JPH08321514A - Manufacture of gaas field effect transistor - Google Patents

Manufacture of gaas field effect transistor

Info

Publication number
JPH08321514A
JPH08321514A JP15230195A JP15230195A JPH08321514A JP H08321514 A JPH08321514 A JP H08321514A JP 15230195 A JP15230195 A JP 15230195A JP 15230195 A JP15230195 A JP 15230195A JP H08321514 A JPH08321514 A JP H08321514A
Authority
JP
Japan
Prior art keywords
substrate
gate electrode
insulating film
drain
side wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15230195A
Other languages
Japanese (ja)
Inventor
Yoshiko Inosuna
佳子 猪砂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP15230195A priority Critical patent/JPH08321514A/en
Publication of JPH08321514A publication Critical patent/JPH08321514A/en
Pending legal-status Critical Current

Links

Landscapes

  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE: To reduce a source resistance and increase a drain withstand voltage by forming a side wall by anisotropic etching after slanting a substrate and depositing an insulating film in such a manner that the film thickness of the side wall at the drain electrode side becomes larger than the film thickness of the side wall at the source electrode side. CONSTITUTION: An operation layer 3 is formed by ion implantation at a predetermined portion of a substrate 1, and a gate metal is deposited on the substrate 1 and processed to a predetermined length, and a gate electrode 4 is formed. Next, reactive ion etching is performed, and side walls 5, 5' comprising insulating films are formed on both the sides of the gate electrode 4. At this time, the deposition of the insulating film 5 is performed by slanting the substrate 1 relative to an SiO2 irradiation source, and the film of the side wall 5 at the drain side is formed thicker than the film thickness of the side wall 5' at the source side. By doing this, the withstand voltage of the drain can be improved and the decrease in source resistance can be made smaller so that the mutual conductance can be enhanced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体装置の製造方法に
関し、特にGaAs電界効果トランジスタのイオン注入
法による自己整合的な製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device manufacturing method, and more particularly to a self-aligned manufacturing method of a GaAs field effect transistor by an ion implantation method.

【0002】[0002]

【従来の技術】半絶縁性GaAs基板にドナー不純物を
イオン注入して形成する電界効果トランジスタ(Metal-
Semiconductor Field Effect Transistor;「MES
FET」という)は高周波通信用素子としてだけでなく
ディジタルICにも広く応用されている。
2. Description of the Related Art A field-effect transistor (Metal-) formed by ion-implanting a donor impurity into a semi-insulating GaAs substrate.
Semiconductor Field Effect Transistor; "MES
"FET") is widely applied not only as a high frequency communication element but also as a digital IC.

【0003】一般にGaAs電界効果トランジスタ
(「MESFET」と略記する)は、FET特性の向上
を図るべく、LDD(Lightly Doped Drain)構造が採
用されている。
Generally, a GaAs field effect transistor (abbreviated as "MESFET") has an LDD (Lightly Doped Drain) structure in order to improve FET characteristics.

【0004】このLDD構造は、能動層をイオン注入に
よって形成した後にゲート電極を形成し、その両側にイ
オン注入によって中濃度(n′)領域を形成する。次
に、絶縁膜の所定の領域を開口し、高濃度(n+)領域
をイオン注入によって形成してなる構造である。
In this LDD structure, a gate electrode is formed after an active layer is formed by ion implantation, and a medium concentration (n ') region is formed on both sides of the gate electrode by ion implantation. Then, a predetermined region of the insulating film is opened, and a high concentration (n + ) region is formed by ion implantation.

【0005】ゲート電極とn+層間に動作層とn+層との
中間的な深さとキャリア濃度を持つn′層を入れること
により、ソース抵抗を低減し高い相互コンダクタンス
(gm)をもつMESFETが得られる。
By inserting an n'layer having a carrier concentration and an intermediate depth between the operation layer and the n + layer between the gate electrode and the n + layer, the MESFET having a high source conductance and a high transconductance (g m ) is inserted. Is obtained.

【0006】特に、高出力素子となるLDD構造のME
SFETにおいては、高耐圧特性が必要とされる。この
ため、ゲート電極に対しドレイン側のn+領域までの距
離を、ソース側のn+領域までの距離よりも大きくした
非対称型LDD構造が採用され、従来、例えば図6及び
図7に示すような形成方法が用いられていた。
In particular, an ME with an LDD structure which becomes a high output element
High breakdown voltage characteristics are required for SFETs. For this reason, an asymmetric LDD structure in which the distance to the n + region on the drain side with respect to the gate electrode is made larger than the distance to the n + region on the source side is adopted. Conventionally, for example, as shown in FIGS. 6 and 7. Different forming methods have been used.

【0007】すなわち、マスク13を介して半絶縁性Ga
As基板12にイオン注入によってSi等のドナーを導入
しn型能動層14を形成し(図6(a)参照)、次に能動
層14上にWSi2(タングステンシリサイド)等の高融
点金属化合物又は合金からなるゲート電極15をCVD
(化学気相成長)又はスパッタ蒸着等により形成し(図
6(b)参照)、レジストマスク16を塗布し(図6
(c)参照)、パターン形成された開口部を通してゲー
ト電極15の両側の領域17(高濃度層)にSi等のドナー
不純物をイオン注入し、さらにゲート電極の両脇のマス
クを除去しゲート電極15をマスクとしてSi等のドナー
不純物をイオン注入しゲート電極15の両側に中濃度層18
を形成する(図6(e)参照)。
That is, through the mask 13, the semi-insulating Ga
A donor such as Si is introduced into the As substrate 12 by ion implantation to form an n-type active layer 14 (see FIG. 6A). Then, a refractory metal compound such as WSi 2 (tungsten silicide) is formed on the active layer 14. Or CVD the gate electrode 15 made of alloy
(Chemical vapor deposition) or sputter deposition (see FIG. 6B), and a resist mask 16 is applied (see FIG. 6).
(See (c)), donor impurities such as Si are ion-implanted into regions 17 (high-concentration layers) on both sides of the gate electrode 15 through the patterned openings, and masks on both sides of the gate electrode are removed. A donor impurity such as Si is ion-implanted by using 15 as a mask to form a medium concentration layer 18 on both sides of the gate electrode 15.
Are formed (see FIG. 6E).

【0008】さらに、絶縁膜19を堆積し、熱処理を行
い、イオン注入領域を活性化した後(図7(f)参
照)、絶縁膜9の所定部分を開口しリフトオフ法等によ
りオーミック金属を被着した後熱処理を施し、ソース電
極20及びドレイン電極21を形成してMESFETを形成
する(図7(g)参照)。図7(g)に示すように、ゲ
ート電極15からドレイン側の高濃度層17までの距離がソ
ース側の高濃度層までの距離よりも大きい非対称型LD
D構造とされている。
Further, after the insulating film 19 is deposited and heat-treated to activate the ion-implanted region (see FIG. 7 (f)), a predetermined portion of the insulating film 9 is opened and ohmic metal is covered by a lift-off method or the like. After the deposition, heat treatment is performed to form the source electrode 20 and the drain electrode 21 to form the MESFET (see FIG. 7G). As shown in FIG. 7G, an asymmetric LD in which the distance from the gate electrode 15 to the high concentration layer 17 on the drain side is larger than the distance to the high concentration layer on the source side.
It has a D structure.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、上記非
対称型LDD構造の形成方法においては、多数の露光工
程を必要とする。特に、ゲート電極形成後の中濃度領域
の形成では、目合わせずれなどによる均一性及び再現性
に問題が生じ、短ゲート長化などの寸法設定の自由度を
阻んできた。
However, the above-mentioned method for forming an asymmetric LDD structure requires a large number of exposure steps. In particular, in the formation of the medium-concentration region after the gate electrode is formed, there is a problem in uniformity and reproducibility due to misalignment, and the degree of freedom in dimension setting such as shortening the gate length has been hindered.

【0010】従って本発明は、これらの問題点を解消
し、ソース抵抗が小さく、且つドレイン耐圧が高いGa
As電界効果トランジスタを均一性及び再現性良く形成
する製造方法を提供することを目的とする。
Therefore, the present invention solves these problems, has a small source resistance and a high drain breakdown voltage.
It is an object of the present invention to provide a manufacturing method for forming an As field effect transistor with high uniformity and reproducibility.

【0011】[0011]

【課題を解決するための手段】前記目的を達成するた
め、本発明は、半絶縁性GaAs基板上にゲート電極を
形成した後に、前記半絶縁性GaAs基板上に絶縁膜を
堆積し、異方性エッチングにより前記ゲート電極両側に
前記絶縁膜からなる側壁を形成する工程を含むGaAs
電界効果トランジスタの製造方法において、ドレイン電
極側の前記側壁の膜厚がソース電極側の前記側壁の膜厚
よりも厚くなるように、前記基板を傾斜させて前記絶縁
膜の堆積を行った後、前記異方性エッチングにより前記
側壁を形成することを特徴とするGaAs電界効果トラ
ンジスタの製造方法を提供する。
In order to achieve the above object, the present invention is an anisotropic method in which a gate electrode is formed on a semi-insulating GaAs substrate and then an insulating film is deposited on the semi-insulating GaAs substrate. GaAs including a step of forming sidewalls made of the insulating film on both sides of the gate electrode by reactive etching
In the method of manufacturing a field effect transistor, after the insulating film is deposited by inclining the substrate so that the thickness of the side wall on the drain electrode side is larger than the thickness of the side wall on the source electrode side, A method for manufacturing a GaAs field effect transistor, characterized in that the sidewall is formed by the anisotropic etching.

【0012】本発明においては、ドレイン電極側の該側
壁の膜厚がソース電極側の該側壁の膜厚より厚くなるよ
うに、前記基板に対して斜め方向よりRIE等の異方性
エッチングを行うようにしてもよい。
In the present invention, anisotropic etching such as RIE is obliquely performed on the substrate so that the thickness of the side wall on the drain electrode side is larger than the thickness of the side wall on the source electrode side. You may do it.

【0013】[0013]

【作用】本発明の原理・作用を以下に説明する。The operation and principle of the present invention will be described below.

【0014】本発明は、半絶縁性GaAs基板をイオン
照射方向に対して傾斜させること、あるいは半絶縁性G
aAs基板に対し斜め方向から反応性イオンエッチング
(RIE)を行い、ゲート電極を用いてソース又はドレ
インコンタクト領域間に影を生じる効果(陰影効果)を
利用したものである。この効果により、請求項1に記載
された本発明によれば、ゲート−ソース領域間に影が生
じ、照射された絶縁膜を形成するイオンはゲート−ドレ
イン間に厚く、一方ゲート−ソース間に薄く堆積する。
また、請求項2に記載された本発明によれば、ゲート−
ドレイン領域間に影が生じ、RIEにおいて、ドレイン
領域側の側壁をソース領域側の側壁より厚く形成するこ
とができる。
According to the present invention, the semi-insulating GaAs substrate is tilted with respect to the ion irradiation direction, or the semi-insulating G is used.
This is to utilize the effect (shading effect) of forming a shadow between the source or drain contact regions by using the gate electrode by performing reactive ion etching (RIE) on the aAs substrate from an oblique direction. Due to this effect, according to the present invention as set forth in claim 1, a shadow is generated between the gate and the source region, and the ion forming the irradiated insulating film is thick between the gate and the drain, and on the other hand, between the gate and the source. Deposit thinly.
Further, according to the present invention described in claim 2, the gate-
A shadow is formed between the drain regions, and the side wall on the drain region side can be formed thicker than the side wall on the source region side in RIE.

【0015】本発明によれば、自己整合的にドレイン側
のn+領域をゲート電極より遠ざけ、ゲート電極のドレ
イン端に生じる電界集中を緩和し、ドレイン耐圧を向上
するとともに、n+領域によるソース抵抗の抵抗低減に
より相互コンダクタンスgmを向上する。
According to the present invention, the n + region on the drain side is separated from the gate electrode in a self-aligned manner, the electric field concentration generated at the drain end of the gate electrode is relaxed, the drain breakdown voltage is improved, and the source by the n + region is formed. The mutual conductance g m is improved by reducing the resistance of the resistor.

【0016】また、本発明によれば、自己整合的に中濃
度領域及び高濃度領域を形成するため、露光工程におけ
る目合わせずれを削減することができ、簡便に再現性良
く非対称型LDD構造のMESFETを形成することが
でき、製造工程の簡易化及び低コスト化を達成できる。
Further, according to the present invention, since the medium concentration region and the high concentration region are formed in a self-aligning manner, misalignment in the exposure process can be reduced, and the asymmetric LDD structure can be easily and reproducibly formed. The MESFET can be formed, and the manufacturing process can be simplified and the cost can be reduced.

【0017】[0017]

【実施例】図面を参照して、本発明の実施例を以下に説
明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0018】[0018]

【実施例1】図1及び図2を参照して本発明の一実施例
を説明する。図1(a)から図2(h)には、本実施例
を工程順に説明するための図が模式的に示されている。
Embodiment 1 An embodiment of the present invention will be described with reference to FIGS. 1 (a) to 2 (h) schematically show diagrams for explaining the present embodiment in the order of steps.

【0019】まず、半絶縁性GaAs基板1の所定部分
にイオン注入により動作層3を形成し、(図1(a)参
照)、ゲート金属、例えばWSiをスパッタリング法に
よって基板1に堆積の後、所定の長さに加工し、ゲート
電極4を形成する(図1(b)参照)。
First, an operating layer 3 is formed on a predetermined portion of a semi-insulating GaAs substrate 1 by ion implantation (see FIG. 1A), and a gate metal such as WSi is deposited on the substrate 1 by a sputtering method. The gate electrode 4 is formed into a predetermined length (see FIG. 1B).

【0020】次に、基板1上に絶縁膜5として例えば二
酸化珪素膜SiO2をスパッタリング法を用いて堆積す
る(図1(c)参照)。その際、図5(a)に示すよう
に、ドレイン側の絶縁膜の膜厚がソース側の絶縁膜の膜
厚より厚く形成されるように基板1をSiO2照射源に
対し傾斜させておく。すなわち図5(b)の拡大図に示
すように、イオンは基板1表面に対して斜めの方向(矢
印参照)から推積される。
Next, for example, a silicon dioxide film SiO 2 is deposited as the insulating film 5 on the substrate 1 by the sputtering method (see FIG. 1C). At this time, as shown in FIG. 5A, the substrate 1 is tilted with respect to the SiO 2 irradiation source so that the film thickness of the drain side insulating film is larger than that of the source side insulating film. . That is, as shown in the enlarged view of FIG. 5B, the ions are accumulated from the direction oblique to the surface of the substrate 1 (see the arrow).

【0021】次に、反応性イオンエッチング(RIE)
を行い、ゲート電極4の両側に絶縁膜からなる側壁5、
5′を形成する(図1(d)参照)。その際、前述した
通り、絶縁膜5の形状の効果より、ドレイン側の側壁5
の膜厚がソース側の側壁5′の膜厚より厚く形成するこ
とが出来る。
Next, reactive ion etching (RIE)
The side walls 5 made of an insulating film on both sides of the gate electrode 4,
5'is formed (see FIG. 1 (d)). At that time, as described above, due to the effect of the shape of the insulating film 5, the sidewall 5 on the drain side is formed.
Can be formed thicker than the film thickness of the side wall 5'on the source side.

【0022】ついで、ゲート電極4及び側壁5、5′を
マスクとするイオン注入を行い、ソース及びドレイン領
域にn+(高濃度)層7を形成する(図1(e)参
照)。
Then, ion implantation is performed using the gate electrode 4 and the side walls 5 and 5'as a mask to form an n + (high concentration) layer 7 in the source and drain regions (see FIG. 1E).

【0023】さらに、側壁5、5′を除去し、ゲート電
極4をマスクとしてイオン注入を行い、n′層8を形成
する(図2(f)参照)。
Further, the side walls 5 and 5'are removed, and ion implantation is performed using the gate electrode 4 as a mask to form an n'layer 8 (see FIG. 2 (f)).

【0024】次に、全面に熱CVD法を用いて絶縁膜9
として例えば二酸化珪素膜SiO2を堆積し、熱処理を
行い、イオン注入領域を活性化する(図2(g)参
照)。
Next, the insulating film 9 is formed on the entire surface by thermal CVD.
For example, a silicon dioxide film SiO 2 is deposited and heat treatment is performed to activate the ion implantation region (see FIG. 2G).

【0025】次に、絶縁膜9の所定部分を開口し、リフ
トオフ法によりオーミック金属を被着し熱処理を施し、
ソース電極10及びドレイン電極11を形成してMES
FETを形成する(図2(h)参照)。
Next, a predetermined portion of the insulating film 9 is opened, an ohmic metal is deposited by a lift-off method, and a heat treatment is performed.
Forming the source electrode 10 and the drain electrode 11 to form the MES
An FET is formed (see FIG. 2 (h)).

【0026】[0026]

【実施例2】図3及び図4を参照して本発明の第2の実
施例を説明する。図3(a)から図4(h)には、本実
施例を工程順に説明するための図が模式的に示されてい
る。
Second Embodiment A second embodiment of the present invention will be described with reference to FIGS. 3 (a) to 4 (h) schematically show diagrams for explaining the present embodiment in the order of steps.

【0027】半絶縁性GaAs基板1の所定部分にイオ
ン注入により動作層3を形成し(図3(a)参照)、次
にゲート金属、例えばWSiをスパッタリング法によっ
て基板1に堆積の後、所定の長さに加工し、ゲート電極
4を形成する(図3(b)参照)。
An operating layer 3 is formed on a predetermined portion of the semi-insulating GaAs substrate 1 by ion implantation (see FIG. 3A), and then a gate metal, for example, WSi is deposited on the substrate 1 by a sputtering method, and then a predetermined layer is formed. Is processed to form the gate electrode 4 (see FIG. 3B).

【0028】ついで、基板1上に絶縁膜5として例えば
二酸化珪素膜をスパッタリング法を用いて堆積する(図
3(c)参照)。
Then, for example, a silicon dioxide film is deposited as the insulating film 5 on the substrate 1 by using the sputtering method (see FIG. 3C).

【0029】次に、反応性イオンエッチング(RIE)
を行い、ゲート電極4の両側に絶縁膜からなる側壁5、
5′を形成する(図3(d)参照)。その際、ドレイン
側の絶縁膜厚がソース側のそれより厚く形成されるよう
に基板1に対して斜め方向よりRIEを行い、側壁5、
5′を形成する。この時、ゲート電極4の陰影効果によ
り、ドレイン側の側壁5の膜厚がソース側の側壁5′の
膜厚より厚く形成することができる。
Next, reactive ion etching (RIE)
The side walls 5 made of an insulating film on both sides of the gate electrode 4,
5'is formed (see FIG. 3 (d)). At that time, RIE is performed in an oblique direction on the substrate 1 so that the insulating film on the drain side is formed thicker than that on the source side.
5'is formed. At this time, due to the shadow effect of the gate electrode 4, the film thickness of the side wall 5 on the drain side can be formed larger than that of the side wall 5'on the source side.

【0030】次に、ゲート電極4及び側壁5、5′をマ
スクとするイオン注入を行い、ソース及びドレイン領域
にn+層7を形成する(図3(e)参照)。
Next, ion implantation is performed using the gate electrode 4 and the side walls 5 and 5'as a mask to form an n + layer 7 in the source and drain regions (see FIG. 3E).

【0031】さらに、側壁5、5′を除去し、ゲート電
極4をマスクとしてイオン注入を行い、n′層8を形成
する(図4(f)参照)。
Further, the side walls 5 and 5'are removed, and ion implantation is performed using the gate electrode 4 as a mask to form an n'layer 8 (see FIG. 4 (f)).

【0032】次に、全面に熱CVD法を用いて絶縁膜9
として例えば二酸化珪素膜を堆積し、熱処理を行い、イ
オン注入領域を活性化する図4(g)参照)。
Next, the insulating film 9 is formed on the entire surface by thermal CVD.
For example, a silicon dioxide film is deposited and heat treatment is performed to activate the ion implantation region (see FIG. 4G).

【0033】そして、絶縁膜9の所定部分を開口し、リ
フトオフ法によりオーミック金属を被着し熱処理を施
し、ソース電極10及びドレイン電極11を形成しME
SFETを形成する(図4(h)参照)。
Then, a predetermined portion of the insulating film 9 is opened, an ohmic metal is deposited by a lift-off method, and a heat treatment is performed to form a source electrode 10 and a drain electrode 11, and ME is formed.
The SFET is formed (see FIG. 4 (h)).

【0034】[0034]

【発明の効果】以上説明したように、本発明は、自己整
合的にドレイン側のn+領域をゲート電極より遠ざけ、
ゲート電極のドレイン端に生じる電界集中を緩和し、ド
レイン耐圧を向上するとともに、n+領域によるソース
抵抗の抵抗低減により相互コンダクタンスgmを向上す
るという効果を有する。
As described above, according to the present invention, the n + region on the drain side is separated from the gate electrode in a self-aligning manner.
This has the effect of alleviating the electric field concentration generated at the drain end of the gate electrode, improving the drain breakdown voltage, and improving the mutual conductance g m by reducing the resistance of the source resistance due to the n + region.

【0035】しかも本発明によれば、自己整合的に中濃
度領域及び高濃度領域を形成するため、露光工程におけ
る目合わせずれを削減することができ、簡便に再現性良
く非対称型LDD構造のMESFETを形成することが
でき、製造工程の簡易化及び低コスト化を達成するとい
う効果を有する。
Further, according to the present invention, since the medium-concentration region and the high-concentration region are formed in a self-aligning manner, misalignment in the exposure process can be reduced, and the MESFET having the asymmetric LDD structure can be easily and reproducibly provided. Can be formed, and it has the effect of simplifying the manufacturing process and achieving cost reduction.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を製造工程順に説明するため
の図である。
FIG. 1 is a diagram for explaining an example of the present invention in the order of manufacturing steps.

【図2】本発明の一実施例を製造工程順に説明するため
の図である。
FIG. 2 is a diagram for explaining one embodiment of the present invention in the order of manufacturing steps.

【図3】本発明の第2の実施例を製造工程順に説明する
ための図である。
FIG. 3 is a diagram for explaining the second embodiment of the present invention in the order of manufacturing steps.

【図4】本発明の第2の実施例の製造製造工程を工程順
に説明するための図である。
FIG. 4 is a diagram for explaining the manufacturing process in the order of processes according to the second embodiment of the present invention.

【図5】本発明の実施例における絶縁膜を堆積する方法
を説明する模式図である。
FIG. 5 is a schematic diagram illustrating a method of depositing an insulating film in an example of the present invention.

【図6】従来のGaAsMESFETの製造方法を工程
順に説明するための図である。
FIG. 6 is a diagram for explaining a conventional method of manufacturing a GaAs MESFET in the order of steps.

【図7】従来のGaAsMESFETの製造方法を工程
順に説明するための図である。
FIG. 7 is a diagram for explaining a conventional GaAs MESFET manufacturing method in the order of steps.

【符号の説明】[Explanation of symbols]

1 半絶縁性GaAs基板 2 マスク 3 動作層 4 ゲート電極 5 絶縁膜 6 マスク 7 高濃度層 8 中濃度層 9 絶縁膜 10 ソース電極 11 ドレイン電極 12 半絶縁性GaAs基板 13 マスク 14 動作層 15 ゲート電極 16 マスク 17 高濃度層 18 中濃度層 19 絶縁膜 20 ソース電極 21 ドレイン電極 1 semi-insulating GaAs substrate 2 mask 3 working layer 4 gate electrode 5 insulating film 6 mask 7 high concentration layer 8 medium concentration layer 9 insulating film 10 source electrode 11 drain electrode 12 semi-insulating GaAs substrate 13 mask 14 working layer 15 gate electrode 16 mask 17 high concentration layer 18 medium concentration layer 19 insulating film 20 source electrode 21 drain electrode

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】半絶縁性GaAs基板上にゲート電極を形
成した後に、前記半絶縁性GaAs基板上に絶縁膜を堆
積し、異方性エッチングにより前記ゲート電極両側に前
記絶縁膜からなる側壁を形成する工程を含むGaAs電
界効果トランジスタの製造方法において、 ドレイン電極側の前記側壁の膜厚がソース電極側の前記
側壁の膜厚よりも厚くなるように、前記基板を傾斜させ
て前記絶縁膜の堆積を行った後、前記異方性エッチング
により前記側壁を形成することを特徴とするGaAs電
界効果トランジスタの製造方法。
1. A gate electrode is formed on a semi-insulating GaAs substrate, an insulating film is deposited on the semi-insulating GaAs substrate, and sidewalls made of the insulating film are formed on both sides of the gate electrode by anisotropic etching. In a method of manufacturing a GaAs field effect transistor including a step of forming the substrate, the substrate is tilted so that the thickness of the sidewall on the drain electrode side is larger than the thickness of the sidewall on the source electrode side. A method of manufacturing a GaAs field effect transistor, characterized in that after the deposition, the side wall is formed by the anisotropic etching.
【請求項2】半絶縁性GaAs基板上にゲート電極を形
成した後に前記半絶縁性GaAs基板上に絶縁膜を堆積
し、異方性エッチングにより前記ゲート電極両側に前記
絶縁膜からなる側壁を形成する工程を含むを含むGaA
s電界効果トランジスタの製造方法において、 ドレイン電極側の前記側壁の膜厚がソース電極側の前記
側壁の膜厚より厚くなるように、前記基板に対して斜め
方向より異方性エッチングを行うことを特徴とするGa
As電界効果トランジスタの製造方法。
2. A gate electrode is formed on a semi-insulating GaAs substrate, and then an insulating film is deposited on the semi-insulating GaAs substrate, and side walls made of the insulating film are formed on both sides of the gate electrode by anisotropic etching. GaA including the step of
s In the method of manufacturing a field effect transistor, anisotropic etching is performed on the substrate obliquely so that the thickness of the side wall on the drain electrode side is larger than the thickness of the side wall on the source electrode side. Characteristic Ga
Method for manufacturing As field effect transistor.
【請求項3】前記異方性エッチングを、反応性イオンエ
ッチングとしたことを特徴とする請求項1又は2記載の
GaAs電界効果トランジスタの製造方法。
3. The method of manufacturing a GaAs field effect transistor according to claim 1, wherein the anisotropic etching is reactive ion etching.
【請求項4】前記基板をイオン照射方向に対して所定角
傾斜させスパッタリング法により前記絶縁膜を前記基板
上に推積することを特徴とする請求項1記載のGaAs
電界効果トランジスタの製造方法。
4. The GaAs according to claim 1, wherein the substrate is tilted at a predetermined angle with respect to the ion irradiation direction and the insulating film is deposited on the substrate by a sputtering method.
Method for manufacturing field effect transistor.
JP15230195A 1995-05-26 1995-05-26 Manufacture of gaas field effect transistor Pending JPH08321514A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15230195A JPH08321514A (en) 1995-05-26 1995-05-26 Manufacture of gaas field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15230195A JPH08321514A (en) 1995-05-26 1995-05-26 Manufacture of gaas field effect transistor

Publications (1)

Publication Number Publication Date
JPH08321514A true JPH08321514A (en) 1996-12-03

Family

ID=15537538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15230195A Pending JPH08321514A (en) 1995-05-26 1995-05-26 Manufacture of gaas field effect transistor

Country Status (1)

Country Link
JP (1) JPH08321514A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01144684A (en) * 1987-08-11 1989-06-06 Nec Corp Manufacture of schottky barrier junction gate type field-effect transistor
JPH02109342A (en) * 1988-10-18 1990-04-23 Sanyo Electric Co Ltd Manufacture of semiconductor device
JPH02177337A (en) * 1988-12-27 1990-07-10 Mitsubishi Electric Corp Manufacture of schottky gate field effect transistor
JPH02271537A (en) * 1989-04-12 1990-11-06 Mitsubishi Electric Corp Semiconductor device and its manufacture
JPH02271540A (en) * 1989-04-12 1990-11-06 Sumitomo Electric Ind Ltd Manufacture of field-effect transistor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01144684A (en) * 1987-08-11 1989-06-06 Nec Corp Manufacture of schottky barrier junction gate type field-effect transistor
JPH02109342A (en) * 1988-10-18 1990-04-23 Sanyo Electric Co Ltd Manufacture of semiconductor device
JPH02177337A (en) * 1988-12-27 1990-07-10 Mitsubishi Electric Corp Manufacture of schottky gate field effect transistor
JPH02271537A (en) * 1989-04-12 1990-11-06 Mitsubishi Electric Corp Semiconductor device and its manufacture
JPH02271540A (en) * 1989-04-12 1990-11-06 Sumitomo Electric Ind Ltd Manufacture of field-effect transistor

Similar Documents

Publication Publication Date Title
KR920002090B1 (en) Method of manufacturing field effect transistor
JP3841598B2 (en) Manufacturing method of semiconductor device
JP2685149B2 (en) Method for manufacturing field effect transistor
US5950083A (en) Method for fabricating CMOS transistor with self-aligned silicide (salicide) structure
US5254490A (en) Self-aligned method of fabricating an LDD MOSFET device
EP0268298B1 (en) Method of producing a Schottky-barrier field effect transistor
JPH02148738A (en) Manufacture of field effect transistor
US4997779A (en) Method of making asymmetrical gate field effect transistor
JPH11354541A (en) Semiconductor device and its manufacture
JP2925008B2 (en) Method for manufacturing semiconductor device
US5658815A (en) Method of fabricating silicided LDD transistor
JPH05299441A (en) Manufacture of field effect transistor
JP2901905B2 (en) Method of manufacturing field effect transistor having self-aligned LDD structure with T-type gate
JP2682043B2 (en) Method for manufacturing compound semiconductor device
JPH08321514A (en) Manufacture of gaas field effect transistor
KR100192537B1 (en) Method of manufacturing semiconductor device
JP3158591B2 (en) Method of forming LDD structure in compound semiconductor MESFET
JPH1074775A (en) Semiconductor device and its manufacture
JP3176835B2 (en) Method of forming compound semiconductor device
CA1168765A (en) Method for making short channel transistor devices
JPH1197452A (en) Semiconductor device
JPH07273318A (en) Compound semiconductor device and manufacture of it
JPH0547797A (en) Fabrication of field effect transistor
JPH08250518A (en) Semiconductor device and its manufacture
JPH02232940A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19970722