JP2508649B2 - Semiconductor light emitting device - Google Patents

Semiconductor light emitting device

Info

Publication number
JP2508649B2
JP2508649B2 JP16710986A JP16710986A JP2508649B2 JP 2508649 B2 JP2508649 B2 JP 2508649B2 JP 16710986 A JP16710986 A JP 16710986A JP 16710986 A JP16710986 A JP 16710986A JP 2508649 B2 JP2508649 B2 JP 2508649B2
Authority
JP
Japan
Prior art keywords
light emitting
layer
quantum
emitting device
semiconductor light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP16710986A
Other languages
Japanese (ja)
Other versions
JPS6321891A (en
Inventor
茂光 丸野
義隆 森下
仁士 尾形
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP16710986A priority Critical patent/JP2508649B2/en
Publication of JPS6321891A publication Critical patent/JPS6321891A/en
Application granted granted Critical
Publication of JP2508649B2 publication Critical patent/JP2508649B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、半導体発光装置に関し、さらに詳しく
は、遠赤外光を安定に連続発光し得る半導体発光装置に
係るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor light emitting device, and more particularly to a semiconductor light emitting device capable of stably and continuously emitting far infrared light.

〔従来の技術〕[Conventional technology]

従来例によるこの種の半導体発光装置として、こゝで
は、アプライド・フィジックス・レターズ(Applied Ph
ysics Letters)vol.39(3),1.1981に示されている量
子井戸型半導体レーザ装置のエネルギバンドダイヤグラ
ムを第4図に示す。
As a semiconductor light emitting device of this type according to a conventional example, here, Applied Physics Letters (Applied Physics Letters) is used.
FIG. 4 shows an energy band diagram of the quantum well type semiconductor laser device shown in ysics Letters) vol.39 (3), 1.1981.

すなわち、この第4図のエネルギバンドダイヤグラム
において、符号7は量子井戸内の電子の基底量子準位、
16は同ホールの基底量子準位であり、また、13はn型Al
0.48Ga0.52As層、14はAl0.17Ga0.89As層、15はp型Al
0.48Ga0.52As層である。
That is, in the energy band diagram of FIG. 4, reference numeral 7 is the ground quantum level of the electron in the quantum well,
16 is the ground quantum level of the same hole, and 13 is n-type Al
0.48 Ga 0.52 As layer, 14 Al 0.17 Ga 0.89 As layer, 15 p-type Al
0.48 Ga 0.52 As layer.

従つて、この場合には、Al0.17Ga0.89As層14とAl0.48
Ga0.52As層13,15とのエネルギギャップの差によつて、A
l0.17Ga0.89As層14の伝導帯と価電子帯とに量子準位7,1
6がそれぞれに形成され、Al0.48Ga0.52As層13,15のpn接
合に順方向バイアスを印加することで、Al0.17Ga0.89As
層14に電子とホールとを注入すると、注入された電子と
ホールとが、量子井戸Al0.17Ga0.89As層14の量子基底準
位7と16とをそれぞれに占有し、これらの電子とホール
との再結合発光によつて、レーザ発振を生ずるのであ
る。
Therefore, in this case, Al 0.17 Ga 0.89 As layer 14 and Al 0.48
Due to the difference in energy gap between Ga 0.52 As layers 13 and 15, A
l 0.17 Ga 0.89 As Quantum level 7,1 in the conduction band and valence band of layer 14
6 is formed on each of them, and by applying a forward bias to the pn junction of the Al 0.48 Ga 0.52 As layers 13 and 15, Al 0.17 Ga 0.89 As
When electrons and holes are injected into the layer 14, the injected electrons and holes occupy the quantum ground levels 7 and 16 of the quantum well Al 0.17 Ga 0.89 As layer 14, respectively, and these electrons and holes The recombined emission of light causes laser oscillation.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

従来例での量子井戸型半導体レーザ装置にあつては、
このように構成されているために量子井戸層となるAl
0.17Ga0.89As層14のバンドギャップ以上のエネルギをも
つレーザ光しか得られないと云う問題点がある。
Regarding the quantum well type semiconductor laser device in the conventional example,
Because of this structure, Al that becomes the quantum well layer
There is a problem that only laser light having an energy larger than the bandgap of the 0.17 Ga 0.89 As layer 14 can be obtained.

この発明は、従来のこのような問題点を解消するため
になされたものであり、その目的とするところは、量子
井戸構造を用いて、遠赤外光を安定して発光し得る半導
体発光装置を提供することである。
The present invention has been made in order to solve the above-mentioned conventional problems, and an object of the present invention is to use a quantum well structure to stably emit far infrared light. Is to provide.

〔問題点を解決するための手段〕[Means for solving problems]

前記目的を達成するために、この発明に係る半導体発
光装置は、面内方向,および面に垂直方向に電界を印加
できて、伝導帯に複数の量子準位をもつ量子井戸,発光
層と、面に垂直方向に電界を印加できて、発光層とは異
なる量子準位をもつ量子井戸,電流注入層とを隣接構成
させたものである。
In order to achieve the above-mentioned object, a semiconductor light emitting device according to the present invention is capable of applying an electric field in the in-plane direction and in the direction perpendicular to the plane, and has a quantum well having a plurality of quantum levels in a conduction band, a light emitting layer, An electric field can be applied in the direction perpendicular to the plane, and a quantum well having a quantum level different from that of the light emitting layer and a current injection layer are adjacently arranged.

〔作用〕[Action]

従つて、この発明装置の場合、発光層としての量子井
戸では、垂直方向の電界を印加することにより、電子と
ホールの量子準位が空間的に分離されて、電子・ホール
間での再結合が阻止され、また、電流注入層となる量子
井戸に垂直方向の適当な電界を印加することにより、共
鳴トンネリングによつて、電子を発光層の伝導帯の励起
量子準位に注入させ、遠赤外光を安定して発光させ得る
のである。
Therefore, in the case of the device of the present invention, in the quantum well as the light emitting layer, by applying an electric field in the vertical direction, the quantum levels of electrons and holes are spatially separated, and recombination between electrons and holes occurs. By applying an appropriate electric field in the vertical direction to the quantum well that serves as the current injection layer, the electrons are injected into the excited quantum level of the conduction band of the light emitting layer by resonance tunneling, and The outside light can be emitted stably.

〔実施例〕〔Example〕

以下、この発明に係る半導体発光装置の一実施例につ
き、第1図ないし第3図を参照して詳細に説明する。
An embodiment of a semiconductor light emitting device according to the present invention will be described in detail below with reference to FIGS.

第1図および第2図はこの実施例装置によるエネルギ
バンドダイヤグラムを示し、また第3図は同上半導体発
光装置の概要を模式的に示す構成説明図である。
1 and 2 show energy band diagrams of the device of this embodiment, and FIG. 3 is a structural explanatory view schematically showing an outline of the semiconductor light emitting device of the same.

まず、第1図に示すエネルギバンドダイヤグラム,お
よび第3図に示す装置構成のそれぞれにおいて、符号1
はn型AlAs層、2は電流注入層としての,ノンドープAl
XGa1-XAs層、3はAlAs層、4は発光層としてのノンドー
プGaAs層、5はn型AlAs層であり、また6は前記AlAs層
1,3間に挟まれたAlXGa1-XAs層2の量子井戸内に形成さ
れる基底量子準位、7は前記AlAs層3,5間に挟まれたGaA
s層4の量子井戸内に形成される基底量子準位、8はそ
の第1励起量子準位を示し、さらに9,10はバイアス電
源、11a,11bは前記GaAs層4の面内方向に形成した一対
の電極、12はこれらの基板である。
First, in each of the energy band diagram shown in FIG. 1 and the device configuration shown in FIG.
Is an n-type AlAs layer, 2 is a non-doped Al as a current injection layer
X Ga 1-X As layer, 3 is an AlAs layer, 4 is a non-doped GaAs layer as a light emitting layer, 5 is an n-type AlAs layer, and 6 is the AlAs layer.
The ground quantum level formed in the quantum well of the Al X Ga 1-X As layer 2 sandwiched between 1, 3 and 7 is GaA sandwiched between the AlAs layers 3 and 5.
The ground quantum level formed in the quantum well of the s layer 4, 8 indicates the first excitation quantum level, 9 and 10 are bias power sources, and 11a and 11b are formed in the in-plane direction of the GaAs layer 4. The pair of electrodes 12 and 12 are these substrates.

しかして、この実施例構成の場合,AlAs層1がn型で
あるために、AlXGa1-XAs層2の基底量子準位6は、電子
によつて占有されており、また量子井戸となるAlXGa1-X
As層2とGaAs層4とのエネルギギャップが異なることか
ら、これとの伝導帯に形成される量子井戸内での基底準
位のエネルギ準位も異なつていて、このため、0バイア
スの状態では、基底準位6を占有している電子が、GaAs
層4の伝導帯にトンネリングされることはない。
In the structure of this embodiment, however, since the AlAs layer 1 is n-type, the ground quantum level 6 of the Al X Ga 1-X As layer 2 is occupied by electrons, and the quantum well Al X Ga 1-X
Since the energy gap between the As layer 2 and the GaAs layer 4 is different, the energy level of the ground level in the quantum well formed in the conduction band between them is also different. Then, the electron occupying the ground level 6 is GaAs
It is not tunneled to the conduction band of layer 4.

なお、こゝで量子井戸となるAlXGa1-XAs層2とGaAs層
4との共通のポンテシャルバリアとなるAlAs層3の膜厚
は、後述するように、両量子井戸間において電子のトン
ネリングを生ずるのに充分な厚さになつている。
The film thickness of the AlAs layer 3 which is a common barrier between the Al X Ga 1-X As layer 2 and the GaAs layer 4 which are quantum wells is the electron thickness between both quantum wells as described later. It is thick enough to cause tunneling.

従って、この実施例構成の場合、第2図に示す通り、
AlXGa1-XAs層2の基底量子準位6とGaAs層4の第1励起
量子準位8とのエネルギ準位が一致するようにバイアス
電圧を印加すると、このとき、基底量子準位6を占有し
ていた電子は、共鳴トンネリングによつて、GaAs層4の
第1励起量子準位8を占有するようになり、そして、こ
の電子は、電子によつて占有されていない基底量子準位
7に遷移するときに、2つの量子準位のエネルギ差に等
しいエネルギをもつ遠赤外光を発光,放出するに至る。
Therefore, in the case of this embodiment configuration, as shown in FIG.
When a bias voltage is applied so that the energy levels of the ground quantum level 6 of the Al X Ga 1-X As layer 2 and the first excited quantum level 8 of the GaAs layer 4 match, at this time, the ground quantum level The electron occupying 6 comes to occupy the first excited quantum level 8 of the GaAs layer 4 by the resonance tunneling, and this electron becomes a ground quantum level not occupied by the electron. When it transits to the position 7, it emits and emits far-infrared light having energy equal to the energy difference between the two quantum levels.

こゝで、このように両量子井戸の伝導帯の量子準位間
でのみ、このような発光現象を生ずることは、次の機構
によつて保証される。
Here, the occurrence of such an emission phenomenon only between the quantum levels of the conduction bands of both quantum wells is guaranteed by the following mechanism.

すなわち,GaAs層4に垂直に印加された電界によつ
て、伝導帯の電子分布は、第2図に示されているよう
に、AlAs層3の側に引き付けられ、一方,価電子帯のホ
ール分布は、電子と逆方向,つまりn型AlAs層5の側に
引き付けられることになり、このように電子分布とホー
ル分布とが空間的に分離されるために、電子・ホール間
での再結合を生ずることはなく、また励起量子準位8か
らの遷移によつて基底量子準位7に溜つた電子は、第3
図に示すGaAs層4の面内方向に形成した一対の電極11a,
11bによつて外部に取り除かれるのである。
That is, due to the electric field applied perpendicularly to the GaAs layer 4, the electron distribution in the conduction band is attracted to the side of the AlAs layer 3 while the holes in the valence band are attracted, as shown in FIG. The distribution is attracted in the opposite direction to the electrons, that is, toward the n-type AlAs layer 5, and thus the electron distribution and the hole distribution are spatially separated from each other, so that the recombination between electrons and holes is performed. And the electrons accumulated in the ground quantum level 7 due to the transition from the excited quantum level 8
A pair of electrodes 11a formed in the in-plane direction of the GaAs layer 4 shown in the figure,
It is removed to the outside by 11b.

このように、電流注入層となるAlXGa1-XAs層2の基底
量子準位6から、発光層となるGaAs層4の第1励起量子
準位8に、共鳴トンネリングにより安定に電子が供給さ
れて、量子準位7と8との間で安定した遠赤外光の発光
を継続して生ずるのである。
Thus, from the ground quantum level 6 of the Al X Ga 1-X As layer 2 serving as the current injection layer to the first excited quantum level 8 of the GaAs layer 4 serving as the light emitting layer, electrons are stably generated by resonance tunneling. When it is supplied, stable far-infrared light emission is continuously generated between the quantum levels 7 and 8.

なお、前記実施例構成においては、電流注入層をAlXG
a1-XAsによつて形成したが、発光層と同様にGaAsにより
形成してもよく、この場合,電流注入層と発光層との量
子井戸幅を変えておくことで、両量子井戸に形成される
量子準位が異なることから、同実施例と同様な作用,効
果を奏し得るのである。
In the structure of the above embodiment, the current injection layer is made of Al X G.
Although it is formed by a 1-X As, it may be formed by GaAs similarly to the light emitting layer. In this case, by changing the quantum well widths of the current injection layer and the light emitting layer, both quantum wells are formed. Since the formed quantum levels are different, the same action and effect as those of the embodiment can be obtained.

また、前記実施例では、GaAsとこれにエピタキシャル
成長するAlAsについて述べたが、同様な量子井戸構造を
もつものであれば、どのような材料を用いてもよく、さ
らに、前記実施例構成で、装置の対向する端面をへき開
して、ファブリぺロー型共振器を形成させることによつ
て、遠赤外レーザ発信器として用い得るのである。
Further, in the above-mentioned embodiment, GaAs and AlAs epitaxially grown thereon are described, but any material may be used as long as it has a similar quantum well structure. It can be used as a far-infrared laser oscillator by cleaving the opposite end faces of the above to form a Fabry-Perot resonator.

〔発明の効果〕〔The invention's effect〕

以上詳述したように、この発明によるときは、面内方
向,および面に垂直方向に電界を印加できて、伝導帯に
複数の量子準位をもつ,発光層としての量子井戸と、面
に垂直方向に電界を印加できて、発光層とは異なる量子
準位をもつ,電流注入層としての量子井戸とを隣接さ
せ、量子井戸への垂直方向の電界印加により、2つの量
子井戸間で共鳴トンネリングを生じさせ、発光層の電子
分布とホール分布とを空間的に分離させるようにしたの
で、電子・ホール間での再結合を阻止できて、結果的に
は、量子井戸構造を用いて、遠赤外光を安定的,かつ連
続的に発光させ得ると云う優れた特長がある。
As described above in detail, according to the present invention, a quantum well as a light emitting layer that can apply an electric field in the in-plane direction and in the direction perpendicular to the plane and has a plurality of quantum levels in the conduction band, and A quantum well as a current injection layer, which can apply an electric field in the vertical direction and has a quantum level different from that of the light-emitting layer, is adjacent to the quantum well, and a vertical electric field is applied to the quantum well to cause resonance between the two quantum wells. Since tunneling is caused to spatially separate the electron distribution and hole distribution in the light emitting layer, recombination between electrons and holes can be prevented, and as a result, a quantum well structure is used. It has an excellent feature that it can emit far infrared light stably and continuously.

【図面の簡単な説明】[Brief description of drawings]

第1図および第2図はこの発明に係る半導体発光装置の
一実施例によるエネルギバンドダイヤグラム、第3図は
同上半導体発光装置の概要を模式的に示す構成説明図で
あり、また第4図は従来例による量子井戸型半導体レー
ザ装置のエネルギバンドダイヤグラムである。 1……n型AlAs層、2……電流注入層としてのAlXGa1-X
As層、3……AlAs層、4……発光層としてのGaAs層、5
……n型AlAs層、6,7……基底量子準位、8……第1励
起量子準位、9,10……バイアス電源、11a,11b……一対
の電極、12……半導体基板。
1 and 2 are energy band diagrams according to an embodiment of the semiconductor light emitting device according to the present invention, FIG. 3 is a schematic explanatory view showing the structure of the semiconductor light emitting device of the same as above, and FIG. 7 is an energy band diagram of a quantum well semiconductor laser device according to a conventional example. 1 ... n-type AlAs layer, 2 ... Al X Ga 1-X as current injection layer
As layer, 3 ... AlAs layer, 4 ... GaAs layer as light emitting layer, 5
...... n-type AlAs layer, 6,7 ...... ground quantum level, 8 …… first excitation quantum level, 9,10 …… bias power supply, 11a, 11b …… pair of electrodes, 12 …… semiconductor substrate.

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】面内方向,および面に垂直方向に電界を印
加できて、かつ伝導帯に複数の量子準位をもつ量子井
戸,発光層と、面に垂直方向に電界を印加できて、かつ
前記発光層に隣接されると共に、発光層とは異なる量子
準位をもつ量子井戸,電流注入層とを備え、前記発光層
には、基底準位に溜められる電子を外部に取り出す電極
を配して構成したことを特徴とする半導体発光装置。
1. An electric field can be applied in the in-plane direction and in the direction perpendicular to the plane, and an electric field can be applied in the direction perpendicular to the plane, with a quantum well and a light emitting layer having a plurality of quantum levels in the conduction band. Further, the quantum well and the current injection layer, which are adjacent to the light emitting layer and have a quantum level different from that of the light emitting layer, are provided, and the light emitting layer is provided with an electrode for taking out the electrons accumulated in the ground level to the outside. A semiconductor light emitting device having the above structure.
【請求項2】発光層と電流注入層の量子井戸が、異なる
バリア高さを有することを特徴とする特許請求の範囲第
1項に記載の半導体発光装置。
2. The semiconductor light emitting device according to claim 1, wherein the quantum wells of the light emitting layer and the current injection layer have different barrier heights.
【請求項3】発光層と電流注入層の量子井戸が、同一バ
リア高さを有して、ウエル幅を異ならせたことを特徴と
する特許請求の範囲第1項に記載の半導体発光装置。
3. The semiconductor light emitting device according to claim 1, wherein the quantum wells of the light emitting layer and the current injection layer have the same barrier height and different well widths.
【請求項4】対向する両端にへき開面を有することを特
徴とする特許請求の範囲第1項に記載の半導体発光装
置。
4. The semiconductor light emitting device according to claim 1, wherein the opposite ends have cleavage planes.
JP16710986A 1986-07-15 1986-07-15 Semiconductor light emitting device Expired - Lifetime JP2508649B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16710986A JP2508649B2 (en) 1986-07-15 1986-07-15 Semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16710986A JP2508649B2 (en) 1986-07-15 1986-07-15 Semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JPS6321891A JPS6321891A (en) 1988-01-29
JP2508649B2 true JP2508649B2 (en) 1996-06-19

Family

ID=15843597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16710986A Expired - Lifetime JP2508649B2 (en) 1986-07-15 1986-07-15 Semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP2508649B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1299719C (en) * 1989-01-13 1992-04-28 Hui Chun Liu Semiconductor superlattice infrared source
JPH0474486A (en) * 1990-07-17 1992-03-09 Toshiba Corp Optical semiconductor element
CN100535801C (en) 2002-09-19 2009-09-02 西铁城控股株式会社 Electronic clock

Also Published As

Publication number Publication date
JPS6321891A (en) 1988-01-29

Similar Documents

Publication Publication Date Title
US4845535A (en) Light emitting semiconductor device
JPH07147428A (en) Light emitting diode and light emitting diode array
JPH07111339A (en) Surface emission type semiconductor light emitting device
US4933728A (en) Semiconductor optical device
JP2508649B2 (en) Semiconductor light emitting device
JPS6258557B2 (en)
JP3146710B2 (en) Light emitting element
JPH02144983A (en) Semiconductor laser device with a plurality of active layers
JPH05218589A (en) Electron beam excited semiconductor light-emitting element
JPH0632343B2 (en) Semiconductor laser
JP2685441B2 (en) Tunable semiconductor laser
JPH1027925A (en) Light emitting element
JP2680015B2 (en) Semiconductor laser device
JP3223969B2 (en) Semiconductor laser
JP2815165B2 (en) Two-way injection type semiconductor laser device
JPS6257259A (en) Light emitting semiconductor element
JP3119513B2 (en) Avalanche light emitting device
JPH10321960A (en) Light-emitting semiconductor element
JP2876642B2 (en) Quantum well laser
JP2529854B2 (en) Infrared semiconductor laser
JPH048957B2 (en)
JPS62102583A (en) Buried structure semiconductor laser
JP2004200463A (en) Semiconductor laser element
JP2848615B2 (en) Semiconductor light emitting device
JPH0745904A (en) Exciton laser