性基板、 2・・・ホトレジスト、 3・・・イオン注入領域、 5・・・n形能動領域、 6・・・A文ゲート電極、 7・・・A u G e / N i  オーミック電
極。 特許出願人  日本電気株式会社 代理人 弁理士   内   原    晋第1図
FIG. 1 is a longitudinal sectional view of an embodiment of the present invention, and FIG. 2 is an implanted ion profile and a carrier concentration profile in the depth direction of the active region. DESCRIPTION OF SYMBOLS 1... Semi-insulating substrate, 2... Photoresist, 3... Ion implantation region, 5... N-type active region, 6... A gate electrode, 7... A u G e / N i Ohmic electrode. Patent applicant: NEC Corporation Representative: Susumu Uchihara, patent attorney Figure 1

Claims (1)

【特許請求の範囲】[Claims]  GaAs半絶縁性基板に、Si^+イオンを注入して
、形成されたn形能動領域を有する電界効果トランジス
タにおいて、Si^+イオン注入前、もしくは後に、V
族元素のイオンを、少なくとも前記の能動領域として予
定する領域に、Si+イオン注入エネルギーより高い注
入エネルギーで注入しておいてから、アニールすること
によりn形能動領域を形成することを特徴とするGaA
s電界効果トランジスタの製造方法。
In a field effect transistor having an n-type active region formed by implanting Si^+ ions into a GaAs semi-insulating substrate, V
GaA, characterized in that an n-type active region is formed by implanting group element ions into at least the region intended as the active region at an implantation energy higher than Si+ ion implantation energy, and then annealing.
A method for manufacturing a field effect transistor.
JP11612388A 1988-05-12 1988-05-12 Manufacture of gallium arsenide field effect transistor Pending JPH01286308A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11612388A JPH01286308A (en) 1988-05-12 1988-05-12 Manufacture of gallium arsenide field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11612388A JPH01286308A (en) 1988-05-12 1988-05-12 Manufacture of gallium arsenide field effect transistor

Publications (1)

Publication Number Publication Date
JPH01286308A true JPH01286308A (en) 1989-11-17

Family

ID=14679267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11612388A Pending JPH01286308A (en) 1988-05-12 1988-05-12 Manufacture of gallium arsenide field effect transistor

Country Status (1)

Country Link
JP (1) JPH01286308A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0376113A (en) * 1989-08-18 1991-04-02 Nippon Telegr & Teleph Corp <Ntt> Compound semiconductor integrated circuit and manufacture thereof
JP2015179850A (en) * 2011-09-08 2015-10-08 株式会社タムラ製作所 β-GALLIUM OXIDE BASED MONOCRYSTAL AND β-GALLIUM OXIDE BASED MONOCRYSTAL BODY

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6247121A (en) * 1985-08-26 1987-02-28 Toshiba Corp Manufacture of semiconductor device
JPS62243323A (en) * 1986-04-15 1987-10-23 Matsushita Electric Ind Co Ltd Formation of active layer of iii-v compound semiconductor
JPH01225316A (en) * 1988-03-04 1989-09-08 Toshiba Corp Manufacture of compound semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6247121A (en) * 1985-08-26 1987-02-28 Toshiba Corp Manufacture of semiconductor device
JPS62243323A (en) * 1986-04-15 1987-10-23 Matsushita Electric Ind Co Ltd Formation of active layer of iii-v compound semiconductor
JPH01225316A (en) * 1988-03-04 1989-09-08 Toshiba Corp Manufacture of compound semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0376113A (en) * 1989-08-18 1991-04-02 Nippon Telegr & Teleph Corp <Ntt> Compound semiconductor integrated circuit and manufacture thereof
JP2015179850A (en) * 2011-09-08 2015-10-08 株式会社タムラ製作所 β-GALLIUM OXIDE BASED MONOCRYSTAL AND β-GALLIUM OXIDE BASED MONOCRYSTAL BODY

Similar Documents

Publication Publication Date Title
EP0206274A1 (en) High transconductance complementary IC structure
US4662058A (en) Self-aligned gate process for ICS based on modulation doped (Al,Ga) As/GaAs FETs
JPH0260063B2 (en)
JPH0259624B2 (en)
JPH0324782B2 (en)
JPH01175265A (en) Field-effect transistor and its manufacture
JPH07111976B2 (en) Method for manufacturing semiconductor device
JPH01286308A (en) Manufacture of gallium arsenide field effect transistor
JP2611342B2 (en) Method for manufacturing semiconductor device
US5413947A (en) Method for manufacturing a semiconductor device with an epitaxial void
JP2503594B2 (en) Semiconductor integrated device and manufacturing method thereof
JPH0226781B2 (en)
JP3018885B2 (en) Method for manufacturing semiconductor device
JP3014437B2 (en) Method for manufacturing semiconductor device
JPH0349242A (en) Field effect transistor and its manufacture
JPH03280552A (en) Manufacture of field effect transistor
JP3024172B2 (en) Semiconductor device and manufacturing method thereof
JP2713122B2 (en) Method for manufacturing semiconductor device
JPH0373542A (en) Manufacture of ga-as field effect transistor
JP2867422B2 (en) Field effect transistor and method for manufacturing the same
JPS61123175A (en) Manufacture of hetero-junction bipolar transistor
JPS63226967A (en) Compound semiconductor junction type field-effect transistor and its manufacture
JPS6223175A (en) Manufacture of semiconductor device
JPS60263476A (en) Manufacture of semiconductor device
JPH0216008B2 (en)