JPH02109342A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH02109342A
JPH02109342A JP26170388A JP26170388A JPH02109342A JP H02109342 A JPH02109342 A JP H02109342A JP 26170388 A JP26170388 A JP 26170388A JP 26170388 A JP26170388 A JP 26170388A JP H02109342 A JPH02109342 A JP H02109342A
Authority
JP
Japan
Prior art keywords
semiconductor substrate
insulating film
heat
gate electrode
drain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26170388A
Other languages
Japanese (ja)
Inventor
Setsu Yamada
節 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP26170388A priority Critical patent/JPH02109342A/en
Publication of JPH02109342A publication Critical patent/JPH02109342A/en
Pending legal-status Critical Current

Links

Landscapes

  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To improve the withstand voltage between a gate and a drain by forming a heat resistant gate electrode on a semiconductor substrate, etching an insulating film covering them in a specified direction by ion beam, and forming a low resistance layer through the implanting of ions while the insulating film is remained partially. CONSTITUTION:A heat resistant gate electrode 4 is formed on a semiconductor substrate 1 of GaAs and the like with N type conductive layer 2, and an insulating film 5 of SiO2 and the like for covering them is formed. When an ion beam 6 is directed slantly to apply etching, the film 5 is removed except a section where the beam 6 of an electrode 4 is not applied, and thus a low resistance layer 9 is formed. When Si<+> ions 8 are implanted under such conditions, the withstand voltage between a source and a drain can be increased without increasing the source resistance substantially.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は低雑音、超高速素子として開発が進められてい
る化合物半導体(GaAsなど)を使用するM E S
 F E TやHE M Tなどの半導体装置の製造方
法に関するもので、FETのソース抵抗をとができ製造
方法を提供しようとするものである。
[Detailed description of the invention] (a) Industrial application field The present invention is directed to MES using compound semiconductors (such as GaAs), which are being developed as low-noise, ultra-high-speed devices.
This invention relates to a method of manufacturing semiconductor devices such as FETs and HEMTs, and attempts to provide a manufacturing method that can reduce the source resistance of FETs.

(ロ)従来の技術 第1図に示す丁程図を利用して、従来から用いられてい
る耐熱ゲートを極を用いたセルファラインタイプのGa
AsMESFETの典型的なプロセスを説明する。
(b) Conventional technology Using the process diagram shown in Figure 1, a self-line type Ga
A typical process of AsMESFET will be explained.

クロム(Cr)をドープした半絶縁性GaAs基板にに
Siイオンをエネルギー30KeVで3×10’cm″
□′で選択注入し、850℃での熱処理で活性化してn
型導電層(41)を基板(42)上に有する半導体基板
(4(1)を形成する(第4図a)。
Si ions were deposited on a semi-insulating GaAs substrate doped with chromium (Cr) at an energy of 30 KeV to a size of 3 x 10'cm''.
Selective injection was performed at □', activated by heat treatment at 850℃, and n
A semiconductor substrate (4(1)) having a type conductive layer (41) on a substrate (42) is formed (FIG. 4a).

次いで、半導体基板(40)表面上にタングステンシリ
サイド(WSi)をRFスパッタ技術を用いて5000
人堆積して、酸素を4%含むCF、ガスを用いたRIE
 (反応性イオンエツチング)で1)t rrlのゲー
ト長を有するゲートを極(43)を半導体1g板(4n
)l−7,に形成し、その後このゲート電極をマスクと
して、  l 50KeV、  ]、5X I Q”c
m−’の高ドーズの81イオン(44)を半導体基板(
4o)内に注入し、その後800℃で熱処理を行ない低
抵抗のコンタクト層(45)を形成する(第4図b)。
Next, 5000 tungsten silicide (WSi) is deposited on the surface of the semiconductor substrate (40) using RF sputtering technology.
RIE using human-deposited CF gas containing 4% oxygen
(Reactive ion etching) 1) A gate having a gate length of trrl is etched from the electrode (43) to a semiconductor 1g plate (4n
) l-7, and then using this gate electrode as a mask, l 50KeV, ], 5X I Q”c
A high dose of 81 ions (44) of m-' was applied to the semiconductor substrate (
4o) and then heat-treated at 800° C. to form a low-resistance contact layer (45) (FIG. 4b).

次いで、ゲートを極(43)を挟んでその両側の半導体
基板(4(llI=、に、ソース電極(46)とドレイ
ン電極(47)を形成する(第4図C)。
Next, a source electrode (46) and a drain electrode (47) are formed on the semiconductor substrate (4 (llI)) on both sides of the gate with the pole (43) in between (FIG. 4C).

(ハ)5!明が解決しようとする課題 この従来方法によるFET構造では、コンタクト層(4
5)となる04層はイオン注入時の散乱及び熱処理時の
横方向拡散によってゲート電極下にも拡がり (破線(
48)はこの拡がりを誇張して示している)、ゲートを
極とコンタクトする為に耐圧(とくに、ゲート・ドレイ
ン間)が低fするという問題がある。
(c) 5! Problems that Akira is trying to solve In the FET structure using this conventional method, the contact layer (4
5) The 04 layer spreads under the gate electrode due to scattering during ion implantation and lateral diffusion during heat treatment (dashed line (
48) shows this spread exaggeratedly), there is a problem that the withstand voltage (particularly between the gate and drain) is low because the gate is in contact with the pole.

+、イδ明は、このゲート・ドレイン間の耐圧を。+, δ is the withstand voltage between the gate and drain.

・/−ス抵抗を実質的に増大させることなく向上させる
ことができる半導体装置の製造方法を提供しようとする
ものである。
- An object of the present invention is to provide a method for manufacturing a semiconductor device that can improve the resistance without substantially increasing it.

(ニ)課題を解決するための手段 本特明は−に記問題点を解決するために、半導体基板−
Lに耐熱ゲート電極を形成した後、絶縁膜を該耐熱ゲー
ト電極を含む半導体基板上に付設し、耐熱ゲート電極の
ドレイン側が影になるように絶老、★11分を組め方向
からイオンビームエツチングし、ドレイ/側に残存絶縁
膜を付けた状態で半導体基板内にイオンを注入すること
を特徴とするものて一1具体的には、半導体基板上に耐
熱ゲート14極を選択的に形成するL程と、該耐熱ゲー
ト電極を付設した半導体基板りに絶縁膜を形成する工程
と、jjj記耐熱ゲート電極のドレイン1を極側の側面
り及び該側面に隣接する半導体基板上の絶縁膜が残るよ
うに、前記絶縁膜に対して斜め方向から該絶縁膜をエツ
チングするイオンビームを付与する一L程と、この残存
絶縁膜を付けた状態で、前記半・9体w板内にイオンを
注入して該半導体基板内に低抵抗層を形成する工程とを
含むことを特徴とするものである。
(d) Means for Solving the Problems In order to solve the problems described in -, the present invention provides a semiconductor substrate -
After forming a heat-resistant gate electrode on L, an insulating film is attached on the semiconductor substrate including the heat-resistant gate electrode, and ion beam etching is performed from the direction of ★11 minutes so that the drain side of the heat-resistant gate electrode is in the shadow. The method is characterized in that ions are implanted into the semiconductor substrate with a residual insulating film attached to the drain/side. Specifically, 14 heat-resistant gate poles are selectively formed on the semiconductor substrate. a step of forming an insulating film on the semiconductor substrate to which the heat-resistant gate electrode is attached; Apply an ion beam to the insulating film from an oblique direction so that the remaining insulating film remains. The method is characterized in that it includes a step of forming a low-resistance layer in the semiconductor substrate by implanting the semiconductor substrate.

くホ)作用 ドヅε明方法では、耐熱ゲート電極を有する半導体基板
に低抵抗層を形成するイオン注入を、該耐熱ゲートを極
のドレイン側の側面及び該側面に隣接する半導体基板I
−に付設した絶縁膜を保護膜として、半導I$基板I−
に施こすようにしているのて−1;1ミ入イオンは耐熱
ゲート電極下及びそのドレイン側の隣接領域に散乱など
で浸入しにくく、該゛ハ領域の低抵抗化を防止でき、ド
レイン耐圧を向にさせることがきる。
In the method, ions are implanted to form a low-resistance layer in a semiconductor substrate having a heat-resistant gate electrode.
- As a protective film, the semiconductor I$ substrate I-
The ions that enter the area under the heat-resistant gate electrode and the adjacent region on the drain side are difficult to penetrate due to scattering, which prevents the resistance from becoming low in this area, and increases the drain breakdown voltage. can be turned to the right direction.

(へ)実施例 本発明の一実施例を第1図に示す−L程図を参与にして
説明する。本実jMt列はイオン注入型の5iES F
 E Tの製造方法を示すものである。
(F) Embodiment An embodiment of the present invention will be described with reference to the -L diagram shown in FIG. The actual jMt array is an ion-implanted 5iES F.
This shows a method for manufacturing ET.

C「をドープした半絶縁性GaAs基板上にSイオンを
エネルギー30KeVで3×lO1′cm−′で選択注
入し、850℃でのIP!1処理で活性化してn型導電
層(2)を基板(3)上に有する半導体基板(1)を形
成する(第1図a)。
On a semi-insulating GaAs substrate doped with C, S ions were selectively implanted at an energy of 30 KeV and 3×lO1'cm-', and activated by IP!1 treatment at 850°C to form an n-type conductive layer (2). A semiconductor substrate (1) is formed on a substrate (3) (FIG. 1a).

次いで、半導体基板(1)表面上にタングステンンリサ
イド(WSi)をRFスパッタ技術を用いて5000人
堆積して、酸素を・1%含むCF、ガスを用いたRIE
(反応性イオンエンチング)で1μmのゲート長を有す
るゲートtl!1(4)を半導体基板(1)l−に形成
する(第1図b)。
Next, 5000 tungsten silicide (WSi) was deposited on the surface of the semiconductor substrate (1) using RF sputtering technology, and RIE was performed using CF gas containing 1% oxygen.
Gate tl with a gate length of 1 μm (reactive ion etching)! 1(4) is formed on the semiconductor substrate (1)l- (FIG. 1b).

その後、このゲート電極−Lを含めて半導体基板(+ 
)11:フラス?cVD法で、S+O*膜、Six、膜
などの絶縁膜(実施例ではS°i0*膜)(5)を2:
’+00人堆積する(第1図C)。次いで、この絶縁膜
(5)に対して斜め方向から該絶縁膜をイオンビームエ
ンチング(IBE)する。このエツチング条件は、真空
度8×10−″トール、300e〜′であり、入射角度
は耐熱ゲート?lt極(4)のドレイン側の側面(4a
)が入射イオン(アルゴンイオン)(6)に対して斜め
になる様に(実施例では45゛ )している。このIB
Hによって、半導体基板(1)[−の絶縁膜(5)は耐
熱ゲート電極(4)によって影となる部分、即ち耐熱ゲ
ートを極(4)の1ji記側面(4a>!−1及び該側
面に隣接する半導体基?Fi(1)、J−で残され、そ
の他の部分がエツチング除去される。(7)はこのよう
にして残された残存絶縁膜である(第1図d)。
Thereafter, the semiconductor substrate (+
)11: Frass? An insulating film (S°i0* film in the example) (5) such as S+O* film, Six film, etc. is 2:
'+00 people are deposited (Figure 1C). Next, this insulating film (5) is subjected to ion beam etching (IBE) from an oblique direction. The etching conditions are a vacuum degree of 8×10-'' Torr and 300e-', and an incident angle is the side surface (4a) on the drain side of the heat-resistant gate?lt pole (4).
) is made oblique to the incident ion (argon ion) (6) (45° in the example). This IB
By H, the insulating film (5) of the semiconductor substrate (1) [- is shaded by the heat-resistant gate electrode (4), that is, the heat-resistant gate is located on the 1ji side surface (4a>!-1 and the side surface) of the pole (4). The semiconductor groups ?Fi(1) and J- adjacent to the ?Fi(1) and J- are left behind, and the other portions are etched away.(7) is the remaining insulating film left in this way (FIG. 1d).

1大に、自(熟ゲート電極(4)をマスクにして、1:
>0KeV、]、5X10”cm−’の高ドーズの81
イオン注入を、イオン(8)が半導体基板に垂直に向く
ように半導体基板(1)に対して行なう。このイオン注
入後、800℃での熱処理を行なうことによって半導体
基板(1)内に、低抵抗層(9)が形成される。この低
抵抗層(9)の、耐熱ゲート電極(4)の側面(ドレイ
ン側) (4a)側における境界(lfl)は、残存絶
縁膜(7)の存在によってこの残存絶縁膜(7)の分だ
け側面(4a)から離間して形成さtする(第1図e)
1 large, self (using the ripe gate electrode (4) as a mask, 1:
>0KeV, ], 81 at a high dose of 5X10"cm-'
Ion implantation is performed into the semiconductor substrate (1) such that the ions (8) are oriented perpendicularly to the semiconductor substrate. After this ion implantation, a low resistance layer (9) is formed in the semiconductor substrate (1) by performing heat treatment at 800°C. The boundary (lfl) of this low-resistance layer (9) on the side surface (drain side) (4a) of the heat-resistant gate electrode (4) is caused by the presence of the remaining insulating film (7). (Fig. 1e)
.

次に、耐熱ゲート電極(4)の両側の低抵抗層(51)
トに、3層構造(Au+Ge/’Ni/’Au)のオー
ミlり電極(+1)(12)を形成し、オーミックtT
h(I+)はソース電極として、又オーミ・lり電極(
12)はドレイン電極として利用される。
Next, low resistance layers (51) on both sides of the heat-resistant gate electrode (4)
Ohmic electrodes (+1) (12) with a three-layer structure (Au+Ge/'Ni/'Au) are formed on the
h (I+) can be used as a source electrode, or as an ohmic or diagonal electrode (
12) is used as a drain electrode.

第2図は本発明方法をHE M Tに適用したもののi
ff F&図である。これはHE M Tのn″)層(
27)を形成する場合に本発明の思想を利用しているも
のである。半導体基板(20)はGaAs半絶縁基板(
450it m) (21)上にアンドープのGaAs
層(8000人> <22)と、nAeGaAs層(1
゜OX I  O”cm−’、200人) (23)と
、nGaAS層< 3 X I 017cm−’、25
0人)(24ンとを有しており、この半導体基板(20
)上には耐熱ゲート電極(25)が設けられており、こ
の耐熱ゲート電極(25)のドレイン電極(28)側の
側面(25a)には第1実施例の場合と同様の残存絶縁
膜(26)が設けられている。この耐熱ゲート電極(2
5)と残存絶縁膜(26)は耐熱ゲート電極(25)の
両側のn+イオン注入領域(低抵抗体層+ (27)(
27)をイオン注入法で形成する際にマスクとして利用
される。(29)はソース7ji極である。
Figure 2 shows the result of applying the method of the present invention to HEMT.
ff F & diagram. This is the n″) layer (
27) utilizes the idea of the present invention. The semiconductor substrate (20) is a GaAs semi-insulating substrate (
450it m) (21) Undoped GaAs on top
layer (8000 ><22) and nAeGaAs layer (1
゜OX I O"cm-', 200 people) (23) and nGaAS layer < 3 X I 017cm-', 25
0 people) (24 people), and this semiconductor substrate (20
) is provided with a heat-resistant gate electrode (25), and on the side surface (25a) of the heat-resistant gate electrode (25) on the drain electrode (28) side, a residual insulating film (25) similar to that of the first embodiment is provided. 26) is provided. This heat-resistant gate electrode (2
5) and the remaining insulating film (26) are the n+ ion implanted regions (low resistance layer + (27)) on both sides of the heat-resistant gate electrode (25).
27) is used as a mask when forming by ion implantation method. (29) is the source 7ji pole.

第3図は本発明方法をヘテロ接合(AlGaAs Ga
As)MISFETに適用したものの構成図である。こ
れはn″″層(39)を形成する場合に本躇明の思想を
利用しているものである。半導体基板(3+1)はGa
As半絶縁基板(450μm>(31)1−にアンドー
プのGaAs層(1μm) (32)と、アンドープの
AffiGaAs層(500人)(33)とを有してお
り、この半導体基板(30)I−、にはnGaAstI
Jli f1、Qxl  Q”cm−’、 5000λ
l (34)とタングステン電極(35)とからなる耐
熱デートti(36)が設けられており、この耐熱ゲー
トを極(36)のドレインを極(37)側の側面(36
a)に(、!第1実施例の場合と同様の残存絶縁膜(3
8)が設すられている。この耐熱ゲートを極(36)と
残存絶縁膜(38)は耐熱ゲート電極(36)と両側の
n+イオン注入領域(低抵抗体層) (39)(39)
をイ オン注入法で形成する際にマスクとして利用され
る。
Figure 3 shows the method of the present invention applied to a heterojunction (AlGaAs Ga
As) It is a block diagram of what is applied to MISFET. This utilizes the idea of the present invention when forming the n'''' layer (39). The semiconductor substrate (3+1) is Ga
The semiconductor substrate (30) has an undoped GaAs layer (1 μm) (32) and an undoped AffiGaAs layer (500 layers) (33) on an As semi-insulating substrate (450 μm>(31)1-). -, nGaAstI
Jli f1, Qxl Q"cm-', 5000λ
A heat-resistant date ti (36) consisting of a tungsten electrode (35) and a tungsten electrode (34) is provided, and this heat-resistant gate is connected to the side surface (36) of the pole (37) side with the drain of the pole (36).
a) (,! The remaining insulating film (3) similar to the case of the first embodiment
8) is established. The heat-resistant gate electrode (36) and the remaining insulating film (38) are the heat-resistant gate electrode (36) and the n+ ion implanted regions (low resistance layer) on both sides (39) (39)
It is used as a mask when forming by ion implantation method.

(ト)  発明の効果 本発明は以ヒの説明から明らかな妬く、ドレイン[11
11の耐熱ゲート電極[極近(fJにはn“層(低抵抗
体層)がイオン)を人されないので、高ドレイン耐圧が
保証される。ソース側の耐熱ゲート1を極近傍には必要
なイオンが注入されるため低ソース抵抗の要請は害なり
れない。
(G) Effects of the Invention The present invention is effective against envy and drain [11
A high drain breakdown voltage is guaranteed because the heat-resistant gate electrode 11 on the source side is not exposed to the heat-resistant gate electrode 11 (the n layer (low-resistance layer) is ionized at fJ). Since ions are implanted, the requirement for low source resistance is not harmful.

以L、本発明を、単純な耐熱ゲートtiのセルファライ
ンプロセスを用いて説明をしたが、本発明はサイドウオ
ールなどを用いた各種の耐熱ゲートthのセルファライ
ンプロセスに適用することができる。
Hereinafter, the present invention has been explained using a simple self-line process for heat-resistant gates ti, but the present invention can be applied to self-line processes for various heat-resistant gates th using sidewalls and the like.

4、 図面の簡l1tft説明 第1図は本発明方法の1実施例の工程図である。第2図
、鄭3図は本発明方法をそれぞれ異なるタイプのFET
に適用してなるものの構成図である。第4図は、従来方
法の工程図である。
4. Simplified explanation of drawings FIG. 1 is a process diagram of one embodiment of the method of the present invention. Figures 2 and 3 show the method of the present invention for different types of FETs.
It is a block diagram of what is applied to. FIG. 4 is a process diagram of a conventional method.

Claims (1)

【特許請求の範囲】[Claims] 1、半導体基板上に耐熱ゲート電極を選択的に形成する
工程と、該耐熱ゲート電極を付設した半導体基板上に絶
縁膜を形成する工程と、前記耐熱ゲート電極のドレイン
電極側の側面上及び該側面に隣接する半導体基板上の絶
縁膜が残るように、前記絶縁膜に対して斜め方向から該
絶縁膜をエッチングするためイオンビームを付与する工
程と、この残存絶縁膜を付けた状態で、前記半導体基板
内にイオンを注入して該半導体基板内に低抵抗層を形成
する工程とを含むことを特徴とする半導体装置の製造方
法。
1. A step of selectively forming a heat-resistant gate electrode on a semiconductor substrate, a step of forming an insulating film on the semiconductor substrate attached with the heat-resistant gate electrode, and a step of forming an insulating film on the side surface of the heat-resistant gate electrode on the drain electrode side. a step of applying an ion beam to the insulating film in order to etch the insulating film obliquely to the insulating film so that the insulating film on the semiconductor substrate adjacent to the side surface remains; A method for manufacturing a semiconductor device, comprising the step of implanting ions into a semiconductor substrate to form a low resistance layer within the semiconductor substrate.
JP26170388A 1988-10-18 1988-10-18 Manufacture of semiconductor device Pending JPH02109342A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26170388A JPH02109342A (en) 1988-10-18 1988-10-18 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26170388A JPH02109342A (en) 1988-10-18 1988-10-18 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH02109342A true JPH02109342A (en) 1990-04-23

Family

ID=17365539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26170388A Pending JPH02109342A (en) 1988-10-18 1988-10-18 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH02109342A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08321514A (en) * 1995-05-26 1996-12-03 Nec Corp Manufacture of gaas field effect transistor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08321514A (en) * 1995-05-26 1996-12-03 Nec Corp Manufacture of gaas field effect transistor

Similar Documents

Publication Publication Date Title
KR920002090B1 (en) Method of manufacturing field effect transistor
JPH02253632A (en) Manufacture of field effect transistor
JPH11354541A (en) Semiconductor device and its manufacture
JP2550013B2 (en) Field effect transistor
JPH02109342A (en) Manufacture of semiconductor device
JP3023934B2 (en) Method for manufacturing semiconductor device
JPS6160591B2 (en)
JPS6254966A (en) Schottky gate field effect transistor and manufacture thereof
JPS61187277A (en) Manufacture of field-effect transistor
JP3356817B2 (en) Method for manufacturing field effect transistor
JPS5851572A (en) Manufacture of semiconductor device
JPH0824132B2 (en) Method for manufacturing field effect transistor
JP3139208B2 (en) Method for manufacturing field effect transistor
JP2567845B2 (en) Method for manufacturing field effect transistor
JPH03289142A (en) Manufacture of compound semiconductor device
JPS6237971A (en) Manufacture of schottky barrier gate type field effect transistor
JPH06232168A (en) Field effect transistor and its manufacture
JPH028457B2 (en)
JPS63273362A (en) Manufacture of schottky barrier gate field-effect transistor
JPS6272175A (en) Manufacture of semiconductor device
JPH01119071A (en) Compound semiconductor field-effect transistor
JP2000277533A (en) Compound semiconductor device and manufacture thereof
JPH01161873A (en) Manufacture of semiconductor device
JPH0480929A (en) Manufacture of compound semiconductor device
JPH02165639A (en) Manufacture of semiconductor element