JPS6386483A - Semiconductor light-emitting diode - Google Patents

Semiconductor light-emitting diode

Info

Publication number
JPS6386483A
JPS6386483A JP61230768A JP23076886A JPS6386483A JP S6386483 A JPS6386483 A JP S6386483A JP 61230768 A JP61230768 A JP 61230768A JP 23076886 A JP23076886 A JP 23076886A JP S6386483 A JPS6386483 A JP S6386483A
Authority
JP
Japan
Prior art keywords
conductivity type
semiconductor
semiconductor layer
active layer
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61230768A
Other languages
Japanese (ja)
Inventor
Toshio Uji
俊男 宇治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP61230768A priority Critical patent/JPS6386483A/en
Publication of JPS6386483A publication Critical patent/JPS6386483A/en
Pending legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)

Abstract

PURPOSE:To enable an end face light emission which is stable against the temperature and has small temperature dependency of output light by sequentially stacking in part of the current injection region, contacting with an active layer having a low band gap energy value (E value), a semiconductor layer of the same conductivity type having a high E value, then a semiconductor layer having a moderate E value, and a semiconductor layer of a different conductivity type having a high E value. CONSTITUTION:This semiconductor light-emitting diode has a double hetero junction structure in which an active layer of a first conductivity type is formed on a substrate. The active layer has a band gap energy Eg=Eg. The diode also includes a striped light emitting region. In part of the current injection region, there is provided a semiconductor structure comprised of, sequentially stacked and contacted with the active layer, a semiconductor layer of the first conductivity type and Eg=Eg2 (Eg2>Eg1), a semiconductor layer of the first conductivity type and Eg=Eg3 (Eg1<Eg3<Eg2) and a semiconductor layer of a second conductivity type and Eg=Eg4 (Eg4>Eg3). This LED has a high fiber coupling output and the temperature stability of the optical output is remarkably high.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は光フアイバー通信に適した半導体発光ダイオー
ド(以下LEDと呼ぶ)に関する6(従来の技術) 光フアイバー通信を目的とするLEDでは、高輝度で、
ファイバー結合出力の大きいことが重要である。従来、
高ファイバー出力を有するLEDとしては、ストライプ
状の発光領域を有し、ストライプ端部から光を取出ず端
面発光LEDが開発されていた(光通信素子工学。工学
図書、(1983) p12g〜134)。端面発光L
EDでは、発光領域がストライプ状であるから、利得領
域長が長く、誘導放出光成分が大きくなり高出力化が容
易である。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a semiconductor light emitting diode (hereinafter referred to as LED) suitable for optical fiber communication. In brightness,
A high fiber coupling power is important. Conventionally,
As an LED with high fiber output, an edge-emitting LED has been developed that has a striped light emitting region and does not take out light from the edge of the stripe (Optical Communication Device Engineering. Kogaku Tosho, (1983) p. 12g-134). . Edge emission L
In the ED, since the light emitting region is striped, the gain region length is long and the stimulated emission light component is large, making it easy to increase the output.

(発明が解決しようとする問題点) ところが、上述した従来のLEDは、誘導放出光成分が
大きいから、光出力の温度依存性が大きいという欠点が
あった。LEDを搭載した装置は、多様な環境温度のも
とで使用されるから、LEDの光出力の温度依存性が大
きいことは、実用上重大な問題であった。そこで、ベル
チェ素子のような冷却器で温度を制御したり、電子回路
で温度補償をする必要があった。しかし、冷却器ではコ
ストが高価となり、かつ、サイズも大きいという欠点が
ある。又、電子回路による補償も、大きな光出力変化に
対しては、充分な補償をすることが困難で、かつ回路も
複雑になった。
(Problems to be Solved by the Invention) However, the above-mentioned conventional LED has a drawback that the stimulated emission light component is large, so that the temperature dependence of the light output is large. Since devices equipped with LEDs are used under various environmental temperatures, the large temperature dependence of the light output of LEDs has been a serious problem in practice. Therefore, it was necessary to control the temperature with a cooler such as a Bertier element, or to compensate for the temperature with an electronic circuit. However, coolers have the drawbacks of being expensive and large in size. In addition, compensation using an electronic circuit is difficult to sufficiently compensate for large changes in optical output, and the circuit becomes complicated.

本発明の目的は、光出力の温度依存性の小さい温度に対
し安定な端面発光LEDを提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an edge-emitting LED whose light output is stable with respect to temperature and whose temperature dependence is small.

(問題点を解決するための手段) 前述の問題点を解決し上記目的を達成するために本発明
が提供する手段は、半導体基板上に、第1の導電型で、
バンドギャップエネルギー(以下Egと呼ぶ)がE g
、 −E g Iの活性層を有するダブルへテロ積層構
造を設け、ストライプ状の発光領域を有してなる半導体
発光ダイオードであって、電流注入領域の一部に、活性
層に接して、第1の導電型でEg−Egg (Egx 
> Egs )の半導体層と、第1の導電型でEg−E
gs(Eg□< E ga < E ga )の半導体
層と第2の導電型でEg” Ega (Ega>Egs
)の半導体層とが順に積層キれてなる半導体構造が設け
てあることを特徴とする。
(Means for Solving the Problems) Means provided by the present invention in order to solve the above-mentioned problems and achieve the above-mentioned objects is to provide a first conductivity type on a semiconductor substrate,
The band gap energy (hereinafter referred to as Eg) is E g
, -E g I is provided with a double hetero stacked structure having an active layer, and has a stripe-shaped light emitting region, the semiconductor light emitting diode having a stripe-shaped light emitting region, wherein a part of the current injection region is in contact with the active layer. Eg-Egg (Egx
>Egs) and a semiconductor layer of Eg-E with the first conductivity type.
gs (Eg□<E ga <E ga ) and the second conductivity type, Eg” Ega (Ega>Egs
) are sequentially laminated to form a semiconductor structure.

(作用) 以下に図面を用いて、本発明の作用について説明する。(effect) The operation of the present invention will be explained below with reference to the drawings.

第2図(a)及び(b)は本発明のLEDの原理を説明
するためのストライプに平行な面における素子断面図、
及びエネルギーバンドダイヤグラムをそれぞれ示す、ス
トライプの一部分にバンドギャップエネルギーE g 
” E g、tのp型半導体活性層11に接し、Egり
Egz (Egx > Eg+ )のp型半導体J!1
12、Eg−Egs (Eg+ < Egg <Egg
)のp型半導体着13、及びEg−Ega (Ega>
Egj)のn型半導体層14が順に形成されている。以
下この領域を出力制御領域15と呼ぶ。−方スドライブ
の他の部分には活性層11に接し、E g > E g
 1のn型半導体層16が形成されている。
FIGS. 2(a) and 2(b) are cross-sectional views of the device in a plane parallel to the stripes for explaining the principle of the LED of the present invention;
and the energy band diagram, respectively, and the bandgap energy E g in a portion of the stripe.
” A p-type semiconductor J!1 of Egz (Egx > Eg+) is in contact with the p-type semiconductor active layer 11 of Eg, t.
12, Eg-Egs (Eg+ < Egg < Egg
) p-type semiconductor layer 13, and Eg-Ega (Ega>
Egj) n-type semiconductor layers 14 are formed in this order. Hereinafter, this area will be referred to as the output control area 15. - The other part of the horizontal drive is in contact with the active layer 11, and E g > E g
One n-type semiconductor layer 16 is formed.

以下この領域を主発光領域17と呼ぶ。Hereinafter, this area will be referred to as the main light emitting area 17.

こq′)LEDに順方向に電流を流すと、主発光領域1
7では、活性J!11で電子と正孔の再結合により発光
が起こる。一方、出力制御領域15では、まず半導体7
113で電子と正孔の再結合が生じ、一部分の電子が、
半導体1113と半導体J’1i12のへテロバリヤー
を越え活性層11に流れ込み、正孔と再結合する。この
ヘテロバリヤーを越えて流れるリーク電流は、温度上昇
とともに増大する。従って、出力制御領域15内の活性
層での発光は温度上昇とともに増大する。
q') When a current is passed in the forward direction to the LED, the main light emitting area 1
7, active J! At 11, light emission occurs due to recombination of electrons and holes. On the other hand, in the output control region 15, first the semiconductor 7
At 113, recombination of electrons and holes occurs, and some of the electrons become
It flows into the active layer 11 over the heterobarrier of the semiconductor 1113 and the semiconductor J'1i12, and recombines with holes. The leakage current flowing across this heterobarrier increases with increasing temperature. Therefore, the light emission in the active layer within the output control region 15 increases as the temperature rises.

低温では、出力制御領域15内の活性層での発光量が小
さいからストライプ方向に活性層内を導波する光は、こ
の出力制御領域15で大きな吸収を受ける。ところが、
温度が上昇するにつれ出力制御領域15内の活性層での
発光が増すから、この領域15での吸収は減少する。こ
の吸収の変化が主発光領域17の活性層での発光強度の
温度変化を打ち消し、LEDの出力光強度の温度変化を
低減し安定な動作が得られる。
At low temperatures, the amount of light emitted from the active layer in the output control region 15 is small, so light guided in the active layer in the stripe direction is largely absorbed in the output control region 15. However,
As the temperature increases, the light emission in the active layer in the power control region 15 increases, so the absorption in this region 15 decreases. This change in absorption cancels the temperature change in the emission intensity in the active layer of the main light emitting region 17, reduces the temperature change in the output light intensity of the LED, and provides stable operation.

(実施例) 次に本発明の実施例について図面を参照して説明する。(Example) Next, embodiments of the present invention will be described with reference to the drawings.

第1図は、本発明の一実施例の素子を示し、ストライプ
状の発光領域に平行な面における断面図である。p型I
nP基板10上に、p型1nP151B、p型InGa
AsP活性層11(E g r = 0.95e’/ 
)、n型InP層16を順に形成する0次に、n型In
P層16を一部除去した後、選抜的にp型InGaAs
PJI (E gt ” 1.3eV )12、p型I
nGaAsPJ! (E gs = 1. let/ 
) 13、n型InP層14を順に形成する。n型In
P層14及び16の表面に510.膜を形成し、ストラ
イプ状に選抜的に5lotを除去しn型電極19をAu
GeNi蒸着により形成する0次にp型InP基板10
を研磨した後AnZn蒸看によりp型電極20を形成す
る。ストライプ状の電流注入領域の内、n型InPW1
16を含む領域が主発光領域17で、p型InGaAs
PJi 12を含む領域が出力制御領域15となる。
FIG. 1 shows a device according to an embodiment of the present invention, and is a sectional view taken in a plane parallel to striped light emitting regions. p-type I
On the nP substrate 10, p-type 1nP151B, p-type InGa
AsP active layer 11 (E g r = 0.95e'/
), then the n-type InP layer 16 is formed in order.
After partially removing the P layer 16, selectively p-type InGaAs
PJI (E gt ” 1.3eV) 12, p-type I
nGaAsPJ! (E gs = 1. let/
) 13. Form an n-type InP layer 14 in order. n-type In
510. on the surfaces of the P layers 14 and 16. A film is formed, 5 lots are selectively removed in a stripe pattern, and the n-type electrode 19 is made of Au.
Zero-order p-type InP substrate 10 formed by GeNi vapor deposition
After polishing, a p-type electrode 20 is formed by vaporizing AnZn. Among the striped current injection regions, n-type InPW1
16 is the main light emitting region 17, which is made of p-type InGaAs
The area including PJi 12 becomes the output control area 15.

このLEDに順方向電流を流す。まず、低温では、(作
用)の項で述べたように、出力制御領域15内の活性層
に注入される電子リーク電流が小さいため、この部分の
活性層は、吸収の大きい吸収領域となる。温度が上昇す
るにつれ、出力制御領域15内の活性層に注入される電
子リーク電流が増太し、それとともに吸収が小きくなる
。その果果、主発光領域17内の活性層での発光強度温
度変化が打ち消され、第3図に示した様にLEDの出力
光の温度依存性が著しく低減できた。
A forward current is applied to this LED. First, at low temperatures, as described in the (effect) section, the electron leakage current injected into the active layer in the output control region 15 is small, so the active layer in this portion becomes an absorption region with large absorption. As the temperature rises, the electron leakage current injected into the active layer in the output control region 15 increases, and the absorption decreases accordingly. As a result, the temperature change in the emission intensity in the active layer in the main light emitting region 17 was canceled out, and the temperature dependence of the output light of the LED was significantly reduced as shown in FIG.

、(発明の効果) 以上説明したように、本発明のLEDは高いファイバー
結合出力を有し、かつ、光出力の温度安定性が著しく高
い。本発明にはこのような効果がある。
(Effects of the Invention) As explained above, the LED of the present invention has high fiber-coupled output and extremely high temperature stability of the optical output. The present invention has such effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す断面図で、第2図(a
)は、本発明の原理的構造を示す断面図、第2図(b)
は本図(a)の構造におけるバンドギャップエネルギー
Egを示す図、第3図は第1図実施例および従来の端面
発光LEDの温度特性図である。 図中、10は半導体基板、11は活性層、12はEg−
Eggの半導体層、13はEg−Eggの半導体層、1
4はEg=Egaの半導体層をそれぞれ示す。 10  n−1nP、1IL17  主発光・91感1
1  p−1nGaAsP、55ji層(Eg=Eg+
)   18 pJnP412  p−1nGaAsP
4   (E9=E92)   19 n−7y413
 P−1nGaAsP4   (E9=EQ3)   
20 P’f&14 n −1nP4      (E
9=E94)15ぷプル・制御挿爪 16  n−1nPJ 第1図 11   ρ9!辛導体3S往層(Eg=Eg+)12
  pi!ll’F4(Eg=Eg2)13  ρwy
4俸漕(E9・E93)14  n4tJI↓庫4 (
Eg = Eg&)15  ムカ←制御傾成 +6   n 型+14−ノ本/1) 171発先伸癒 19   n電ぶb 20  ρ電極 第2図 場 /L (@C) 第3図
FIG. 1 is a sectional view showing one embodiment of the present invention, and FIG.
) is a sectional view showing the principle structure of the present invention, FIG. 2(b)
3 is a diagram showing the bandgap energy Eg in the structure of FIG. 1A, and FIG. 3 is a temperature characteristic diagram of the embodiment shown in FIG. 1 and the conventional edge-emitting LED. In the figure, 10 is a semiconductor substrate, 11 is an active layer, and 12 is Eg-
Egg semiconductor layer, 13, Egg-Egg semiconductor layer, 1
4 indicates a semiconductor layer where Eg=Ega. 10 n-1nP, 1IL17 Main emission/91 sense 1
1 p-1nGaAsP, 55ji layer (Eg=Eg+
) 18 pJnP412 p-1nGaAsP
4 (E9=E92) 19 n-7y413
P-1nGaAsP4 (E9=EQ3)
20 P'f&14 n -1nP4 (E
9=E94) 15 pupuru/control insert pawl 16 n-1nPJ Fig. 1 11 ρ9! Shin conductor 3S outer layer (Eg=Eg+) 12
pi! ll'F4(Eg=Eg2)13 ρwy
4 rows (E9/E93) 14 n4tJI↓warehouse 4 (
Eg = Eg &) 15 Muka ← Control inclination + 6 n type + 14-no book / 1) 171 Starting extension and healing 19 n electric b 20 ρ electrode 2nd figure field /L (@C) Fig. 3

Claims (1)

【特許請求の範囲】[Claims] 半導体基板上に、バンドギャップエネルギーをEgとす
るときEg=Eg_1で第1の導電型の活性層を有する
ダブルヘテロ積層構造を設け、ストライプ状の発光領域
を有してなる半導体発光ダイオードにおいて、第1の導
電型でEg=Eg_2(Eg_2>Eg_1)の半導体
層と、第1の導電型でEg=Eg_3(Eg_1<Eg
_3<Eg_2)の半導体層と、第2の導電型でEg=
Eg_4(Eg_4>Eg_3)の半導体層とが順に積
層されてなる半導体構造が電流注入領域の一部に前記活
性層に接して設けてあることを特徴とする半導体発光ダ
イオード。
In a semiconductor light emitting diode having a stripe-shaped light emitting region, a double hetero stack structure having an active layer of a first conductivity type with Eg=Eg_1, where band gap energy is Eg, is provided on a semiconductor substrate, and A semiconductor layer of the first conductivity type with Eg=Eg_2 (Eg_2>Eg_1) and a semiconductor layer of the first conductivity type with Eg=Eg_3 (Eg_1<Eg_1).
_3<Eg_2) and a semiconductor layer of the second conductivity type, Eg=
A semiconductor light emitting diode characterized in that a semiconductor structure in which semiconductor layers Eg_4 (Eg_4>Eg_3) are laminated in order is provided in a part of a current injection region in contact with the active layer.
JP61230768A 1986-09-30 1986-09-30 Semiconductor light-emitting diode Pending JPS6386483A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61230768A JPS6386483A (en) 1986-09-30 1986-09-30 Semiconductor light-emitting diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61230768A JPS6386483A (en) 1986-09-30 1986-09-30 Semiconductor light-emitting diode

Publications (1)

Publication Number Publication Date
JPS6386483A true JPS6386483A (en) 1988-04-16

Family

ID=16912958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61230768A Pending JPS6386483A (en) 1986-09-30 1986-09-30 Semiconductor light-emitting diode

Country Status (1)

Country Link
JP (1) JPS6386483A (en)

Similar Documents

Publication Publication Date Title
US4280108A (en) Transverse junction array laser
JPH0236585A (en) Quantum well structure and semiconductor element provided therewith
JP2004200303A (en) Light emitting diode
JPH04225577A (en) Light emitting diode
JPS6386483A (en) Semiconductor light-emitting diode
JPH02144983A (en) Semiconductor laser device with a plurality of active layers
JP2738040B2 (en) Semiconductor light emitting device
JPH05267715A (en) Semiconductor light-emitting device
JPH1027925A (en) Light emitting element
JPS58216489A (en) Quantum well type semiconductor laser
JPH04100278A (en) Semiconductor light emitting device
JPS6257259A (en) Light emitting semiconductor element
JPH01214189A (en) Semiconductor laser
JPS59978A (en) Multiplex active layer semiconductor light emitting element
JPH0330486A (en) Multi quantum well light emitting element
JPH0210787A (en) Semiconductor light emitting device
JPH01215081A (en) Semiconductor light emitting device
JPH06334260A (en) Semiconductor laser element and its manufacture
JPH01130577A (en) Light emitting diode
JPH0438880A (en) Semiconductor light emitting element
JPS60143678A (en) Light emitting transistor
JPS59112671A (en) Semiconductor laser
JPH03127873A (en) Multiwavelength light emitting element
JPS6244833B2 (en)
JPH10270752A (en) Semiconductor light-emitting device