JPS63273362A - Manufacture of schottky barrier gate field-effect transistor - Google Patents

Manufacture of schottky barrier gate field-effect transistor

Info

Publication number
JPS63273362A
JPS63273362A JP10628887A JP10628887A JPS63273362A JP S63273362 A JPS63273362 A JP S63273362A JP 10628887 A JP10628887 A JP 10628887A JP 10628887 A JP10628887 A JP 10628887A JP S63273362 A JPS63273362 A JP S63273362A
Authority
JP
Japan
Prior art keywords
insulating film
impurity concentration
layer
gate electrode
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10628887A
Other languages
Japanese (ja)
Inventor
Kazuyoshi Ueno
和良 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP10628887A priority Critical patent/JPS63273362A/en
Publication of JPS63273362A publication Critical patent/JPS63273362A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0891Source or drain regions of field-effect devices of field-effect transistors with Schottky gate

Abstract

PURPOSE:To simplify the manufacturing steps of a GaAsFET of LDD structure by simultaneously ion implanting a section not covered with an insulating film and a section covered with the film to generated a high impurity concentration layer and an intermediate impurity concentration layer. CONSTITUTION:After an N-type GaAs operation layer 21 is formed on a semi- insulating GaAs substrate 11, a gate electrode 31 made of WSi is formed thereon, and SiO2 sidewalls 61 are formed at both sides. Then, a photoresist film, not shown, is formed on an ion implantation unnecessary region, with the region and the electrode 31 as masks Si ions are implanted to form an intermediate impurity concentration N<-> type layer 51 under the sidewall 61. Simultaneously, source and drain regions 141 of deep N<+> type high impurity concentration are simultaneously formed at ion implantation necessary sections, i.e., at both sides of the sidewall 61, and source and drain electrodes 711, 712 are mounted. Thus, the manufacture is simplified to obtain a GaAsFET of LDD structure having characteristics of the same degree as.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は電界効果トランジスタの製造方法に関し、更に
詳しくはゲート電極と高)開度n+不純物濃度領域の間
に中間的な不純物濃度の中間不純物′a度領領域有する
、いわゆるLDD構造ショットキー障壁ゲート型電界効
果トランジスタの製造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing a field effect transistor, and more particularly, to a method for manufacturing a field effect transistor, and more particularly, an intermediate impurity having an intermediate impurity concentration is formed between a gate electrode and a high (n+) aperture impurity concentration region. The present invention relates to a method of manufacturing a so-called LDD structure Schottky barrier gate type field effect transistor having an a-degree region.

[従来の技術] ショットキー障壁型電界効果トランジスタの特性を向上
させるためにはゲート−ソース間、ゲート−ドレイン間
の直列奇生抵抗を減少させることが必要である。例えば
GaAsを用いたショットキー障壁型電界効果トランジ
スタ(以下GaAs HESFETと称す)においては
、第2図に示す2つの素子の構造が知られている(例え
ばエクステンデイツド・アブストラクト・オブ・ザ・1
7th・コンファレンス・オン・ソリッド・ステート・
デバイスイズ・アンド・マテリアルズ、トーキヨー(E
XtendedAbstracts of the 1
7th Conference on 5olidSt
ate Devices and Materials
、Tokyo)、1985.l)p。
[Prior Art] In order to improve the characteristics of a Schottky barrier field effect transistor, it is necessary to reduce the series resistance between the gate and the source and between the gate and the drain. For example, in a Schottky barrier field effect transistor (hereinafter referred to as GaAs HESFET) using GaAs, two element structures shown in FIG.
7th Conference on Solid State
Devices & Materials, Tokyo (E
XtendedAbstracts of the 1
7th Conference on 5solidSt
ateDevices and Materials
, Tokyo), 1985. l)p.

4()5〜408)。まず、第2図(a)においては高
温度の高キヤリア濃度領域(n 層)42がゲート電極
および5i02よりなる絶縁膜をマスクとしたイオン注
入により形成されているため、ソース寄生抵抗か第2図
(b)の場合に比較して大ぎい一方で、n 層からゲー
ト電極直下への不純物拡散による短チヤネル効果の増加
が少ないという利点がある。
4()5-408). First, in FIG. 2(a), the high temperature high carrier concentration region (n layer) 42 is formed by ion implantation using the gate electrode and the insulating film made of 5i02 as a mask, so that the source parasitic resistance or the second Although this is larger than the case shown in FIG. 3(b), it has the advantage that the increase in the short channel effect due to impurity diffusion from the n layer to just below the gate electrode is small.

一方、第2図fb)においては高濃度のn+層□がゲー
ト電極に接して設けられているため、第2図(a)に比
較してソース奇生抵抗が小さいものの、n+層拡散の影
響により短チヤネル効果が大きくなるという欠点がある
。以上の(a)および(b)における双方の欠点を抑制
し、利点を生かす素子構造として、前記の絶縁膜下の領
域にn型チャネルとn+領領域中間的な濃度と深さを有
する中間濃度層を形成するLDD構造が知られている(
例えばエクステンプイツト・アブストラクト・オブ・ザ
・18th (1986インターナシヨナル)コンファ
レンス・オン・ソリッド・ステート・デバイスイズ・ア
ンド・マテリアルズ、トーキヨー(ExtendedA
bstracts of the 18th (198
6International)Conference
 on 5olid 5tate Devices a
nd Ha−terials、 Tokyo)、 19
86. pp、 383〜386)。
On the other hand, in Fig. 2 fb), the highly concentrated n+ layer □ is provided in contact with the gate electrode, so although the source resistance is smaller than in Fig. 2 (a), the effect of n+ layer diffusion is This has the disadvantage that the short channel effect becomes larger. As an element structure that suppresses the drawbacks of both (a) and (b) above and takes advantage of the advantages, the region under the insulating film has an intermediate concentration and depth that is intermediate between the n-type channel and the n+ region. LDD structures that form layers are known (
For example, the 18th (1986 International) Conference on Solid State Devices and Materials, Tokyo (Extended A
bstructs of the 18th (198
6International)Conference
on 5solid 5tate Devices a
nd Ha-terials, Tokyo), 19
86. pp. 383-386).

従来のLDD構@GaAs t−lEsFETの製造方
法を第3図を用いて説明する。
A method of manufacturing a conventional LDD structure@GaAs t-lEsFET will be described with reference to FIG.

従来の製造方法においては、まず第3図(a)に示すよ
うに、半絶縁性GaAs基板13上にn型GaAs動作
層23を設けた後、例えばWSix(X=0.6)より
なる厚さ0.5庫のゲート電極33をドライエツチング
法により形成する。続いて全面に5i02膜を厚み0.
3庫だけ被着し、更にCF4を用い、ガス圧80mTo
rr 、電力0.9W/cmの条件で異方性ドライエツ
チングを行い、少なくともゲート電極側面に絶縁膜側壁
63を残置する(第3図(b))。続いて不要部分をホ
トレジスト膜で覆い(図示せず)、ゲート電愼33、絶
縁膜側壁63およびマスク材をマスクとしてSiイオン
を加速エネルギーtookev 、ドース量3 X 1
013cm−2の条件で注入し、高不純物濃度領域43
を形成する。ざらに絶縁膜側壁63を11Fを用いたエ
ツチングにより除去し、再びイオン注入を行わない不要
部分をホトレジスト膜で覆い、ゲー(〜電極とマスク材
をマスクとして、ちょうど絶縁膜側壁63のあった領域
下に、チャネル)開度と、高不純物濃度領域の中間の濃
度と深さを有する中間不純物ia度領領域3を、Siイ
オンを加速エネルギー50keV 、ドースm 1 X
 1013cm−2の条件で注入することにより形成す
る(第3図(C))。さらにホトレジスト膜を除去した
後、800°CのへsH3雰囲気中で15分間アニール
を行い、高キヤリア濃度領域(n+層) 143 、中
間キレリア濃度領域(n′層)153を形成する。次に
第3図(d)に示すようにオーム性金居よりなるソース
電極731およびドレイン電極732を形成し、GaA
s HESFETが完成する。
In the conventional manufacturing method, as shown in FIG. 3(a), first, an n-type GaAs operating layer 23 is provided on a semi-insulating GaAs substrate 13, and then a thickness of, for example, WSix (X=0.6) is formed. A gate electrode 33 with a thickness of 0.5 mm is formed by dry etching. Next, a 5i02 film was applied to the entire surface to a thickness of 0.
Only 3 chambers were coated, and CF4 was used, and the gas pressure was 80 mTo.
Anisotropic dry etching is performed under conditions of rr and power of 0.9 W/cm to leave an insulating film sidewall 63 at least on the side surface of the gate electrode (FIG. 3(b)). Subsequently, unnecessary parts are covered with a photoresist film (not shown), and Si ions are accelerated using the gate electrode 33, the insulating film side wall 63, and the mask material as masks at an energy tookev and a dose of 3×1.
The high impurity concentration region 43 is implanted under the condition of 0.013 cm-2.
form. Roughly remove the insulating film side wall 63 by etching using 11F, cover unnecessary parts where ions will not be implanted again with a photoresist film, and remove the area where the insulating film side wall 63 was, using the electrode and mask material as a mask. At the bottom, Si ions are accelerated at an energy of 50 keV and a dose of m 1
It is formed by implanting under the condition of 1013 cm-2 (FIG. 3(C)). Further, after removing the photoresist film, annealing is performed for 15 minutes in an sH3 atmosphere at 800° C. to form a high carrier concentration region (n+ layer) 143 and an intermediate carrier concentration region (n' layer) 153. Next, as shown in FIG. 3(d), a source electrode 731 and a drain electrode 732 made of ohmic metal are formed, and GaA
s HESFET is completed.

以上述べた従来の方法では、n=層53を形成するイオ
ン注入工程とn  1i43を形成するためのイオン注
入工程の2回のイオン注入工程を必要とし、第2図に示
したようなLDD構造以前のFETの製造工程に比較し
て工程が増えるという問題があった。
The conventional method described above requires two ion implantation steps: one to form the n=layer 53 and the other to form the n1i43, resulting in an LDD structure as shown in FIG. There was a problem in that the number of steps was increased compared to the previous FET manufacturing process.

本発明は以上述べたような従来の問題点を解決するため
になされたもので、LO()構造を1回のイオン注入工
程で、再現性良く得ることのできるショットキー障壁ゲ
ート電界効果トランジスタの製造方法を提供することを
目的とする。
The present invention was made in order to solve the conventional problems as described above, and it is a Schottky barrier gate field effect transistor that can obtain an LO() structure with good reproducibility in a single ion implantation process. The purpose is to provide a manufacturing method.

[問題点を解決するための手段] 本発明は半導体動作層上にゲート電極を形成する工程と
、半導体全表面に絶縁膜を形成する工程と、前記絶縁膜
を前記ゲート電極の側壁近傍にのみ少なくとも一部を残
すほかは異方性ドライエツチング法により除去する工程
と、ゲート電極および所定部位に形成されたマスク材を
マスクとして選択的イオン注入を行い、前記絶縁膜下に
は中間不純物濃度層を、絶縁膜で覆われていない領域に
は高不純物濃度層を同時に形成する工程と、前記マスク
材を除去してウェハを力0熱し、注入不純物を活性化す
る工程と、前記高不純物濃度層上にオ−ム性の電極を形
成する工程とを含んでなることを特徴とするショットキ
ー障壁ゲート電界効果トランジスタの製造方法で必る。
[Means for Solving the Problems] The present invention includes a step of forming a gate electrode on a semiconductor active layer, a step of forming an insulating film on the entire surface of the semiconductor, and a step of forming the insulating film only near the sidewalls of the gate electrode. At least a portion of the insulating film is left in a process of removal using an anisotropic dry etching method, and selective ion implantation is performed using a mask material formed on the gate electrode and a predetermined portion as a mask, and an intermediate impurity concentration layer is formed under the insulating film. A step of simultaneously forming a high impurity concentration layer in the region not covered with the insulating film, a step of removing the mask material and heating the wafer to zero to activate the implanted impurity, and a step of activating the implanted impurity layer. forming an ohmic electrode thereon.

なお、上記絶縁膜としては、たとえば酸化ケイ素(5i
02)または窒化ケイ素(Si3  N4 )があげら
れる。
The insulating film may be made of silicon oxide (5i), for example.
02) or silicon nitride (Si3 N4).

本発明は絶縁膜に覆われていない部分および覆われてい
る部分に同時にイオン注入を行うことにより、前者の部
分下には高不純物温度層を、後者の部分下には中間不純
物濃度層を同時に形成することを特徴とするものである
。従ってゲート電極側壁近傍に残置させるべき絶縁膜の
膜厚は、イオン注入工程で適当量のイオンが注入され、
中間不純物濃度が形成され得ることをもって決定され、
半導体基板材料および絶縁膜の種類によって適宜選択さ
れる。
In the present invention, by simultaneously implanting ions into the parts not covered by the insulating film and the parts covered with the insulating film, a high impurity temperature layer is created under the former part, and an intermediate impurity concentration layer is created under the latter part. It is characterized by forming. Therefore, the thickness of the insulating film that should be left near the side walls of the gate electrode is determined by implanting an appropriate amount of ions in the ion implantation process.
an intermediate impurity concentration may be formed;
It is appropriately selected depending on the semiconductor substrate material and the type of insulating film.

[実施例] 以下、本発明の実施例について図面を参照して説明する
[Examples] Examples of the present invention will be described below with reference to the drawings.

第1図(a)〜(d)は本発明方法の一実施例を示す工
程図である。
FIGS. 1(a) to 1(d) are process diagrams showing one embodiment of the method of the present invention.

まず第1図(a)に示すように半絶縁性GaAs基板1
1上にn型GaAS動作層21を設けた後、例えば讐S
 i x (X =O−6)よりなる厚さ0.5廟のゲ
ート電極31をドライエツチング法により形成する。ゲ
ート長は1庫とした。続いて全面に5i02膜を厚み0
.3卯被着し、さらにCF4を用い、80mTorr 
、電力0.9W/cmの条件で異方性ドライエツチング
を行って第3図(b)に示すような5i02側壁61を
形成した。次いで同条件で異方性ドライエツチングを行
い、第3図(C)に示すような5i02側壁スルー膜6
4を形成した。この側壁スルー膜64はゲート電極に接
した側での膜厚が0.1μmであった。発明者の実験に
よれば、この時の5i02119B4は第1図(C)に
示すようにテーパ状の形状となり、ゲートから離れるに
したがい薄くなりゲート端から0.2庫で膜厚零となる
First, as shown in FIG. 1(a), a semi-insulating GaAs substrate 1
After providing the n-type GaAS operating layer 21 on the
A gate electrode 31 having a thickness of 0.5 mm and made of i x (X = O-6) is formed by dry etching. The gate length was set to one warehouse. Next, apply a 5i02 film to a thickness of 0 on the entire surface.
.. 80mTorr using CF4
, anisotropic dry etching was performed at a power of 0.9 W/cm to form a 5i02 side wall 61 as shown in FIG. 3(b). Next, anisotropic dry etching was performed under the same conditions to form the 5i02 sidewall through film 6 as shown in FIG. 3(C).
4 was formed. This sidewall through film 64 had a film thickness of 0.1 μm on the side in contact with the gate electrode. According to the inventor's experiments, 5i02119B4 at this time has a tapered shape as shown in FIG. 1(C), and becomes thinner as it moves away from the gate, reaching zero film thickness at 0.2 points from the gate end.

次にイオン注入される必要のない領域を厚さ1.5珈の
ホトレジスト膜(図示せず)で覆い、ホトレジスト膜と
ゲート電極をマスクとしてSiイオンを加速エネルギー
100KeV 、ドース母3 X 1013ctn−2
条件でイオン注入すると5i02膜の下には5i02膜
で減速され、エネルギーの低下したSiイオンが注入さ
れ、5i02膜のない領域よりも浅く低m度の中間不純
物温度領域(n′層)51が形成される。LSS理論に
よれば5i02中へのSiイオンの100KeVのイオ
ン注入によるイオン注入プロファイルは投影飛程0.1
084珈、標Q偏差0.0356卯のガウス部分15と
なりGaAS中への同条件によるイオン注入プロファイ
ルは投影飛程0.085 珈、標準偏差0.042μm
のがウス型分布となる。従ってS!02膜を通したイオ
ン注入では5i02膜のない領域よりも5i02膜中に
注入される旬だけ浅く低温度のn′注入層となる。
Next, areas that do not need to be ion-implanted are covered with a photoresist film (not shown) with a thickness of 1.5 c, and Si ions are accelerated with an energy of 100 KeV and a dose base of 3 x 1013 ctn-2 using the photoresist film and the gate electrode as masks.
When ions are implanted under these conditions, Si ions with reduced energy are implanted under the 5i02 film, and an intermediate impurity temperature region (n' layer) 51 is formed which is shallower and has a lower temperature than the region without the 5i02 film. It is formed. According to LSS theory, the ion implantation profile of 100KeV ion implantation of Si ions into 5i02 has a projected range of 0.1.
084mm, Gaussian part 15 with standard Q deviation of 0.0356mm, and the ion implantation profile into GaAS under the same conditions has a projected range of 0.085mm, standard deviation of 0.042μm.
is a Uth-shaped distribution. Therefore S! In the case of ion implantation through the 02 film, the n' implantation layer becomes shallower and has a lower temperature in the region where the ions are implanted into the 5i02 film than in the region without the 5i02 film.

ざらにホトレジスト膜を除去した後、800’CのAs
t13雰囲気中で15分間アニールを行い高キヤリア濃
度領域141および中間キャリア)開度領域151を形
成する。次に第1図(d)に示すようにオーム性金屈と
してAuGe−Niよりなる積層金属膜をホトレジスト
により形成したパターンにしたがいソースおよびドレイ
ン電極領域に蒸着する。不要な部分のAuGe −Ni
膜をホトレジストとともにリフトオフして除去した後、
合金化熱処理を行ってソース電極711およびドレイン
電極712を形成することによりGaAs HESFE
Tが完成する。
After roughly removing the photoresist film, As
Annealing is performed for 15 minutes in a t13 atmosphere to form a high carrier concentration region 141 and an intermediate carrier aperture region 151. Next, as shown in FIG. 1(d), a laminated metal film made of AuGe-Ni as an ohmic film is deposited on the source and drain electrode regions according to a pattern formed using photoresist. AuGe-Ni in unnecessary parts
After removing the film by lift-off along with the photoresist,
GaAs HESFE is formed by performing alloying heat treatment to form a source electrode 711 and a drain electrode 712.
T is completed.

このように本発明によればゲート電極とn 高キヤリア
濃度領域との間に中間的なキャリア濃度の領域を1回の
イオン注入で形成でき、製造工程の簡略化が実現できた
As described above, according to the present invention, a region with intermediate carrier concentration can be formed between the gate electrode and the n-high carrier concentration region by a single ion implantation, and the manufacturing process can be simplified.

[発明の効果] 以上の説明から明らかなように、本発明によればソース
寄生抵抗の増加を防ぐための中間濃度領域をゲート電極
と高キヤリア濃度領域間に自己整合的に1回のイオン注
入工程によりnllの形成と同時に形成できるため製造
工程が簡略化され、しかも従来と同程度の良好な特性を
有する[DD、構造GaAs HESFETが得られる
という効果を有する。
[Effects of the Invention] As is clear from the above description, according to the present invention, an intermediate concentration region for preventing an increase in source parasitic resistance is implanted between the gate electrode and the high carrier concentration region in a single self-aligned ion implantation process. Since it can be formed simultaneously with the formation of NLL, the manufacturing process is simplified, and it has the effect that a [DD, structure GaAs HESFET] having characteristics as good as conventional ones can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(C)は本発明方法の一実施例を示す工
程図、第2図は従来のショットキー障壁グート電界効果
トランジスタの構造を概略的に示す断面図、第3図は従
来のLDD構造ショットキー障壁ゲート電界効果トラン
ジスタの製造方法を示す工程図である。 11.12.13−・・半絶縁性GaAs基板21.2
2.23・・・動作層 31.32.33・・・ゲート電極 41.43・・・高不純物濃度領域 42、141.143・・・高キャリア温度領域51.
53・・・中間不純物濃度領域 61・・・5i02側壁 63・・・絶縁膜側壁 64・・・5i02側壁スルー膜 151、153・・・中間キャリア濃度領域711、7
21.731・・・ソース電極712、722.732
・・・ドレイン電極代理人弁理士  舘  野  千惠
子 第1図 第2図 第3図 手続ネ由正書(方式)       7昭和62年8月
7日   (1 図
Figures 1(a) to (C) are process diagrams showing one embodiment of the method of the present invention, Figure 2 is a cross-sectional view schematically showing the structure of a conventional Schottky barrier Guth field effect transistor, and Figure 3 is a process diagram showing an embodiment of the method of the present invention. 1 is a process diagram showing a method of manufacturing a conventional LDD structure Schottky barrier gate field effect transistor; FIG. 11.12.13--Semi-insulating GaAs substrate 21.2
2.23...Active layer 31.32.33...Gate electrode 41.43...High impurity concentration region 42, 141.143...High carrier temperature region 51.
53... Intermediate impurity concentration region 61...5i02 side wall 63... Insulating film side wall 64...5i02 side wall through film 151, 153... Intermediate carrier concentration region 711, 7
21.731...source electrode 712, 722.732
... Drain Electrode Representative Patent Attorney Chieko Tateno Figure 1 Figure 2 Figure 3 Procedure Manual (Method) 7 August 7, 1986 (Figure 1)

Claims (2)

【特許請求の範囲】[Claims] (1)半導体動作層上にゲート電極を形成する工程と、
半導体全表面に絶縁膜を形成する工程と、前記絶縁膜を
前記ゲート電極の側壁近傍にのみ少なくとも一部を残す
ほかは異方性ドライエッチング法により除去する工程と
、ゲート電極および所定部位に形成されたマスク材をマ
スクとして選択的イオン注入を行い、前記絶縁膜下には
中間不純物濃度層を、絶縁膜で覆われていない領域には
高不純物濃度層を同時に形成する工程と、前記マスク材
を除去してウェハを加熱し、注入不純物を活性化する工
程と、前記高不純物濃度層上にオーム性の電極を形成す
る工程とを含んでなることを特徴とするショットキー障
壁ゲート電界効果トランジスタの製造方法。
(1) forming a gate electrode on the semiconductor active layer;
forming an insulating film on the entire surface of the semiconductor; removing the insulating film by anisotropic dry etching except for leaving at least a portion only near the sidewalls of the gate electrode; and forming the insulating film on the gate electrode and a predetermined portion. A step of performing selective ion implantation using the mask material obtained as a mask to simultaneously form an intermediate impurity concentration layer under the insulating film and a high impurity concentration layer in a region not covered with the insulating film; A Schottky barrier gate field effect transistor comprising the steps of: activating the implanted impurity by heating the wafer; and forming an ohmic electrode on the high impurity concentration layer. manufacturing method.
(2)絶縁膜が酸化ケイ素(SiO_2)または窒化ケ
イ素(Si_3N_4)である特許請求の範囲第1項記
載のショットキー障壁ゲート電界効果トランジスタの製
造方法。
(2) The method for manufacturing a Schottky barrier gate field effect transistor according to claim 1, wherein the insulating film is silicon oxide (SiO_2) or silicon nitride (Si_3N_4).
JP10628887A 1987-05-01 1987-05-01 Manufacture of schottky barrier gate field-effect transistor Pending JPS63273362A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10628887A JPS63273362A (en) 1987-05-01 1987-05-01 Manufacture of schottky barrier gate field-effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10628887A JPS63273362A (en) 1987-05-01 1987-05-01 Manufacture of schottky barrier gate field-effect transistor

Publications (1)

Publication Number Publication Date
JPS63273362A true JPS63273362A (en) 1988-11-10

Family

ID=14429873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10628887A Pending JPS63273362A (en) 1987-05-01 1987-05-01 Manufacture of schottky barrier gate field-effect transistor

Country Status (1)

Country Link
JP (1) JPS63273362A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5376812A (en) * 1989-04-12 1994-12-27 Mitsubishi Denki Kabushiki Kaisha Semiconductor device
US5512499A (en) * 1991-03-01 1996-04-30 Motorola, Inc, Method of making symmetrical and asymmetrical MESFETS

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5376812A (en) * 1989-04-12 1994-12-27 Mitsubishi Denki Kabushiki Kaisha Semiconductor device
US5512499A (en) * 1991-03-01 1996-04-30 Motorola, Inc, Method of making symmetrical and asymmetrical MESFETS

Similar Documents

Publication Publication Date Title
JP2826924B2 (en) Method of manufacturing MOSFET
US5100820A (en) MOSFET fabrication process with lightly-doped drain using local oxidation step to pattern gate electrode
JPH0629532A (en) Mosfet and its manufacture
US4351099A (en) Method of making FET utilizing shadow masking and diffusion from a doped oxide
US5817563A (en) Method for fabricating an LDD transistor
US5262337A (en) Method of making a metal oxide semiconductor field effect transistor having a convex channel region
JPH0846196A (en) Mos transistor and its preparation
JPS63257231A (en) Manufacture of semiconductor device
US20040203210A1 (en) Method of fabricating a semiconductor device having a shallow source/drain region
JPH0548957B2 (en)
JPS63273362A (en) Manufacture of schottky barrier gate field-effect transistor
JPH0298143A (en) Manufacture of ldd structure polysilicon thin film transistor
JPH0316141A (en) Semiconductor device
KR100532978B1 (en) Fabricating method of semiconductor device
KR100320436B1 (en) Method for manufacturing mosfet
JP3023934B2 (en) Method for manufacturing semiconductor device
KR100295652B1 (en) Methd for fabricating salicide of semiconductor device
KR100268865B1 (en) Method for fabricating semiconductor device
JPS6112079A (en) Manufacture of semiconductor element
KR0144246B1 (en) Transistor Manufacturing Method
KR0186198B1 (en) Method of fabricating transistor
KR0142782B1 (en) Manufacture of semiconductor
JP2726730B2 (en) Manufacturing method of field effect transistor
JPS62166571A (en) Manufacture of semiconductor device
JPH01161873A (en) Manufacture of semiconductor device