JPH02177337A - Manufacture of schottky gate field effect transistor - Google Patents

Manufacture of schottky gate field effect transistor

Info

Publication number
JPH02177337A
JPH02177337A JP33456088A JP33456088A JPH02177337A JP H02177337 A JPH02177337 A JP H02177337A JP 33456088 A JP33456088 A JP 33456088A JP 33456088 A JP33456088 A JP 33456088A JP H02177337 A JPH02177337 A JP H02177337A
Authority
JP
Japan
Prior art keywords
schottky electrode
gate
drain
electrode
schottky
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33456088A
Other languages
Japanese (ja)
Inventor
Kazuhiko Ito
和彦 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP33456088A priority Critical patent/JPH02177337A/en
Publication of JPH02177337A publication Critical patent/JPH02177337A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To separate a gate electrode from a high-doped region at a drain side with improve dimensional controllability by depositing an insulating material on a semiconductor substrate where a Schottky electrode is formed aslant and by ion-implanting impurities which are of the same conduction type as the semiconductor layer. CONSTITUTION:An n-type GaAs layer 2 is formed within a semi-insulation GaAs substrate 1 and a high-melt-point metal Schottky electrode 3 such as WSi is formed on the n-type GaAs layer 2. Then, an SiO film 4 is deposited aslant. By depositing it aslant, SiO is clad to one-surface side of the Schottky electrode 3 but not clad to the other side surface. After this, by performing reactive ion etching, the SiO film 4 can be left only on the single-side surface of the Schottky electrode 3. Then, ion implantation can be performed. The side where the SiO film 4 is clad can separate an n<+> region 5 and the Schottky electrode 3, thus maintaining the withstand voltage in inverse direction between the gate and drain to be high.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、ショットキゲート電界効果トランジスタ(
MESFET)の製造方法に関し、特にそのゲート・ド
レイン耐圧を改善したものが得られるものに関するもの
である。
[Detailed Description of the Invention] [Industrial Application Field] This invention relates to a Schottky gate field effect transistor (
The present invention relates to a method of manufacturing a MESFET, and particularly to a method of manufacturing a MESFET with improved gate-drain breakdown voltage.

〔従来の技術〕[Conventional technology]

以下、G a A s M E S F E Tを例に
とって説明を行う。
Hereinafter, explanation will be given using Ga As M E S F E T as an example.

第3図(a)、 (b)は従来のGaAsMESFET
の製造方法を示し、主にゲート電極及びソース・ドレイ
ン高不純物濃度領域の形成工程を示す断面図である。第
3図において、1は半絶縁性GaAs基板、2はこの半
絶縁性GaAs基板l中へのイオン注入などにより形成
されたn型G5As層、3は高融点金属からなるショッ
トキ電極、5はイオン注入により形成されたn″領域あ
る。
Figure 3 (a) and (b) are conventional GaAs MESFETs.
FIG. 4 is a cross-sectional view showing a manufacturing method of the semiconductor device, mainly showing steps for forming gate electrodes and source/drain high impurity concentration regions. In FIG. 3, 1 is a semi-insulating GaAs substrate, 2 is an n-type G5As layer formed by ion implantation into this semi-insulating GaAs substrate, 3 is a Schottky electrode made of a high melting point metal, and 5 is an ion There is an n'' region formed by implantation.

次にその製造フローについて説明する。まず、第3図(
+!l)に示すように、半絶縁性GaAs基板1中にイ
オン注入などによりn型GaAs層2を形成し、このn
型GaAs層2の上にゲート電極となるWSlなどの高
融点金属ショットキ電極3をスパッタと反応性イオンエ
ツチングなどにより形成する0次に第3図(blに示す
ように、イオン注入を行なうことによりn″領域5を自
己整合的に形成している。
Next, the manufacturing flow will be explained. First, Figure 3 (
+! 1), an n-type GaAs layer 2 is formed in a semi-insulating GaAs substrate 1 by ion implantation, etc.
A Schottky electrode 3 of a high melting point metal such as WSL, which will become a gate electrode, is formed on the GaAs layer 2 by sputtering and reactive ion etching.As shown in FIG. The n'' region 5 is formed in a self-aligned manner.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来のMESFETは以上のような製造フローでゲート
ショットキ電極3とn+領域5とが形成されるが、n″
頭域5はイオン注入及びその後の熱処理によりショット
キ電極3下へ拡散し、ショットキ電極3下にも高不純物
濃度領域が形成されてしまい、ゲート・ドレイン間の逆
方向耐圧を高くできないという問題点があり、特に高出
力用FETではこのことが出力電力を制限する要因とな
っていた。
In the conventional MESFET, the gate Schottky electrode 3 and the n+ region 5 are formed through the above manufacturing flow, but the n''
The head region 5 diffuses under the Schottky electrode 3 due to the ion implantation and subsequent heat treatment, and a high impurity concentration region is also formed under the Schottky electrode 3, resulting in the problem that the reverse breakdown voltage between the gate and drain cannot be increased. This is a factor that limits the output power, especially in high-output FETs.

この発明は上記のような従来のものの問題点を解消する
ためになされたもので、ドレイン側の高不純物濃度領域
をゲートショットキ電極から寸法制御性良く分離でき、
ゲート・ドレイン間の逆方向耐圧を高くできるショット
キゲート電界効果トランジスタの製造方法を得ることを
目的とする。
This invention was made in order to solve the problems of the conventional ones as described above, and it is possible to separate the high impurity concentration region on the drain side from the gate Schottky electrode with good dimensional control.
An object of the present invention is to obtain a method for manufacturing a Schottky gate field effect transistor that can increase the reverse breakdown voltage between the gate and drain.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係るショットキゲート電界効果トランジスタ
の製造方法は、ゲートショットキ電極のドレイン側側面
に絶縁物を被着し、その後高濃度不純物領域の形成のだ
めのイオン注入を行うようにしたものである。
A method of manufacturing a Schottky gate field effect transistor according to the present invention includes depositing an insulator on the side surface of the gate Schottky electrode on the drain side, and then performing ion implantation to form a high concentration impurity region.

〔作用〕[Effect]

この発明においては、ゲートショットキ電極のドレイン
側側面に絶縁物が被着された状態で高濃度不純物領域形
成のためのイオン注入を行うようにしたので、イオン注
入及びその後の熱処理時に不純物の拡散があっても、ゲ
ート電極下までドレイン側の不純物が拡散してくるのを
防ぐことができ、ゲート・ドレイン間の逆方向耐圧を高
く保つことができる。またゲート電極とドレインの高濃
度不純物領域との距離は、ゲート電極側面に被着した絶
縁物の厚みにより定めることができるため、ゲート電極
とドレインの高濃度不純物領域との距離を制御性良く一
定に保つことができる。
In this invention, the ion implantation for forming the high concentration impurity region is performed with the insulator deposited on the side surface of the gate Schottky electrode on the drain side, so that the diffusion of impurities is prevented during the ion implantation and subsequent heat treatment. Even if there is, it is possible to prevent impurities on the drain side from diffusing below the gate electrode, and it is possible to maintain a high reverse breakdown voltage between the gate and drain. In addition, the distance between the gate electrode and the high concentration impurity region of the drain can be determined by the thickness of the insulator deposited on the side surface of the gate electrode, so the distance between the gate electrode and the high concentration impurity region of the drain can be kept constant with good controllability. can be kept.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例によるショットキゲート電界
効果トランジスタの製造方法を示し、図において、第3
図と同一符号は同一部分を示し、4はSiO膜である。
FIG. 1 shows a method for manufacturing a Schottky gate field effect transistor according to an embodiment of the present invention.
The same reference numerals as in the figure indicate the same parts, and 4 is a SiO film.

次に製造フローについて説明する。Next, the manufacturing flow will be explained.

まず第1図(alに示すように、半絶縁性GaAs基板
1中にイオン注入などによりn型GaAs層2を形成し
、このn型GaAs層2の上にゲート電極となるWSi
などの高融点金属ショットキ電pi3をスパッタと反応
性イオンエツチングなどにより形成する0次に第1図(
b)に示すように、SiO膜4を斜め蒸着する。斜め蒸
着することによりショットキ電極30片側面にはSiO
が被着されるが、他の側面には被着されない、この後、
第1図(C1に示すように、イオン注入を行う、ショッ
トキ電極3の片側面にはSiO膜4が被着されているの
で、S10膜4が被着された側はn″頭域5とショット
キ電極3とを分離することができ、ゲート・ドレイン間
の逆方向耐圧を高く保つことができる。また、ゲート電
極とドレイン側の01・領域との間隔は、ショットキ電
極3の側面に被着されたSiO膜4の厚みで定まるため
、SiO膜4の蒸着厚を調整することにより、ゲート電
極とドレイン側のn″領域の距離を容易に制御すること
ができ、プロセス制御性も高く保てる。
First, as shown in FIG. 1 (al), an n-type GaAs layer 2 is formed by ion implantation into a semi-insulating GaAs substrate 1, and on this n-type GaAs layer 2, a WSi film that will become a gate electrode is formed.
A high-melting-point metal Schottky electrode PI3 such as is formed by sputtering and reactive ion etching.
As shown in b), a SiO film 4 is obliquely deposited. SiO is deposited on one side of the Schottky electrode 30 by oblique vapor deposition.
is deposited, but not the other sides, after this:
As shown in FIG. 1 (C1), an SiO film 4 is deposited on one side of the Schottky electrode 3 where ions are implanted, so the side to which the S10 film 4 is deposited is an n'' head region 5. The Schottky electrode 3 can be separated from the Schottky electrode 3, and the reverse breakdown voltage between the gate and drain can be kept high.Also, the distance between the gate electrode and the 01 region on the drain side is determined by the distance between the gate electrode and the 01 region on the drain side. Since the thickness of the SiO film 4 is determined by the thickness of the SiO film 4, the distance between the gate electrode and the n'' region on the drain side can be easily controlled by adjusting the deposition thickness of the SiO film 4, and high process controllability can be maintained.

また、この発明の他の実施例を第2図(a)〜(d)に
示す、第2図において、第1図と同一符号は同一部分を
示す。
Further, another embodiment of the present invention is shown in FIGS. 2(a) to 2(d). In FIG. 2, the same reference numerals as in FIG. 1 indicate the same parts.

次に製造フローについて説明する。Next, the manufacturing flow will be explained.

まず第2図(δンに示すように、半絶縁性GaAs基板
1中にイオン注入などによりn型GaAs層2を形成し
、このn型GaAs層2の上にゲート電極となるWSi
などの高融点金属ショットキ電極3をスパッタと反応性
イオンエツチングなどにより形成する。次に第2図(b
)に示すように、370膜4を斜め蒸着する。斜めに蒸
着することにより、ショットキ電極3の片側面にはSi
Oが被着されるが、他の側面には被着されない、この後
、反応性イオンエツチングを行うと、第2図(C)に示
すように、ショットキ電極3の片側面のみにSlO膜4
を残すことができる0次に第2図fdlに示すようにイ
オン注入を行う、ショットキ電極3の片側面にはSiO
[4が被着されているので、SiO膜4が被着された側
はn″領域5とショットキ電極3とを分離することがで
き、ゲート・ドレイン間の逆方向耐圧を高く保つことが
できる。またゲート電極とドレイン側のn″領域の間隔
はショットキ電極3の側面に被着された5iOJII4
の厚みで定まるため、SiO膜4の蒸着厚及び蒸着後の
反応性イオンエツチング条件を調整することにより、容
易にゲート電極とドレイン側のn″領域の距離を制御す
ることができ、プロセス制御性も高く保てる。
First, as shown in FIG. 2 (δn), an n-type GaAs layer 2 is formed by ion implantation into a semi-insulating GaAs substrate 1, and a WSi layer that will become a gate electrode is formed on this n-type GaAs layer 2.
A Schottky electrode 3 of a high melting point metal such as is formed by sputtering and reactive ion etching. Next, Figure 2 (b
), the 370 film 4 is obliquely deposited. By obliquely vapor depositing, Si is deposited on one side of the Schottky electrode 3.
O is deposited on one side of the Schottky electrode 3, but not on the other side. When reactive ion etching is performed after this, a SlO film 4 is deposited on only one side of the Schottky electrode 3, as shown in FIG. 2(C).
Ion implantation is performed as shown in FIG.
4 is deposited, the n'' region 5 and the Schottky electrode 3 can be separated from each other on the side where the SiO film 4 is deposited, and the reverse breakdown voltage between the gate and drain can be maintained high. Also, the distance between the gate electrode and the n'' region on the drain side is 5iOJII4 deposited on the side surface of the Schottky electrode 3.
By adjusting the deposition thickness of the SiO film 4 and the reactive ion etching conditions after deposition, the distance between the gate electrode and the n'' region on the drain side can be easily controlled, improving process controllability. can also be kept high.

なお、上記実施例ではGaAsMESFETについて説
明したが、InP、Stなどの他の半導体材料を用いて
もよく、上記実施例と同様の効果を奏する。
Note that although GaAs MESFET has been described in the above embodiment, other semiconductor materials such as InP and St may be used, and the same effects as in the above embodiment can be obtained.

また、上記実施例では斜め蒸着する絶縁物としてSiO
を用いるものを示したが、蒸着可能な絶縁物で初期の性
能が得られるものであれば、他の絶縁物であっても良く
、上記実施例と同様の効果を奏する。
In addition, in the above embodiment, SiO is used as the diagonally deposited insulator.
However, other insulators may be used as long as the initial performance can be obtained with an insulator that can be vapor deposited, and the same effects as in the above embodiments can be achieved.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明に係るショットキゲート電界効
果トランジスタの製造方法によれば、ゲートショットキ
電極のドレイン側側面に絶縁物を被着し、その後高濃度
不純物領域形成のためのイオン注入を行うようにしたの
で、ゲート電極とドレイン側高濃度不純物領域とを寸法
制御性良く分離でき、ゲート・ドレイン間逆方向耐圧を
高く保てると言う効果がある。
As described above, according to the method for manufacturing a Schottky gate field effect transistor according to the present invention, an insulator is deposited on the side surface of the gate Schottky electrode on the drain side, and then ion implantation is performed to form a high concentration impurity region. As a result, the gate electrode and the drain-side high concentration impurity region can be separated with good dimensional controllability, and the gate-drain reverse breakdown voltage can be maintained high.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(C)はこの発明の一実施例によるME
SFETの製造工程を示す断面図、第2図(8)〜(d
)はこの発明の他の実施例によるMESFETの製造工
程を示す断面図、第3図+8>、 (blは従来のME
SFETの製造工程を示す断面図である。 図において、1は半絶縁性GaAs基板、2はn型Ga
As1.3はWSiショットキ電極、4はSiO膜、5
はn″領域高濃度不純物領域)である。 なお図中同一符号は同−又は相当部分を示す。
FIGS. 1(a) to (C) show an ME according to an embodiment of the present invention.
Cross-sectional views showing the manufacturing process of SFET, Figures 2 (8) to (d)
) is a sectional view showing the manufacturing process of MESFET according to another embodiment of the present invention, FIG.
FIG. 3 is a cross-sectional view showing the manufacturing process of SFET. In the figure, 1 is a semi-insulating GaAs substrate, 2 is an n-type GaAs substrate, and 2 is an n-type GaAs substrate.
As1.3 is WSi Schottky electrode, 4 is SiO film, 5
is an n'' region (high concentration impurity region). Note that the same reference numerals in the drawings indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] (1)半導体基板上に形成された所定の導電型を有する
半導体層上に、高融点金属より成るショットキ電極を形
成する第1の工程と、 前記ショットキ電極が形成された半導体基板上に、絶縁
物を斜め蒸着する第2の工程と、 前記半導体層と同一導電型である不純物をイオン注入し
、前記半導体基板中に高濃度不純物領域を形成する第3
の工程とを備えたことを特徴とするショットキゲート電
界効果トランジスタの製造方法。
(1) A first step of forming a Schottky electrode made of a high melting point metal on a semiconductor layer having a predetermined conductivity type formed on a semiconductor substrate; a second step of diagonally depositing a substance; and a third step of ion-implanting an impurity having the same conductivity type as the semiconductor layer to form a high concentration impurity region in the semiconductor substrate.
A method for manufacturing a Schottky gate field effect transistor, comprising the steps of:
JP33456088A 1988-12-27 1988-12-27 Manufacture of schottky gate field effect transistor Pending JPH02177337A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33456088A JPH02177337A (en) 1988-12-27 1988-12-27 Manufacture of schottky gate field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33456088A JPH02177337A (en) 1988-12-27 1988-12-27 Manufacture of schottky gate field effect transistor

Publications (1)

Publication Number Publication Date
JPH02177337A true JPH02177337A (en) 1990-07-10

Family

ID=18278766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33456088A Pending JPH02177337A (en) 1988-12-27 1988-12-27 Manufacture of schottky gate field effect transistor

Country Status (1)

Country Link
JP (1) JPH02177337A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08321514A (en) * 1995-05-26 1996-12-03 Nec Corp Manufacture of gaas field effect transistor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08321514A (en) * 1995-05-26 1996-12-03 Nec Corp Manufacture of gaas field effect transistor

Similar Documents

Publication Publication Date Title
JPH03775B2 (en)
JPH0444328A (en) Semiconductor device and manufacture thereof
JPH05299441A (en) Manufacture of field effect transistor
US5107314A (en) Gallium antimonide field-effect transistor
JPH02177337A (en) Manufacture of schottky gate field effect transistor
JPS59188978A (en) Manufacture of schottky gate type field effect transistor
JPS5963767A (en) Semiconductor device
JPS61248570A (en) Mesfet device and manufacture thereof
JPH0523497B2 (en)
JPS62163372A (en) Field effect semiconductor device
JPS6070772A (en) Manufacture of field-effect transistor
JPS6223175A (en) Manufacture of semiconductor device
JPS59165460A (en) Semiconductor device and manufacture thereof
JPS61177780A (en) Manufacture of semiconductor device
JPS61163666A (en) Manufacture of field-effect transistor
JPS59175161A (en) Insulated gate semiconductor device and manufacture thereof
JPH024137B2 (en)
JPS62283672A (en) Field-effect transistor and manufacture thereof
JPS60234374A (en) Manufacture of semiconductor device
JPS61222270A (en) Field effect transistor and manufacture thereof
JPH0439773B2 (en)
JPH0439772B2 (en)
JPH0797591B2 (en) Field effect transistor and method of manufacturing the same
JPS63302574A (en) Manufacture of schottky barrier gate field effect transistor
JPH0697430A (en) Insulated gate type field effect transistor