JPH02191345A - Manufacture of field-effect transistor - Google Patents

Manufacture of field-effect transistor

Info

Publication number
JPH02191345A
JPH02191345A JP1069289A JP1069289A JPH02191345A JP H02191345 A JPH02191345 A JP H02191345A JP 1069289 A JP1069289 A JP 1069289A JP 1069289 A JP1069289 A JP 1069289A JP H02191345 A JPH02191345 A JP H02191345A
Authority
JP
Japan
Prior art keywords
gate electrode
layer
electrode
gaas
temporary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1069289A
Other languages
Japanese (ja)
Other versions
JP2745624B2 (en
Inventor
Yasuyuki Suzuki
康之 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1069289A priority Critical patent/JP2745624B2/en
Publication of JPH02191345A publication Critical patent/JPH02191345A/en
Application granted granted Critical
Publication of JP2745624B2 publication Critical patent/JP2745624B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To obtain a field-effect transistor having high uniformity and high performance by a method wherein a semiconductor layer different from the surface semiconductor layer of a wafer is selectively built up on the wafer surface on both the sides of a temporary gate electrode and, after a recess is formed in the semiconductor layer from which the temporary gate electrode is removed, a gate electrode, a source electrode and a drain electrode are formed simultaneously. CONSTITUTION:A high purity GaAs layer 2, an Si-doped N-type AlGaAs layer 3 and an Si-doped N-type GaAs layer 4 are successively built up on a semi- insulating GaAs substrate 1. On a wafer prepared like this, a temporary gate electrode 9 is formed by dry etching. After that, AlGaAs layer 10 are formed on both sides of the temporary gate electrode 9 by selective epitaxial growth. After the temporary gate electrode 9 is removed, a gate recess 11 is formed by dry etching. After that, TiAu is applied by self-alignment deposition to provide a gate metal which forms non-alloy ohmic contact with the high impurity concentration GaAs layer 4. A FET is thus completed by forming a gate electrode 7, a source electrode 5 and a drain electrode 6 simultaneously.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電界効果トランジスタの製造方法に関するもの
で、特にヘテロ接合を利用した電界効果トランジスタの
製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a field effect transistor, and particularly to a method for manufacturing a field effect transistor using a heterojunction.

〔従来の技術〕[Conventional technology]

従来技術の一例としてGaASとAj?GaAsの異種
接合の場合について説明する。GaASとAj’GaA
sのへテロ接合を用いた電界効果トランジスタ(以下F
ETと記す)は、GaAsのみを用いたFET (ME
SFET)より高速、高性能な素子として考えられ、低
雑音素子及び高速ICへ応用されている。
As an example of conventional technology, GaAS and Aj? The case of a GaAs heterojunction will be explained. GaAS and Aj'GaA
A field effect transistor using a heterojunction of s (hereinafter referred to as F
ET) is an FET (ME
It is considered to be a faster and more efficient device than SFET (SFET), and is applied to low-noise devices and high-speed ICs.

FET0高性能化には、微細ゲート電極の形成とソース
抵抗の低減が不可欠である。ソース抵抗の低減に関して
は、第2図(a)に示すように、ゲート部が掘り込まれ
、ソース・ドレイン領域がゲート電極7の側面に形成さ
れるリセス構造が採用されている。また微細ゲート電極
形成に関しては、エレクトロンビーム(以下EBと記す
)直溝により0.3〜0.4μmのゲート電極形成が最
近成されている。なお図中、1は半絶縁性GaAs基板
、2は高純度GaAs層、3はN型Al1GaAS層、
4はN型GaAs層、5はソース電極、6はドレイン電
極である。
To improve the performance of FET0, it is essential to form a fine gate electrode and reduce source resistance. In order to reduce the source resistance, as shown in FIG. 2(a), a recessed structure is adopted in which the gate portion is dug and the source/drain regions are formed on the side surfaces of the gate electrode 7. Regarding the formation of fine gate electrodes, gate electrodes of 0.3 to 0.4 μm have recently been formed using electron beam (hereinafter referred to as EB) straight grooves. In the figure, 1 is a semi-insulating GaAs substrate, 2 is a high-purity GaAs layer, 3 is an N-type Al1GaAS layer,
4 is an N-type GaAs layer, 5 is a source electrode, and 6 is a drain electrode.

このような構造のFETは、基本的に以下のような工程
で製造されている。第2図(b)〜(d)に素子の断面
図を示し、工程を説明する。
FETs having such a structure are basically manufactured through the following steps. FIGS. 2(b) to 2(d) show cross-sectional views of the device, and the steps will be explained.

まず、第2図(b)に示すように、高抵抗GaAs基板
1上に分子線エピタキシ(MBE)法により、高純度G
aAs層2. N型AlGaAs層3、N型GaAS層
4を形成する。ここで、高純度G a A s Ji!
 2はチャネル層、N型AlGaAsN3はキャリア供
給層、N型G a A s ’ffJ 4はソース抵抗
低減のためのキャンプ層である。
First, as shown in FIG. 2(b), high-purity G was deposited on a high-resistance GaAs substrate 1 by molecular beam epitaxy (MBE).
aAs layer 2. An N-type AlGaAs layer 3 and an N-type GaAS layer 4 are formed. Here, high purity Ga As Ji!
2 is a channel layer, N-type AlGaAsN3 is a carrier supply layer, and N-type GaAs'ffJ 4 is a camp layer for reducing source resistance.

次に、メサエッチングあるいはB”イオン注入により素
子分離を行う。次に、第2図(c)に示すように、ソー
ス電極5及びドレイン電極6のオーミック電極を所定の
間隔をおいて形成する。続いて、第2図(d)に示すよ
うに、ソース電極5とドレイン電極6間のいわゆるチャ
ネル領域の所望の位置に開口部を残して他を被覆するレ
ジストN8を形成する0次に、第2図(a)に示すよう
に、レジストをマスクとして半導体N4に凹部、いわゆ
るリセス領域を形成した後、周知の真空蒸着法によりT
 i / A u等のゲート電極材料を被着させ、その
後、リフトオフ法を適用することによりショットキバリ
アゲート電極7がリセス内に選択的に形成されたリセス
ゲート構造を得る。
Next, device isolation is performed by mesa etching or B'' ion implantation.Next, as shown in FIG. 2(c), ohmic electrodes of a source electrode 5 and a drain electrode 6 are formed at a predetermined interval. Subsequently, as shown in FIG. 2(d), a resist N8 is formed to leave an opening at a desired position in the so-called channel region between the source electrode 5 and the drain electrode 6, and to cover the rest. As shown in FIG. 2(a), after forming a concave portion, a so-called recess region, in the semiconductor N4 using a resist as a mask, T is formed using a well-known vacuum evaporation method.
A gate electrode material such as i/A u is deposited, and then a lift-off method is applied to obtain a recessed gate structure in which a Schottky barrier gate electrode 7 is selectively formed within the recess.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

以上のような製造方法では、リセスは、AJGaASと
GaASの選択性がないリン酸系のエツチング液で、開
口するため、素子のしきい値電圧並びに特性のバラツキ
が大きくウェハー面内の均一性が非常に悪い。
In the above manufacturing method, the recesses are opened using a phosphoric acid-based etching solution that does not have selectivity between AJGaAS and GaAS, resulting in large variations in the threshold voltage and characteristics of the devices and poor uniformity within the wafer surface. Very bad.

一方、第3図に示すようなAI!GaAsとGaAsと
の選択比が大きいCCl t F z + He系のガ
スを用い、リセス開口部をドライエツチングで形成する
方法も考えられる。この場合、リセス部の掘り込みはA
j?GaAS層で停止し、高均一性が期待される。しか
しながら、EB露光用のレジストは耐ドライエツチ性が
ないため、EB露光で漱細なゲートを形成しようとして
もドライエッチは使用できない。また耐ドライエツチ性
がある光学露光用レジストを用いゲート形成を行っても
0.3〜0.4μmの長さのゲートはできない。
On the other hand, AI as shown in Figure 3! It is also conceivable to form the recess opening by dry etching using a CCl t F z + He type gas which has a high selectivity between GaAs and GaAs. In this case, the depth of the recess is A
j? It stops at the GaAS layer, and high uniformity is expected. However, since the resist for EB exposure does not have dry etch resistance, dry etching cannot be used even if a thin gate is to be formed by EB exposure. Further, even if a gate is formed using an optical exposure resist having dry etching resistance, a gate having a length of 0.3 to 0.4 .mu.m cannot be formed.

本発明の目的は、以上のような従来技術における性能の
限界を打破し、高均一・高性能な電界効果トランジスタ
の製造方法を提供することにある。
An object of the present invention is to overcome the performance limitations of the conventional techniques as described above and to provide a method for manufacturing highly uniform and high-performance field effect transistors.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の電界効果トランジスタの製造方法は、異種の半
導体材料を積層してウェハーを形成する工程と、 前記ウェハー上に仮のゲート電極を形成する工程と、 前記仮のゲート電極の両側の前記ウェハー表面に表面の
半導体層と異なる半導体層を選択的に積層させる工程と
、 前記仮のゲート電極を除去し、除去したゲート領域の半
導体層を選択的にエツチングする工程と、ゲート電極、
ソース電極、ドレイン電極を同時に形成する工程とを含
むことを特徴とする。
A method for manufacturing a field effect transistor according to the present invention includes: forming a wafer by stacking different types of semiconductor materials; forming a temporary gate electrode on the wafer; and wafers on both sides of the temporary gate electrode. a step of selectively laminating a semiconductor layer different from the semiconductor layer on the surface on the surface; a step of removing the temporary gate electrode and selectively etching the semiconductor layer in the removed gate region;
The method is characterized in that it includes a step of simultaneously forming a source electrode and a drain electrode.

〔実施例〕〔Example〕

以下、本発明の実施例を図面を参照して説明する。第1
図は本発明の一実施例を説明するための模式的断面図で
ある。
Embodiments of the present invention will be described below with reference to the drawings. 1st
The figure is a schematic cross-sectional view for explaining one embodiment of the present invention.

この素子は以下のようにして製作される。まず、第1図
(a)に示すように、半絶縁性GaAs1板1上に、M
BE法を用いチャネル層となる高純度G a A s 
N 2を1μm、次に、キャリア供給層となる不純物濃
度2 XIO”c m−’のSiドープN型のAllG
aAs層3を200人、次にキャンプ層として不純物濃
度I XIO”c m−’のSLドープN型GaAs層
4を2000人成長する。このように形成されたウェハ
ーを用い、素子分離としてB゛を100k e V、 
l xlQ”c m−”でイオン注入を行う。
This element is manufactured as follows. First, as shown in FIG. 1(a), M
High-purity GaAs that becomes the channel layer using BE method
N2 to 1 μm, then Si-doped N-type AllG with an impurity concentration of 2XIO"cm-' to form a carrier supply layer.
200 layers of aAs layer 3 are grown, and then 2000 layers of SL-doped N-type GaAs layer 4 with an impurity concentration of IXIO''cm-' are grown as a camp layer.Using the wafer thus formed, B'' is grown as a device isolation layer. 100k e V,
Ion implantation is performed with l xlQ"cm-".

次に、ウェハー全面にCVD法により5i02膜を20
00人被着5た後、レジストをマスクとして、SF6ガ
スによりドライエッチを行い、第1図(b)に示すよう
に、0.3μm長の仮ゲート電極9を形成する。その後
、第1図(C)に示すように、GaAs層と仮ゲート電
極のSiO□の選択エピタキシャル成長により、AI!
GaAsJilOを仮ゲート電極9の両側に50人成長
して積層させる。
Next, a 5i02 film was deposited on the entire surface of the wafer for 20 minutes using the CVD method.
After 0.000 µm deposition, dry etching is performed using SF6 gas using the resist as a mask to form a temporary gate electrode 9 having a length of 0.3 μm, as shown in FIG. 1(b). Thereafter, as shown in FIG. 1(C), by selective epitaxial growth of the GaAs layer and SiO□ of the temporary gate electrode, AI!
Fifty layers of GaAsJilO are grown and laminated on both sides of the temporary gate electrode 9.

次に、仮ゲート電極9をHF等で除去した後、CCβz
Fz+l(e系のガスを用いて、ドライエッチを行い、
第1図(d)に示すようにゲートリセス11を形成する
。第3図において説明したように、C(ltF、+He
系のガスにより、GaAsとAj!GaAsは選択的に
ドライエツチングできる。
Next, after removing the temporary gate electrode 9 with HF or the like, CCβz
Fz+l (dry etching using e-based gas,
A gate recess 11 is formed as shown in FIG. 1(d). As explained in FIG. 3, C(ltF, +He
Depending on the gas in the system, GaAs and Aj! GaAs can be selectively dry etched.

したがって仮ゲート電極9を除去したGaAsJ14の
領域のみが掘り込まれる。
Therefore, only the region of GaAsJ 14 from which temporary gate electrode 9 has been removed is dug.

その後、第1図(6)に示すように、ゲート金属となり
、しかも高濃度GaAS層4とノンアロイオーミックと
なるT i / A uをセルファライン的に蒸着して
、ゲート電極7.ソース電極5.ドレイン電極6を同時
に形成して、素子が完成する。
Thereafter, as shown in FIG. 1(6), Ti/Au, which becomes the gate metal and is non-alloyohmic with the high-concentration GaAS layer 4, is deposited in a self-line manner to form the gate electrode 7. Source electrode5. A drain electrode 6 is formed at the same time to complete the device.

このように作製したFETでは、リセス形成を選択ドラ
イエッチを用いているために、ウェハー面内のしきい値
電圧並びに素子特性の均一性が非常によく、さらにゲー
ト長はドライエッチで形成した仮ゲート電極の長さで決
まるため、0.3〜0.4μmとEB露光と同程度の微
細ゲートが形成され、高性能な素子が実現できた。
In FETs fabricated in this manner, selective dry etching is used to form recesses, so the threshold voltage and device characteristics within the wafer surface are very uniform, and the gate length is Since it is determined by the length of the gate electrode, a fine gate of 0.3 to 0.4 μm, which is comparable to EB exposure, was formed, and a high-performance device was realized.

上記実施例は高純度GaAsとN型Aj!GaASの接
合の電界効果トランジスタの場合について述べたが、高
純度GaAs層の上部にN型GaASN%このN型Ga
 A sJi上に高純度AIGaAS層、この高純度A
lGaAs層上にN型GaA3層が積層されているN型
GaAsと高純度Δ1GaAsの接合の電界効果トラン
ジスタにおいても、同様に作製される。さらに、他の異
種材料を用いた電界効果トランジスタにおいても選択比
があるガスを用いて、同様に作製することが可能である
The above embodiment uses high-purity GaAs and N-type Aj! We have described the case of a GaAS junction field effect transistor.
High-purity AIGaAS layer on A sJi, this high-purity A
A field effect transistor having a junction of N-type GaAs and high-purity Δ1GaAs, in which three N-type GaA layers are laminated on a 1GaAs layer, is manufactured in the same manner. Furthermore, field effect transistors using other different materials can also be manufactured in the same way using gases with selectivity.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、微細ゲートでし
かも選択ドライエッチが使用でき、高性能・高均一な電
界効果トランジスタが実現できる。
As described above, according to the present invention, it is possible to realize a high performance and highly uniform field effect transistor with a fine gate and selective dry etching.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(e)は、本発明の詳細な説明するため
の素子断面図、 第2図(a)〜(d)は、従来例を説明するための素子
断面図、 第3図は、CC1zFt+He系のエツチングレートを
表した図である。 1・・・・・半絶縁性GaAs基板 2・・・・・高純度GaAsM 3・・・・・N型AlGaAs層 4・・・・・N型GaAs層 5・・・・・ソース電極 6・・・・・ドレイン電極 7・・・・・ゲート電極 8・・・・・レジスト 9・・・・・SiO□仮ゲート電極 10・・・・・再成長ArGaAs層 11・・・・・ゲートリセス (G) (b) 代理人 弁理士  岩 佐  義 幸 (C) 第1図 (d) (ei) 第1図 第2図 (C) 第2図 エラ子ンI:J時間(sec) 第3図
1(a) to (e) are sectional views of an element for explaining the present invention in detail; FIGS. 2(a) to 2(d) are sectional views of an element for explaining a conventional example; The figure shows the etching rate of CC1zFt+He system. 1... Semi-insulating GaAs substrate 2... High purity GaAsM 3... N-type AlGaAs layer 4... N-type GaAs layer 5... Source electrode 6. ... Drain electrode 7 ... Gate electrode 8 ... Resist 9 ... SiO□ Temporary gate electrode 10 ... Regrown ArGaAs layer 11 ... Gate recess ( G) (b) Agent Patent attorney Yoshiyuki Iwasa (C) Fig. 1 (d) (ei) Fig. 1 Fig. 2 (C) Fig. 2 Era child I: J time (sec) Fig. 3

Claims (1)

【特許請求の範囲】[Claims] (1)異種の半導体材料を積層してウェハーを形成する
工程と、 前記ウェハー上に仮のゲート電極を形成する工程と、 前記仮のゲート電極の両側の前記ウェハー表面に表面の
半導体層と異なる半導体層を選択的に積層させる工程と
、 前記仮のゲート電極を除去し、除去したゲート領域の半
導体層を選択的にエッチングする工程と、ゲート電極、
ソース電極、ドレイン電極を同時に形成する工程とを含
むことを特徴とする電界効果トランジスタの製造方法。
(1) forming a wafer by stacking different types of semiconductor materials; forming a temporary gate electrode on the wafer; a step of selectively stacking a semiconductor layer; a step of removing the temporary gate electrode and selectively etching the semiconductor layer in the removed gate region;
A method for manufacturing a field effect transistor, comprising the step of simultaneously forming a source electrode and a drain electrode.
JP1069289A 1989-01-19 1989-01-19 Method for manufacturing field effect transistor Expired - Fee Related JP2745624B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1069289A JP2745624B2 (en) 1989-01-19 1989-01-19 Method for manufacturing field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1069289A JP2745624B2 (en) 1989-01-19 1989-01-19 Method for manufacturing field effect transistor

Publications (2)

Publication Number Publication Date
JPH02191345A true JPH02191345A (en) 1990-07-27
JP2745624B2 JP2745624B2 (en) 1998-04-28

Family

ID=11757335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1069289A Expired - Fee Related JP2745624B2 (en) 1989-01-19 1989-01-19 Method for manufacturing field effect transistor

Country Status (1)

Country Link
JP (1) JP2745624B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6117713A (en) * 1997-02-12 2000-09-12 Denso Corporation Method of producing a MESFET semiconductor device having a recessed gate structure
JP2008263146A (en) * 2007-04-13 2008-10-30 Matsushita Electric Ind Co Ltd Semiconductor device and method of manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6117713A (en) * 1997-02-12 2000-09-12 Denso Corporation Method of producing a MESFET semiconductor device having a recessed gate structure
JP2008263146A (en) * 2007-04-13 2008-10-30 Matsushita Electric Ind Co Ltd Semiconductor device and method of manufacturing the same

Also Published As

Publication number Publication date
JP2745624B2 (en) 1998-04-28

Similar Documents

Publication Publication Date Title
US4908325A (en) Method of making heterojunction transistors with wide band-gap stop etch layer
US5610410A (en) III-V compound semiconductor device with Schottky electrode of increased barrier height
US5448086A (en) Field effect transistor
JPH10209434A (en) Heterojunction field effect transistor, and its manufacturing method
JPH11186280A (en) Bipolar transistor and manufacture thereof
JP2630446B2 (en) Semiconductor device and manufacturing method thereof
JPH02191345A (en) Manufacture of field-effect transistor
JPH0260222B2 (en)
JPH0217934B2 (en)
JP3747391B2 (en) Compound semiconductor device and manufacturing method thereof
JP2001244276A (en) Semiconductor device and its manufacturing method
JPH02191344A (en) Manufacture of field-effect transistor
JPH05275464A (en) Manufacture of compound semiconductor integrated circuit device
JP3064559B2 (en) Method for manufacturing high electron mobility transistor
JP2591436B2 (en) Method for manufacturing field effect transistor
JPH03159135A (en) Semiconductor device and its manufacture
JPS62115782A (en) Manufacture of semiconductor device
JP3077653B2 (en) Field effect transistor and method of manufacturing the same
JPH06163602A (en) High-electron-mobility transistor and its manufacture
JPH04212428A (en) Manufacture of semiconductor device
JP3109097B2 (en) Method for manufacturing field effect transistor and etching method
JPH0438836A (en) Manufacture of semiconductor device
JPH04145629A (en) Field effect transistor and its manufacture
JPH04321236A (en) Manufacture of field-effect transistor
JPH0323641A (en) Manufacture of field-effect transistor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees