JPS6257259A - Light emitting semiconductor element - Google Patents

Light emitting semiconductor element

Info

Publication number
JPS6257259A
JPS6257259A JP60197915A JP19791585A JPS6257259A JP S6257259 A JPS6257259 A JP S6257259A JP 60197915 A JP60197915 A JP 60197915A JP 19791585 A JP19791585 A JP 19791585A JP S6257259 A JPS6257259 A JP S6257259A
Authority
JP
Japan
Prior art keywords
semiconductor layer
layer
type
semiconductor
conductivity type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60197915A
Other languages
Japanese (ja)
Other versions
JPH0521354B2 (en
Inventor
Mitsunori Sugimoto
杉本 満則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP60197915A priority Critical patent/JPS6257259A/en
Publication of JPS6257259A publication Critical patent/JPS6257259A/en
Publication of JPH0521354B2 publication Critical patent/JPH0521354B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain light emitting semicoductor element which has good luminous power conversion efficiency and provides photo switching operation, by making the respective forbidden band widths of the first semiconductor layer and the fifth semiconductor layer llarger than either of the respective forbidden band widths of the second semiconductor layer, third semiconductor layer and fourth semiconductor layer. CONSTITUTION:A first semiconductor layer 1 of first conductivity type, second semiconductor layer 2 of second conductivity type, third semiconductor layer 3, fourth semiconductor layer 4 of the first conductivity type and fifth semiconductor layer 5 of the second conductivity type are formed in this order, and the respective forbidden band widths of the first semiconductor l ayer 1 and the fifth semiconductor layer 5 are made larger than either of the respective forbidden band widths of the second semiconductor layer 2, third semiconductor layer 3 and fourth semiconductor layer 4. For instance, on n-GaAs substrate 10, the crystal growth of n-type AlGaAs clad layer 1, p-type GaAs active layer 2, i-type GaAs active layer 3, n-type GaAs active layer 4, p-type AlGaAs clad layer 5 and GaAs cap layer 6 is performed. Then, an SiO2 film 7 is formed on the cap layer 6, a stripe region 12 is formed by means of the photoetching method, and thereafter a p-side electrode 8 and n-side electrode 9 are formed, thereby obtaining an element capable of laser oscillation in which the i-type active layer 3 is as thin as around 1,000Angstrom .

Description

【発明の詳細な説明】 (産業上の利用分野〕 本発明は負性抵抗を示しかつ発光・光スイッチング等の
機能をもつ発光半導体素子に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a light-emitting semiconductor element that exhibits negative resistance and has functions such as light emission and optical switching.

〔従来の技術lと発明が解決しようとする問題点〕従来
、この種の負性抵抗を示しかつ発光機能を有するデバイ
スとしては、雑誌「ソビエトフィジツクスセミコンダク
ター(Sovlet PhysicsSemicond
uctor ) JIE8巻、第1127頁に掲載され
たホトサイリスタがある。
[Prior art and problems to be solved by the invention] Conventionally, a device that exhibits this kind of negative resistance and has a light emitting function was published in the magazine "Sovlet Physics Semiconductor".
There is a photothyristor published in JIE volume 8, page 1127.

とのPNPN接合を利用したデバイスにおいては、信号
光によってPNPN接合がターンオンし、大きな電流が
流れることによって発光をするというスイッチング動作
を行なっていた。しかしながら、このデバイスでは発光
部がホモ接合で構成さ1発光効率が極めて悪いという欠
点があった。
In a device using a PNPN junction, a switching operation is performed in which the PNPN junction is turned on by signal light and a large current flows to emit light. However, this device has a drawback in that the light emitting section is composed of a homojunction and the light emitting efficiency is extremely low.

本発明の目的は、これらの欠点を除去し、発光効率が良
好でかつ光スイツチング動作をする発光半導体素子を提
供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to eliminate these drawbacks and provide a light-emitting semiconductor device that has good luminous efficiency and performs optical switching operation.

〔問題を解決するための手段〕[Means to solve the problem]

本発明の発光半導体素子の構成は、第1伝導型の第1半
導体層と、この第1半導体層の上に形成された第2伝導
型の第2牛導体層と、この第2半導体層の上に形成され
た第3半導体層と、この第3半導体層の上に形成された
第1伝導型の第4半導体層と、この第4半導体層の上に
形成された第2伝導型の第5半導体層とを備え、前記第
1半導体層および前記第5半導体層の各禁制帯幅が前記
第2半導体層、前記第3半導体および前記第4半導体層
の各禁制帯幅のいずれよりも大きいことを特徴とする。
The structure of the light emitting semiconductor device of the present invention includes a first semiconductor layer of the first conductivity type, a second conductor layer of the second conductivity type formed on the first semiconductor layer, and a second conductor layer of the second conductivity type formed on the first semiconductor layer. a third semiconductor layer formed thereon, a fourth semiconductor layer of the first conductivity type formed on the third semiconductor layer, and a fourth semiconductor layer of the second conductivity type formed on the fourth semiconductor layer. 5 semiconductor layers, each of the first semiconductor layer and the fifth semiconductor layer having a larger forbidden band width than each of the second semiconductor layer, the third semiconductor layer, and the fourth semiconductor layer. It is characterized by

〔実施例〕〔Example〕

次に図面を参照して本発明の詳細な説明する。 Next, the present invention will be described in detail with reference to the drawings.

第1図は本発明の一実施例の断面図、第2図は第1図の
主要部のエネルギーバンド図である。図中、1はn型ク
ラッド層(n −Al  xn Ga 1−xnA@、
Q、3≦xn≦08.厚さ0.2〜3μm典型例は厚さ
I It m 、 n−1X l 016〜I X l
 □tscIn−s典型例はn”−1x 10”−5x
 I Q17cm−1)、2はp型活性層(p−GaA
s、厚さ30^〜5oo^典型例は厚さ100A 、 
p=5 X 10に?〜3 X 101’Cm−畠典型
例はp=5 X l 011(1−1〜1 x l Q
”crn−” )、3はn型活性層(ノンドープG a
 A s 、厚さ500^〜3/Jm。
FIG. 1 is a sectional view of one embodiment of the present invention, and FIG. 2 is an energy band diagram of the main part of FIG. 1. In the figure, 1 is an n-type cladding layer (n-Al xn Ga 1-xnA@,
Q, 3≦xn≦08. Thickness: 0.2-3 μm Typical thickness: I It m , n-1X l 016-I X l
□tscIn-s Typical example is n”-1x 10”-5x
IQ17cm-1), 2 is the p-type active layer (p-GaA
s, thickness 30^~5oo^ Typical example is thickness 100A,
p=5 x 10? ~3 X 101'Cm - Hatake's typical example is p=5
"crn-"), 3 is an n-type active layer (non-doped Ga
A s, thickness 500^~3/Jm.

nあるいはp≦5X10’σ″3)、4はn型活性層(
n−GaAs、厚さ30A〜500A典型例は厚さ10
0A 、 n=5 x I Q17〜3 x 1011
1cIni典型例は(t=5 x 10”cm−”〜t
xtots傭1)、5はp型クラッド層(p−AJ  
xp  Ga1−xp  AseO,3≦xp≦058
.厚さ02〜3μm典型例は厚さ1μmp=l x 1
0”〜1 x 10”5cm4典型例はp=l X 1
0”〜5 X I Q”7m” )、6はキャップ層(
p+−GaAa)7は8i0.膜、8はn側電極、9は
n側電極、10はn −G a A s基板、11は各
活性層2,3.4の全体を含む活性層である。
n or p≦5X10′σ″3), 4 is the n-type active layer (
n-GaAs, thickness 30A to 500A, typical thickness 10A
0A, n=5 x I Q17~3 x 1011
A typical example of 1cIni is (t=5 x 10"cm-"~t
xtots 1), 5 is a p-type cladding layer (p-AJ
xp Ga1-xp AseO, 3≦xp≦058
.. Thickness: 02-3μm Typical thickness: 1μmp=l x 1
0”~1 x 10”5cm4 Typical example is p=l x 1
0"~5XIQ"7m"), 6 is the cap layer (
p+-GaAa)7 is 8i0. 8 is an n-side electrode, 9 is an n-side electrode, 10 is an n-GaAs substrate, and 11 is an active layer including the entirety of each active layer 2, 3.4.

第2図(a)は印加電圧Oの熱平衝状態におけるバンド
ダイアグラム、第2図(b)k′i順方向に電圧が印加
されデバイスにあまり電流が流れていない場合(OFF
状態)のバンドダイアグラム、第2図(C)は順方向に
電圧が印加されかつ電流が流れて活性層11が発光して
いる場合(ON状態)のバンドダイヤグラムである。
Figure 2 (a) is a band diagram in a thermal equilibrium state with an applied voltage O, and Figure 2 (b) is a band diagram when a voltage is applied in the forward direction of k′i and not much current flows through the device (OFF
FIG. 2C is a band diagram when a voltage is applied in the forward direction, current flows, and the active layer 11 emits light (ON state).

熱平衝状態では、1型温性層3が完全に空乏層となって
いるため第2図(a)に示すバンドダイヤグラムとなる
。順方向に電圧を印加すると、n型活性層3にほとんど
電圧がかかり第2図(blに示すバンドダイヤグラムと
なる。これよりさらに電圧を加えて注入を上げるか、も
しくは外部から光を入射させて活性層を励起すると、1
型温性層3をキャリアは電界によってドリフトシ、電子
はn型活性層4.正孔はp型活性層2に達する。これら
のキャリアは各々n型活性層4およびp型活性層2で形
成されるポテンシャルバリヤーを下げるためさらに注入
が大きくなる。この様な一種の正帰環がかかって第2図
(c)に示す様なバンドダイヤグラムとなりON状態と
なる。以上の動作はPNPN接合のターンオンの現象と
全く同様である。
In the thermal equilibrium state, the type 1 temperature layer 3 is completely a depletion layer, resulting in the band diagram shown in FIG. 2(a). When a voltage is applied in the forward direction, most of the voltage is applied to the n-type active layer 3, resulting in the band diagram shown in Figure 2 (bl).A voltage can be applied further to increase the implantation, or light can be incident from outside. When the active layer is excited, 1
Carriers drift in the type temperature layer 3 due to the electric field, and electrons drift in the n-type active layer 4. The holes reach the p-type active layer 2. Since these carriers lower the potential barrier formed by the n-type active layer 4 and the p-type active layer 2, the injection becomes even larger. This type of positive feedback loop results in a band diagram as shown in FIG. 2(c), resulting in an ON state. The above operation is exactly the same as the turn-on phenomenon of a PNPN junction.

このPNPN接合をPNP )ランジスタとNPNトラ
ンジスタと分けた場合に、これらのトランジスタはワイ
ドギャップエミッタートランジスタと同じ構成となるた
め、各々のトランジスタのゲインが大きく、倣弱な光信
号に対してもOFF状態からON状態へ移ることが出来
る。又、発光部はダブルへテロ構造で構成されているた
め、良好な発光効率を得ることが出来る。
If this PNPN junction is divided into a PNP transistor and an NPN transistor, these transistors have the same configuration as a wide gap emitter transistor, so each transistor has a large gain and can be turned off even in response to weak optical signals. It is possible to move from the state to the ON state. In addition, since the light emitting section has a double heterostructure, good light emitting efficiency can be obtained.

本実施例において、n型活性層3の厚さが1000A前
後に薄い場合にはレーザ発振を行なうことが出来、一方
、この1型温性層3がもっと厚い場合にはレーザ発振が
行なわれずON状態で発光ダイオードと同様に発光する
ことが出来る。
In this embodiment, when the thickness of the n-type active layer 3 is as thin as about 1000A, laser oscillation can be performed, whereas when the type 1 temperature layer 3 is thicker, the laser oscillation is not performed and the ON state is turned on. It can emit light in the same way as a light emitting diode.

次に本実施例のn型活性層3が100OA前後と薄くレ
ーザ発振のできる素子の製作方法について述べる。まず
最初に、n−GaAs基板10の上に、n型クラッド層
1+p型活性層2.!型温性層31n型活性層41p型
クラッド層5.キャップ層6を結晶成長する。次に、8
i01膜7をキャップ層6の上に形成し、ホトエツチン
グ法によってストライブ領域12を形成する。次に、n
側電極8およびn側電極9を形成してプロセスを終了す
る。
Next, a method of fabricating a device in which the n-type active layer 3 of this embodiment is thin, approximately 100 OA, and is capable of laser oscillation will be described. First, on an n-GaAs substrate 10, an n-type cladding layer 1+p-type active layer 2. ! Temperature layer 31 N-type active layer 41 P-type cladding layer 5. Cap layer 6 is crystal grown. Next, 8
An i01 film 7 is formed on the cap layer 6, and a stripe region 12 is formed by photoetching. Next, n
The process is completed by forming the side electrode 8 and the n-side electrode 9.

本実施例では、活性層11としてGaAsを用いたが、
これに限らず他の材料AlGaAs混晶や超格子を用い
ても良い。また、本実施例では電極構造として810.
膜ストライプ構造としたが、これに限らずプレーナスト
ライプ構造、リッジウニイー 6−〜1.八 プガイド構造埋め込み構造等の他ストライプ構造を用い
ても良い。また、本実施例では活性層の両側に直接クラ
ッド層を形成したが、これに限らず活性層とクラッド層
の間に光ガイド層を備えていても良い。さらに、本実施
例では材料としてAIG a A s /G a A 
s系を用いたが、これに限らずInG a A s P
 / I n P系、TnGaAJA@/InP系等の
他の材料を用いても良い。
In this example, GaAs was used as the active layer 11, but
The material is not limited to this, and other materials such as AlGaAs mixed crystal or superlattice may be used. In this embodiment, the electrode structure is 810.
Although the membrane stripe structure is used, the structure is not limited to this, and may include a planar stripe structure, a ridge uniee, etc. 6- to 1. Other stripe structures such as an embedded eight guide structure may also be used. Further, in this example, the cladding layers were formed directly on both sides of the active layer, but the present invention is not limited to this, and a light guide layer may be provided between the active layer and the cladding layer. Furthermore, in this example, AIG a A s /G a A is used as the material.
s system was used, but the invention is not limited to this, and InGa A s P
Other materials such as /I n P type and TnGaAJA@/InP type may also be used.

〔発明の効果〕〔Effect of the invention〕

以上説明した様に、本発明によれば発光効率が良好で、
かつスイッチング動作が可能な発光半導体素子を実現出
来る。
As explained above, according to the present invention, the luminous efficiency is good,
Moreover, a light emitting semiconductor element capable of switching operation can be realized.

第1図は本発明の一実施例の断面図、第2図(a)。FIG. 1 is a sectional view of an embodiment of the present invention, and FIG. 2(a).

(b) 、 (c)は詔1図を説明するバンドダイヤグ
ラムである。図において、1はn型クラッド層、2はp
型温柱層、3はn型活性層、4はn型活性層、5はn型
クラッド層、6はキャップ層、7は8401膜、8けn
側電極、9はn側電極、10はP毛aA8基板、11は
活性層、12けストライブ領域である。
(b) and (c) are band diagrams explaining the imperial edict 1 diagram. In the figure, 1 is an n-type cladding layer, 2 is a p-type cladding layer, and 2 is a p-type cladding layer.
type hot column layer, 3 is n-type active layer, 4 is n-type active layer, 5 is n-type cladding layer, 6 is cap layer, 7 is 8401 film, 8kenn
9 is an n-side electrode, 10 is a P-hair aA8 substrate, 11 is an active layer, and 12 strip regions.

第 11!r 第 2 図No. 11! r Figure 2

Claims (1)

【特許請求の範囲】[Claims] 第1伝導型の第1半導体層と、この第1半導体層の上に
形成された第2伝導型の第2半導体層と、この第2半導
体層の上に形成された第3半導体層と、この第3半導体
層の上に形成された第1伝導型の第4半導体層と、この
第4半導体層の上に形成された第2伝導型の第5半導体
層とを備え、前記第1半導体層および前記第5半導体層
の各禁制帯幅が前記第2半導体、前記第3半導体および
前記第4半導体の各禁制帯幅のいずれよりも大きいこと
を特徴とする発光半導体素子。
a first semiconductor layer of a first conductivity type; a second semiconductor layer of a second conductivity type formed on the first semiconductor layer; a third semiconductor layer formed on the second semiconductor layer; a fourth semiconductor layer of the first conductivity type formed on the third semiconductor layer; and a fifth semiconductor layer of the second conductivity type formed on the fourth semiconductor layer; A light emitting semiconductor device, wherein each of the forbidden band widths of the third semiconductor layer and the fifth semiconductor layer is larger than the forbidden band widths of the second semiconductor, the third semiconductor, and the fourth semiconductor.
JP60197915A 1985-09-06 1985-09-06 Light emitting semiconductor element Granted JPS6257259A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60197915A JPS6257259A (en) 1985-09-06 1985-09-06 Light emitting semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60197915A JPS6257259A (en) 1985-09-06 1985-09-06 Light emitting semiconductor element

Publications (2)

Publication Number Publication Date
JPS6257259A true JPS6257259A (en) 1987-03-12
JPH0521354B2 JPH0521354B2 (en) 1993-03-24

Family

ID=16382385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60197915A Granted JPS6257259A (en) 1985-09-06 1985-09-06 Light emitting semiconductor element

Country Status (1)

Country Link
JP (1) JPS6257259A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01186684A (en) * 1988-01-14 1989-07-26 Nec Corp Semiconductor optical memory
JPH02155263A (en) * 1988-12-07 1990-06-14 Nec Corp Semiconductor optical memory
WO1999056358A1 (en) * 1998-04-27 1999-11-04 Wisconsin Alumni Research Foundation Narrow spectral width high power distributed feedback semiconductor lasers
JP2015084391A (en) * 2013-10-25 2015-04-30 富士ゼロックス株式会社 Semiconductor light-emitting element, light source head, and image forming apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01186684A (en) * 1988-01-14 1989-07-26 Nec Corp Semiconductor optical memory
JPH02155263A (en) * 1988-12-07 1990-06-14 Nec Corp Semiconductor optical memory
WO1999056358A1 (en) * 1998-04-27 1999-11-04 Wisconsin Alumni Research Foundation Narrow spectral width high power distributed feedback semiconductor lasers
US6195381B1 (en) 1998-04-27 2001-02-27 Wisconsin Alumni Research Foundation Narrow spectral width high-power distributed feedback semiconductor lasers
US6363092B1 (en) 1998-04-27 2002-03-26 Wisconsin Alumni Research Foundation Narrow spectral width high power distributed feedback semiconductor lasers
JP2015084391A (en) * 2013-10-25 2015-04-30 富士ゼロックス株式会社 Semiconductor light-emitting element, light source head, and image forming apparatus

Also Published As

Publication number Publication date
JPH0521354B2 (en) 1993-03-24

Similar Documents

Publication Publication Date Title
EP0177617B1 (en) Junction semiconductor light-emitting element
EP0288267A2 (en) An optical semiconductor device
JPH0728047B2 (en) Phototransistor
JPS60216591A (en) Semiconductor light emitting element
JPH0738457B2 (en) Opto-electronic bistable element
JPS6257259A (en) Light emitting semiconductor element
US5452316A (en) Semiconductor laser having stacked active layers with reduced drive voltage
JP2757633B2 (en) Surface emitting semiconductor laser
US5200605A (en) Optically functional device with integral resistance layer
US3576586A (en) Variable area injection luminescent device
JPS58225680A (en) Semiconductor laser
US4581743A (en) Semiconductor laser having an inverted layer in a stepped offset portion
JP2738040B2 (en) Semiconductor light emitting device
JP2508649B2 (en) Semiconductor light emitting device
JP2862726B2 (en) Semiconductor light emitting device
JP3307695B2 (en) Quantum well light emitting device
JPS59125684A (en) Buried type semiconductor laser
JPS6320393B2 (en)
JP2941285B2 (en) Semiconductor laser device
JPH02125477A (en) Visible light emitting element
JPH01189977A (en) Semiconductor optical memory
JP3255244B2 (en) Semiconductor laser
JPS61276389A (en) Semiconductor optical element
JPH06334260A (en) Semiconductor laser element and its manufacture
JP2878709B2 (en) Semiconductor laser device