JPS6223175A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS6223175A
JPS6223175A JP16238485A JP16238485A JPS6223175A JP S6223175 A JPS6223175 A JP S6223175A JP 16238485 A JP16238485 A JP 16238485A JP 16238485 A JP16238485 A JP 16238485A JP S6223175 A JPS6223175 A JP S6223175A
Authority
JP
Japan
Prior art keywords
ions
ion implantation
semiconductor substrate
manufacturing
formation region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16238485A
Other languages
Japanese (ja)
Inventor
Kaoru Inoue
薫 井上
Katsunori Nishii
勝則 西井
Toshiharu Tanpo
反保 敏治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP16238485A priority Critical patent/JPS6223175A/en
Publication of JPS6223175A publication Critical patent/JPS6223175A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To eliminate the lowering of yield on manufacture of a MESFET due to the defective controllability of the thickness of a channel layer by providing a process, in which the ions of an N-type impurity for forming a channel for the MESFET are implanted, and a process in which the ion-implanted impurity is diffused through heat treatment. CONSTITUTION:The ions of sulfur (S<+>) are implanted into a semi-insulating GaAs substrate 1, a recessed section is shaped through etching, and the ions of arsenic are implanted to form N<+> type GaAs layers 7 and an N-type GaAs layer 8. The N<+> type GaAs layers 7 function as source-drain regions in a MESFET and the N-type GaAs layer 8 serves as a channel layer. Source-drain electrodes 9 are formed, the whole is sintered, and a gate electrode 10 is shaped, thus manufacturing the MESFET. The N<+> type GaAs layers as the source-drain regions are formed thickly by diffusing S, thus lowering source resistance, then improving the characteristics of the FET.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は化合物半導体を用いたショットキー障壁ゲート
型電界効果トランジスタの製造方法に関するものである
0 従来の技術 GaAs(ヒ化ガリウム)を中心とした化合物半導体の
ショットキー障壁ゲート型電界効果トランジスタ(ME
SFET)を製造する方法の一つとして、半絶縁性G 
a A s基板にバッファ一層のGaAs、n形G a
 A sおよびn+形G a A tsを順にエピタキ
シャル成長した基板を用いる方法がある。第3図に従っ
て従来のエピタキシャル基板を用いたリセス構造のME
SFET製造方法を説明する。第3図(a)において3
1は半絶縁性G a A s基板、32はノンドープの
G a A sバッファ一層、33は電界効果トランジ
スタのチャンネルとなるn形G a A s層、34は
、コンタクト抵抗を小さくしソース抵抗を小さくするた
めのn+形GaAs層であり、半絶縁性G a A s
基板31に32〜34の各層がエピタキシャル成長され
ていることを断面図で示したものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for manufacturing a Schottky barrier gate field effect transistor using a compound semiconductor. Semiconductor Schottky barrier gate field effect transistor (ME)
As one of the methods of manufacturing SFET), semi-insulating G
a A s substrate with one layer of buffer GaAs, n-type Ga
There is a method using a substrate on which As and n+ type Ga Ats are sequentially epitaxially grown. ME of recess structure using conventional epitaxial substrate according to Fig. 3
The SFET manufacturing method will be explained. In Figure 3(a), 3
1 is a semi-insulating GaAs substrate, 32 is a non-doped GaAs buffer layer, 33 is an n-type GaAs layer which becomes a channel of a field effect transistor, and 34 is a material for reducing contact resistance and source resistance. It is an n+ type GaAs layer to reduce the size, and is a semi-insulating GaAs layer.
This is a cross-sectional view showing that layers 32 to 34 are epitaxially grown on a substrate 31.

この基板を用いて、第3図(b)に示されるように、ゲ
ート形成領域36のn+形G a A s層がまず選択
的に除去される。(リセス構造という)しかる後A u
 G e /”N i /A u  でなるソース・ド
レーン電極36が形成され、最後に例えば、T i /
P t /A uでなるゲート電極37が形成されつづ
いて、メサエッチングによる素子分離が行なわれ、ME
SFETが製作される。以上簡単に従来例の製造方法に
ついて述べたが、この方法で問題となるものに、第3図
(b)で示したチャンネル層の厚さtの制御性が挙げら
れる。これはMESFETのしきい値電圧や、ドレイン
電流を決定する最も重要なパラメータの一つであるが、
エツチングによりゲート形成領域36のn+形G a 
A s層34を基板面内全面にわたって均一に除去する
ことが難しいばかりでなく、深さ方向に所望の厚さtに
n形G a A s層33を薄くすることに非常な制御
性が要求されるため、良い歩留シは望めない。
Using this substrate, the n+ type GaAs layer in the gate formation region 36 is first selectively removed, as shown in FIG. 3(b). (referred to as recessed structure) After that A u
Source/drain electrodes 36 made of G e /"N i /A u are formed, and finally, for example, T i /
After the gate electrode 37 made of P t /A u is formed, element isolation is performed by mesa etching, and the ME
SFET is manufactured. Although the conventional manufacturing method has been briefly described above, one problem with this method is the controllability of the thickness t of the channel layer shown in FIG. 3(b). This is one of the most important parameters that determines the threshold voltage and drain current of MESFET,
The n+ type Ga of the gate formation region 36 is removed by etching.
Not only is it difficult to uniformly remove the As layer 34 over the entire surface of the substrate, but it also requires great controllability in thinning the n-type Ga As layer 33 to a desired thickness t in the depth direction. Therefore, a good yield cannot be expected.

発明が解決しようとする問題点 本発明は、以上に述べた従来例におけるチャンネル層の
厚さtの制御性の悪さによるMESFETの製造歩留り
の低さを解決しようとするものである。
Problems to be Solved by the Invention The present invention attempts to solve the problem of the low production yield of MESFETs due to the poor controllability of the thickness t of the channel layer in the conventional example described above.

問題点を解決するだめの手段 本発明は、従来例と等価な構造を歩留りよく実現するた
めに、イオン注入法によってn+形GaAg層およびn
形G a A s層を直接半絶縁性G a A s基板
に形成するものであり、MESFET形成領域に高濃度
のn形不純物をイオン注入する工程と、ゲート電極形成
領域のG a A s基板表面層を所定の深さまでエツ
チング除去する工程と、MESFETのチャンネル形成
のだめのn形不純物をイオン注入する工程と熱処理を行
なってイオン注入された不純物を拡散する工程を基本と
している。
Means for Solving the Problems In order to realize a structure equivalent to that of the conventional example with a high yield, the present invention has developed an n+ type GaAg layer and an n
This method forms a GaAs type GaAs layer directly on a semi-insulating GaAs substrate, and involves a step of ion-implanting a high concentration of n-type impurity into the MESFET formation region, and a step of ion-implanting the GaAs substrate in the gate electrode formation region. The basic steps are a step of etching the surface layer to a predetermined depth, a step of ion-implanting n-type impurities for forming a MESFET channel, and a step of performing heat treatment to diffuse the ion-implanted impurities.

作  用 本発明によれば、MESFETのチャンネル層の厚さを
イオン注入条件により制御でき、エツチングによる制御
は本質的には含まれないため、MESFETの製造歩留
りを従来に比べて飛躍的に向上させることが可能となる
。また、高濃度にイオン注入された領域の不純物が拡散
することにより、ソース領域のn+形GaAs層の厚み
が増大するので、ソース抵抗の低減によるMESFET
の特性向上が望める。
According to the present invention, the thickness of the MESFET channel layer can be controlled by ion implantation conditions, and control by etching is essentially not included, so the manufacturing yield of MESFETs can be dramatically improved compared to the conventional method. becomes possible. In addition, the thickness of the n+ type GaAs layer in the source region increases due to the diffusion of impurities in the region into which ions have been implanted at a high concentration.
It is expected to improve the characteristics of

実施例 本発明の第1の実施例を第1図により説明する。Example A first embodiment of the present invention will be described with reference to FIG.

第1図(−)において1は半絶縁性G a A s基板
であり、基板断面を示しているoまた図に示されている
のは、MESFET形成領域のみである。まず、MES
FET形成領域全面に高濃度の不純物をイオン注入法に
より導入する0イオン注入のイオンビーム2としては、
硫黄イオン(S+)を用い、120〜170KeVの加
速エネルギーで1×10147一〜1×10 A肩の注
入量でイオン注入を行なう。
In FIG. 1 (-), reference numeral 1 indicates a semi-insulating GaAs substrate, and the cross section of the substrate is shown. Also, only the MESFET formation region is shown in the figure. First, MES
The ion beam 2 for zero ion implantation, which introduces high-concentration impurities into the entire FET formation region by ion implantation, is as follows:
Ion implantation is performed using sulfur ions (S+) at an acceleration energy of 120 to 170 KeV and an implantation amount of 1 x 10147 to 1 x 10 A.

3は、S+イオンの注入された領域を示す。次に第1図
(b)に示すように、ゲート電極形成領域4のG a 
A s基板表面層を3000人〜5ooo人の深さにエ
ツチングを行なって凹部を形成し、さらに、MESFE
T形成領域全面にFETのチャンネル形成のだめのイオ
ン注入を行なう。イオンビーム6は、硅素イオン(si
+)を用い、加速エネルギーが40〜90Kevで、注
入量を4〜6×101シ漏とした・図において6はSi
+の注入された領域を示す。しかる後砒素(八8)雰囲
気中で850℃。
3 indicates a region where S+ ions are implanted. Next, as shown in FIG. 1(b), Ga of the gate electrode formation region 4 is
The surface layer of the As substrate is etched to a depth of 3,000 to 500 mm to form recesses, and then MESFE is etched.
Ions are implanted into the entire surface of the T formation region to form a channel of the FET. The ion beam 6 contains silicon ions (si
+), the acceleration energy was 40 to 90 Kev, and the injection amount was 4 to 6 x 101 Si. In the figure, 6 is Si
Indicates + implanted area. After that, it was heated to 850°C in an arsenic (88) atmosphere.

20分間のアニールを行なうと、イオン注入されたSお
よびsiが電気的に活性化し、n+形GaAs層7とn
形G a A s層8が形成される。n+形GaAs層
7はMESFETのソース・ドレーン領域、n形G a
 A s層8はチャンネル層となる。ソース・ドレーン
領域の形成にSイオンを用いているのでアニール時のS
の拡散によってn+形G a A s層の厚さは1μm
程度にまで厚くなっている(第1図(C))。
When annealing is performed for 20 minutes, the ion-implanted S and Si become electrically activated, and the n+ type GaAs layer 7 and n
A G a As layer 8 is formed. The n+ type GaAs layer 7 is the source/drain region of the MESFET, and the n type GaAs layer 7 is the source/drain region of the MESFET.
The As layer 8 becomes a channel layer. Since S ions are used to form the source/drain regions, S ions are used during annealing.
The thickness of the n+ type GaAs layer is 1 μm due to the diffusion of
(Fig. 1 (C)).

これより後は、従来と同様に、AuGe/N i /A
 uよりなるソース・ドレーン電極9を形成し、シンタ
ーを行なったあと、Ti/Pt/Auよりなるゲート電
極10を形成してMESFETが製作される。以上の工
程によシ、従来例と等価な構造のMESFETが形成さ
れるが、ソース・ドレーン領域のn+形G a A s
層はSが拡散することにより従来よりもむしろ厚く形成
されるので、ソース抵抗の低減がはかられ、FETの特
性が向上する。
After this, AuGe/N i /A
After forming source/drain electrodes 9 made of u and sintering, a gate electrode 10 made of Ti/Pt/Au is formed to produce a MESFET. Through the above steps, a MESFET with a structure equivalent to that of the conventional example is formed, but the n+ type GaAs in the source and drain regions is
Since the layer is formed thicker than before due to the diffusion of S, the source resistance is reduced and the characteristics of the FET are improved.

本実施例のソース・ドレーン領域形成のために用いたS
は、拡散の効果や、固溶度の関係で、基板表面近傍のキ
ャリア(電子)濃度がStを用いる場合よシも低くなる
のでFETの特性をさらに向上させるた吟には、ソース
Φドレーン領域をSだけでなくSとStの二重イオン注
入とする方が良好な結果が得られる。
S used for forming source/drain regions in this example
Due to diffusion effects and solid solubility, the carrier (electron) concentration near the substrate surface is lower than when using St. Therefore, in order to further improve the characteristics of the FET, it is necessary to Better results can be obtained by double ion implantation of S and St instead of only S.

本発明の第2の実施例を第2図により説明する。A second embodiment of the present invention will be explained with reference to FIG.

この実施例は、特に、ゲート長の短縮、ソース・ドレー
ン領域間の距離の短縮、およびゲート電極の抵抗(Rq
)の低減を図ったもので、よりMESFETの高周波特
性を改善しようとするものである。
This embodiment particularly reduces the gate length, the distance between the source and drain regions, and the gate electrode resistance (Rq
), and aims to further improve the high frequency characteristics of the MESFET.

第2図(、)は第1図0と同じであり、MESFET形
成領域に高濃度のSあるいはSとSi とがイオン注入
される工程を示している。次に第2図価)に示すように
、基板表面全面に、第1の絶縁膜(例えば膜厚3ooO
八〜6000人の5102膜)を形成し、通常のホトエ
ツチングにより、ゲート電極形成領域4のS 102膜
11とG a A s層を所定の深さまで順次エツチン
グ除去し、凹部を形成する。
FIG. 2 (,) is the same as FIG. 1, and shows a step in which ions of high concentration S or S and Si are ion-implanted into the MESFET formation region. Next, as shown in the second figure, a first insulating film (for example, a film thickness of 300 mm) is applied over the entire surface of the substrate.
The S102 film 11 and the GaAs layer in the gate electrode forming region 4 are sequentially etched away to a predetermined depth by normal photoetching to form a recess.

しかる後、FETのチャンネル形成のためのStイオン
注入を行なう(第2図(C))。つづいて、第2の絶縁
膜12(例えばSi3N4膜)を約30oO人全面に堆
積しく第2図(d))、CF4のリアクティブイオンエ
ツチングにより第2の絶縁膜12を基板表面に対して垂
直方向にエツチングを行なうと、凹部の側壁のみに第2
の絶縁膜を残すことができる(第2図(e))。
Thereafter, St ion implantation is performed to form a channel of the FET (FIG. 2(C)). Subsequently, a second insulating film 12 (for example, a Si3N4 film) is deposited on the entire surface of the substrate at a thickness of about 30 μm (Fig. 2(d)), and the second insulating film 12 is etched perpendicularly to the substrate surface by reactive ion etching of CF4. When etching is performed in the direction, the second layer is etched only on the side wall of the recess.
The insulating film can be left behind (FIG. 2(e)).

しかる後、ソース・ドレーン電極9、ゲート電極10を
形成してFETが作製される。このような工程を用いる
と、第2図(b)に示した凹部の幅りが1μmの時、第
2図(e)でノL′は約0.5μmとなり、FETのゲ
ート長を短縮できる。さらに、ゲート電極を形成する際
に、凹部周囲が第1の絶縁膜11と第2の絶縁膜12と
によってn+形G a A s層7と絶縁されているの
で、ゲート電極1Qを凹部全体を覆って形成でき、ゲー
ト電極の抵抗を低くできる。実際にゲート電極10は、
第2図(、)の状態より、基板全面にT i /P t
 /A uを蒸着した後、ゲート電極の抜きパターンを
ホトレジストで形成し、Auをメッキした後、Ti/P
t/Auを選択的に除去して作製した。その結果、ゲー
ト電極の金属膜厚を2μmと大きくでき、ゲート抵抗の
低減が図られた。
Thereafter, source/drain electrodes 9 and gate electrodes 10 are formed to produce an FET. If such a process is used, when the width of the recess shown in FIG. 2(b) is 1 μm, the width L′ in FIG. 2(e) will be approximately 0.5 μm, and the gate length of the FET can be shortened. . Furthermore, when forming the gate electrode, since the area around the recess is insulated from the n+ type GaAs layer 7 by the first insulating film 11 and the second insulating film 12, the gate electrode 1Q is formed around the entire recess. It can be formed covering the gate electrode, and the resistance of the gate electrode can be lowered. Actually, the gate electrode 10 is
From the state shown in Figure 2 (,), T i /P t is applied to the entire surface of the substrate.
/A After depositing u, a cut-out pattern for the gate electrode is formed using photoresist, and after plating with Au, Ti/P
It was produced by selectively removing t/Au. As a result, the metal film thickness of the gate electrode could be increased to 2 μm, and the gate resistance could be reduced.

発明の効果 本発明によれば、リセス構造のFETのチャンネル層の
厚さをイオン注入条件により制御でき、エツチングによ
る制御を本質的に含んでいないので、リセス構造のME
SFETの製造歩留シを大幅に改善でき、その効果は大
きい。
Effects of the Invention According to the present invention, the thickness of the channel layer of a recessed FET can be controlled by ion implantation conditions, and does not essentially include control by etching.
The manufacturing yield of SFET can be greatly improved, and the effect is significant.

また、ソース・ドレーン領域のn+形G a A s層
の厚さは、アニールによる硫黄の拡散を利用することに
よって厚くでき、ソース抵抗の低減がはかられ、FET
の高周波特性が改善できる。さらに、本発明の第2の発
明によればゲート長の短縮、ソース・ドレーン間隔の短
縮、ゲート抵抗の低減が図られ、本発明はFETの特性
向上と歩留り向上に大きく寄与するものである。
In addition, the thickness of the n+ type GaAs layer in the source/drain region can be increased by utilizing sulfur diffusion through annealing, reducing the source resistance and increasing the thickness of the FET.
The high frequency characteristics of can be improved. Further, according to the second aspect of the present invention, the gate length, the source-drain interval, and the gate resistance are reduced, and the present invention greatly contributes to improving the characteristics and yield of FETs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例を説明する工程図を素子
断面により示す図、第2図は本発明の第2の実施例を説
明する工程図を素子断面により示した図、第3図は従来
例を説明するための素子断面による工程図である。 1・・・・・・半絶縁性G a A s基板、2・・・
・・・8 イオンビーム、3・・・・・・B イオン注
入領域、4・・・・・・ゲート電極形成領域、6・・・
・・・31  イオンビーム、6・・・・・・Sビイオ
ン注入領域、7・・・・・・n+形G a A s層、
8・・・・・・n形G a A s層、9・・・・・・
ソース・ドレーン電極、1o・・・・・・ゲート電極、
11・・・・・・第1の絶縁膜、12・・・・・・第2
の絶縁膜。 ′−10111k? 111111 L F−’ 土 第2図 第2図
FIG. 1 is a diagram showing a process diagram for explaining the first embodiment of the present invention in terms of an element cross section, FIG. FIG. 3 is a process diagram showing a cross section of an element for explaining a conventional example. 1...Semi-insulating GaAs substrate, 2...
...8 ion beam, 3...B ion implantation region, 4...gate electrode formation region, 6...
...31 ion beam, 6...S biion implantation region, 7...n+ type GaAs layer,
8...N-type GaAs layer, 9...
Source/drain electrode, 1o...gate electrode,
11...first insulating film, 12...second
insulation film. '-10111k? 111111 L F-' Soil Figure 2 Figure 2

Claims (6)

【特許請求の範囲】[Claims] (1)半導体基板表面の電界効果トランジスタ形成領域
に高濃度の不純物イオン注入を行なう工程と、前記電界
効果トランジスタのゲート電極形成領域の前記半導体基
板の表面層を所定の深さにまでエッチング除去する工程
と、前記電界効果トランジスタ形成領域全面に低濃度の
不純物イオン注入を行なう工程と、熱処理を行なって前
記高濃度不純物イオン注入を行なった領域の不純物を拡
散せしめる工程を含むことを特徴とする半導体装置の製
造方法。
(1) A step of implanting high-concentration impurity ions into a field effect transistor formation region on the surface of a semiconductor substrate, and etching and removing a surface layer of the semiconductor substrate in a gate electrode formation region of the field effect transistor to a predetermined depth. a step of implanting impurity ions at a low concentration into the entire surface of the field effect transistor formation region; and a step of performing heat treatment to diffuse the impurity in the region where the high concentration impurity ion implantation has been performed. Method of manufacturing the device.
(2)半導体基板がIII−V化合物半導体よりなり、高
濃度の不純物イオン注入を硫黄イオンを用いて行なうこ
とを特徴とする特許請求の範囲第1項に記載の半導体装
置の製造方法。
(2) The method of manufacturing a semiconductor device according to claim 1, wherein the semiconductor substrate is made of a III-V compound semiconductor, and the impurity ion implantation at a high concentration is performed using sulfur ions.
(3)半導体基板がIII−V化合物半導体よりなり、高
濃度の不純物イオン注入を硫黄イオンと硅素イオンの二
重イオン注入により行なうことを特徴とする特許請求の
範囲第1項に記載の半導体装置の製造方法。
(3) The semiconductor device according to claim 1, wherein the semiconductor substrate is made of a III-V compound semiconductor, and the high concentration impurity ion implantation is performed by double ion implantation of sulfur ions and silicon ions. manufacturing method.
(4)半導体基板表面の電界効果トランジスタ形成領域
に高濃度の不純物イオン注入を行なう工程と、前記半導
体基板表面全面に第1の絶縁膜を形成する工程と、前記
電界効果トランジスタのゲート電極形成領域の前記第1
の絶縁膜および前記半導体基板の表面層を所定の深さま
でエッチング除去し凹部を形成する工程と、前記電界効
果トランジスタ形成領域全面に低濃度の不純物イオン注
入を行なう工程と、前記半導体基板表面全面に第2の絶
縁膜を形成した後熱処理を行なって前記高濃度不絶物イ
オン注入を行なった領域の不純物を拡散せしめる工程と
、前記凹部側壁のみに前記第2の絶縁膜を残せしめる工
程を含むことを特徴とする半導体装置の製造方法。
(4) A step of implanting high concentration impurity ions into a field effect transistor formation region on the surface of the semiconductor substrate, a step of forming a first insulating film over the entire surface of the semiconductor substrate, and a step of forming a gate electrode formation region of the field effect transistor. Said first
etching away the insulating film and the surface layer of the semiconductor substrate to a predetermined depth to form a recess; implanting low concentration impurity ions into the entire surface of the field effect transistor formation region; a step of performing heat treatment after forming the second insulating film to diffuse impurities in the region where the high-concentration impurity ion implantation has been performed; and a step of leaving the second insulating film only on the sidewalls of the recess. A method for manufacturing a semiconductor device, characterized in that:
(5)半導体基板がIII−V化合物半導体よりなり、高
濃度の不純物イオン注入を硫黄イオンを用いて行なうこ
とを特徴とする特許請求の範囲第4項に記載の半導体装
置の製造方法。
(5) The method of manufacturing a semiconductor device according to claim 4, wherein the semiconductor substrate is made of a III-V compound semiconductor, and the impurity ion implantation at a high concentration is performed using sulfur ions.
(6)半導体基板がIII−V化合物半導体よりなり、高
濃度の不純物イオン注入を硫黄イオンと硅素イオンの二
重イオン注入により行なうことを特徴とする特許請求の
範囲第4項に記載の半導体装置の製造方法。
(6) The semiconductor device according to claim 4, wherein the semiconductor substrate is made of a III-V compound semiconductor, and the high concentration impurity ion implantation is performed by double ion implantation of sulfur ions and silicon ions. manufacturing method.
JP16238485A 1985-07-23 1985-07-23 Manufacture of semiconductor device Pending JPS6223175A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16238485A JPS6223175A (en) 1985-07-23 1985-07-23 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16238485A JPS6223175A (en) 1985-07-23 1985-07-23 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS6223175A true JPS6223175A (en) 1987-01-31

Family

ID=15753554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16238485A Pending JPS6223175A (en) 1985-07-23 1985-07-23 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS6223175A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02105540A (en) * 1988-10-14 1990-04-18 Nec Corp Manufacture of semiconductor device
JP2012074549A (en) * 2010-09-29 2012-04-12 Toshiba Corp Method for manufacturing semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02105540A (en) * 1988-10-14 1990-04-18 Nec Corp Manufacture of semiconductor device
JP2012074549A (en) * 2010-09-29 2012-04-12 Toshiba Corp Method for manufacturing semiconductor device

Similar Documents

Publication Publication Date Title
JPS6336147B2 (en)
US4351099A (en) Method of making FET utilizing shadow masking and diffusion from a doped oxide
JPH06177159A (en) Field-effect transistor and manufacture thereof
JPH07118484B2 (en) Method for manufacturing Schottky gate field effect transistor
JPS6223175A (en) Manufacture of semiconductor device
JP3034546B2 (en) Method for manufacturing field effect transistor
JPH0212927A (en) Manufacture of mesfet
JPS6332273B2 (en)
JPS6034073A (en) Manufacture of schottky gate type field-effect transistor
JP2541230B2 (en) Method for manufacturing field effect transistor
JP3014437B2 (en) Method for manufacturing semiconductor device
KR0142782B1 (en) Manufacture of semiconductor
JP2682032B2 (en) Method for manufacturing semiconductor device
JP2707436B2 (en) Method for manufacturing field effect transistor
JPH03296225A (en) Manufacture of field-effect transistor
JPS63273362A (en) Manufacture of schottky barrier gate field-effect transistor
JPS62296566A (en) Field-effect transistor and manufacture thereof
JPS6356959A (en) Manufacture of field-effect transistor
JPH04122032A (en) Field effect transistor
JPS60136264A (en) Manufacture of semiconductor device
JPH0547797A (en) Fabrication of field effect transistor
JPH1064924A (en) Semiconductor device and production method thereof
JPS61265870A (en) Manufacture of field effect transistor
JPH04122033A (en) Manufacture of field effect transistor
JPH02177337A (en) Manufacture of schottky gate field effect transistor