JP2876642B2 - Quantum well laser - Google Patents

Quantum well laser

Info

Publication number
JP2876642B2
JP2876642B2 JP22686489A JP22686489A JP2876642B2 JP 2876642 B2 JP2876642 B2 JP 2876642B2 JP 22686489 A JP22686489 A JP 22686489A JP 22686489 A JP22686489 A JP 22686489A JP 2876642 B2 JP2876642 B2 JP 2876642B2
Authority
JP
Japan
Prior art keywords
potential
quantum well
quantum
shallow
deep
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP22686489A
Other languages
Japanese (ja)
Other versions
JPH0389576A (en
Inventor
普 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP22686489A priority Critical patent/JP2876642B2/en
Publication of JPH0389576A publication Critical patent/JPH0389576A/en
Application granted granted Critical
Publication of JP2876642B2 publication Critical patent/JP2876642B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体レーザに関する。Description: TECHNICAL FIELD The present invention relates to a semiconductor laser.

〔従来の技術〕[Conventional technology]

量子井戸構造を活性領域とした従来の量子井戸レーザ
では、量子井戸内でのキャリアのエネルギー準位は量子
井戸層のポテンシャルより高く、波動関数は正弦波的な
形となっている。この量子的な閉じ込めのために発振閾
値電流が非常に小さいという優れた特徴を有している
(アプライド フィジックス レターズ[Applide Phys
ics Letters]第51巻 2094ページ,1987年)。
In a conventional quantum well laser having a quantum well structure as an active region, the energy level of carriers in the quantum well is higher than the potential of the quantum well layer, and the wave function is sinusoidal. This quantum confinement has an excellent feature that the oscillation threshold current is extremely small (Applied Physics Letters [Applide Phys
ics Letters], Vol. 51, pp. 2094, 1987).

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかしながら、上述した従来の量子井戸レーザではキ
ャリアの波動関数が正弦波的であり、キャリアの分布が
局所的に集中しているため、光の閉じ込め率が小さく、
これ以上発振閾値電流と少なくすることは困難であり、
また共振器長を短かする事ができないという欠点があ
る。
However, in the above-described conventional quantum well laser, the wave function of the carrier is sinusoidal, and the distribution of the carriers is locally concentrated.
It is difficult to reduce the oscillation threshold current more than this,
There is also a disadvantage that the length of the resonator cannot be shortened.

〔課題を解決するための手段〕[Means for solving the problem]

前述の問題点を解決するために本発明が提供する手段
は、量子平面または量子細線または量子箱からなる量子
井戸構造を活性領域とした半導体レーザにおいて、前記
量子井戸構造内に深いポテンシャル材料からなる深ポテ
ンシャル領域と、前記深ポテンシャル領域に挟まれた浅
いポテンシャル材料からなる浅ポテンシャル領域とを有
し、前記量子井戸構造内でのキャリアのエネルギー準位
が浅ポテンシャル領域のポテンシャルに近く波動関数が
矩形に近い事を特徴とする構成になっている。
Means provided by the present invention in order to solve the above-described problems is a semiconductor laser having a quantum well structure including a quantum plane, a quantum wire, or a quantum box as an active region, and a deep potential material formed in the quantum well structure. A deep potential region, and a shallow potential region made of a shallow potential material sandwiched between the deep potential regions, wherein the energy level of carriers in the quantum well structure is close to the potential of the shallow potential region and the wave function is rectangular. It is configured to be close to.

電子,正孔のエネルギー準位と波動関数は、シュレデ
ィンガー方程式を解くことにより求める事ができる。バ
ンド構造から成るポテンシャルをV(x)とすると、シ
ュレディンガー方程式は となる。ここでuは波動関数、Eはエネルギー準位、
xは座標、mは有効質量、 はプランク定数を2πで割った定数である。
The energy levels and wave functions of electrons and holes can be obtained by solving the Schrodinger equation. Assuming that the potential having the band structure is V (x), the Schrodinger equation is Becomes Where u is the wave function, E is the energy level,
x is coordinates, m is effective mass, Is a constant obtained by dividing the Planck constant by 2π.

量子障壁層、深ポテンシャル領域、浅ポテンシャル領
域の各ポテンシャル層厚を調整する事により、電子及び
正孔のエネルギー準位を浅ポテンシャル領域のポテンシ
ャルにほぼ一致させる事ができる。その場合、浅ポテン
シャル領域での波動関数の空間変化は小さく、全体が矩
形に近い形となる。
By adjusting the thickness of each of the quantum barrier layer, the deep potential region, and the shallow potential region, the energy levels of electrons and holes can be made substantially equal to the potential of the shallow potential region. In that case, the spatial change of the wave function in the shallow potential region is small, and the whole has a shape close to a rectangle.

〔実施例〕〔Example〕

次に、本発明について図面を参照して説明する。 Next, the present invention will be described with reference to the drawings.

第1図は本発明の一実施例の断面図である。n形GaAs
からなる基板10上にn形Al0.7Ga0.3Asよりなるn形クラ
ッド層(厚さ1μm)11、n形Al0.2Ga0.8Asよりなる光
ガイド層(厚さ1000Å)に、In0.2Ga0.8Asよりなる深ポ
テンシャル領域(厚さ10Å)13、GaAsよりなる浅ポテン
シャル領域(厚さ100Å)14、In0.2Ga0.8Asよりなる深
ポテンシャル領域(厚さ10Å)15、p形Al0.2Ga0.8Asよ
りなる光ガイド層(厚さ1000Å)16、p形Al0.7Ga0.3As
よりなるp形クラッド層(厚さ1μm)17、p形GaAsよ
りなるキャップ層(厚さ3000Å)18を分子線エピタキシ
ー法により結晶成長したのち、蒸着によりp電極19、n
電極20を形成した。
FIG. 1 is a sectional view of one embodiment of the present invention. n-type GaAs
An n-type clad layer (thickness 1 μm) 11 of n-type Al 0.7 Ga 0.3 As and a light guide layer (thickness 1000 °) of n-type Al 0.2 Ga 0.8 As are formed on a substrate 10 of In 0.2 Ga 0.8 As. Deep potential region (thickness 10 mm) 13, shallow potential region (thickness 100 mm) 14 made of GaAs, deep potential region (thickness 10 mm) 15 made of In 0.2 Ga 0.8 As, p-type Al 0.2 Ga 0.8 As Light guide layer (thickness 1000 mm) 16, p-type Al 0.7 Ga 0.3 As
A p-type cladding layer (thickness: 1 μm) 17 and a cap layer (thickness: 3000 °) 18 made of p-type GaAs are crystal-grown by molecular beam epitaxy, and then p-electrodes 19 and n are deposited by vapor deposition.
The electrode 20 was formed.

第2図は量子井戸領域13,14,15のバンド構造と、キャ
リアの波動関数を模式的に示した図である。上側が伝導
帯のポテンシャル21と電子の波動関数22、下側が価電子
帯のポテンシャル23と正孔の波動関数24である。この構
造においては、深ポテンシャル領域13,15での波動関数2
2,24は大きな曲率で変化し、浅ポテンシャル領域14では
小さな曲率で変化する。キャリアのエネルギー準位が浅
ポテンシャル領域14のポテンシャルの値に近いため、波
動関数22,24は浅ポテンシャル領域14でほぼ一定の値と
なり、全体の波動関数22,24は矩形に近い形となる。
FIG. 2 is a diagram schematically showing the band structures of the quantum well regions 13, 14, and 15, and the wave functions of carriers. The upper side is the conduction band potential 21 and the electron wave function 22, and the lower side is the valence band potential 23 and the hole wave function 24. In this structure, the wave function 2 in the deep potential regions 13 and 15
2, 24 change with a large curvature, and in the shallow potential region 14, change with a small curvature. Since the energy level of the carriers is close to the value of the potential in the shallow potential region 14, the wave functions 22 and 24 have a substantially constant value in the shallow potential region 14, and the entire wave functions 22 and 24 have a shape close to a rectangle.

波動関数22,24が矩形状になる事により、光と相互作
用できる空間が大きくなるために、半導体レーザとして
の光の閉じ込め率を大きくする事ができる。
Since the wave functions 22 and 24 have a rectangular shape, a space capable of interacting with light is increased, so that the light confinement ratio of the semiconductor laser can be increased.

この半導体レーザの発振閾値電流密度は150A/cm2と非
常に少なく、また共振器長を100μmまで短かくしても
良好なレーザー発振が得られた。
The oscillation threshold current density of this semiconductor laser was very low at 150 A / cm 2, and good laser oscillation was obtained even if the cavity length was shortened to 100 μm.

上述の実施例では活性領域として量子平面を用いた
が、これに限らず量子細線、量子箱を用いてもよい。
Although the quantum plane is used as the active region in the above-described embodiment, the present invention is not limited to this, and a quantum wire or a quantum box may be used.

前述の実施例ではGaAs系半導体材料を用いたが、これ
に限らず他の半導体材料を用いてもよい。
Although a GaAs-based semiconductor material is used in the above-described embodiment, the present invention is not limited to this, and another semiconductor material may be used.

〔発明の効果〕〔The invention's effect〕

以上説明したように、本発明により光の閉じ込み率が
大きく、発振閾値電流の少ない半導体レーザが得られ
る。
As described above, according to the present invention, a semiconductor laser having a high light confinement ratio and a small oscillation threshold current can be obtained.

尚、実施例ではモード制御構造、電流狭窄構造等につ
いては説明を省略したが、これらモード制御、電流狭窄
等のための構造は従来用いられているストライプ構造等
どのような構造でもよい。
In the embodiment, the description of the mode control structure, the current confinement structure and the like is omitted, but the structure for the mode control and the current confinement may be any structure such as a conventionally used stripe structure.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例である量子井戸レーザの断面
図、第2図は量子井戸構造の模式図である。 10……基板、11……n形クラッド層、12……光ガイド
層、13……深ポテンシャル領域、14……浅ポテンシャル
領域、15……深ポテンシャル領域、16……光ガイド層、
17……p形クラッド層、18……キャップ層、19……p電
極、20……n電極、21……伝導帯のポテンシャル、22…
…電子の波動関数、23……価電子帯のポテンシャル、24
……正孔の波動関数。
FIG. 1 is a sectional view of a quantum well laser according to one embodiment of the present invention, and FIG. 2 is a schematic view of a quantum well structure. 10 ... substrate, 11 ... n-type cladding layer, 12 ... light guide layer, 13 ... deep potential region, 14 ... shallow potential region, 15 ... deep potential region, 16 ... light guide layer,
17 p-type cladding layer, 18 cap layer, 19 p-electrode, 20 n-electrode, 21 potential of conduction band, 22
… Electron wave function, 23 …… valence band potential, 24
...... Hole wave function.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】量子平面または量子細線または量子箱から
なる量子井戸構造を活性領域とした半導体レーザにおい
て、前記活性領域が深いポテンシャル材料からなる深ポ
テンシャル量子井戸層と、前記深ポテンシャル量子井戸
層に挟まれた浅いポテンシャル材料からなる浅ポテンシ
ャル量子井戸層とから成り、前記活性領域内でのキャリ
アのエネルギー準位が浅ポテンシャル量子井戸層のポテ
ンシャルに近く波動関数が矩形に近い事を特徴とする量
子井戸レーザ。
1. A semiconductor laser having a quantum well structure comprising a quantum plane, a quantum wire, or a quantum box as an active region, wherein the active region has a deep potential quantum well layer made of a deep potential material; And a shallow potential quantum well layer made of a shallow potential material sandwiched therebetween, wherein the energy level of carriers in the active region is close to the potential of the shallow potential quantum well layer and the wave function is close to rectangular. Well laser.
JP22686489A 1989-08-31 1989-08-31 Quantum well laser Expired - Lifetime JP2876642B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22686489A JP2876642B2 (en) 1989-08-31 1989-08-31 Quantum well laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22686489A JP2876642B2 (en) 1989-08-31 1989-08-31 Quantum well laser

Publications (2)

Publication Number Publication Date
JPH0389576A JPH0389576A (en) 1991-04-15
JP2876642B2 true JP2876642B2 (en) 1999-03-31

Family

ID=16851769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22686489A Expired - Lifetime JP2876642B2 (en) 1989-08-31 1989-08-31 Quantum well laser

Country Status (1)

Country Link
JP (1) JP2876642B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6371980B2 (en) * 2013-05-29 2018-08-15 パナソニックIpマネジメント株式会社 Semiconductor light emitting device

Also Published As

Publication number Publication date
JPH0389576A (en) 1991-04-15

Similar Documents

Publication Publication Date Title
CA1152623A (en) Semiconductor laser device
US6751243B2 (en) Semiconductor device with quantum dots having high carrier injection efficiency, its manufacture method, and semiconductor laser device
JP2531655B2 (en) Semiconductor device
JPH0143472B2 (en)
JP2018152430A (en) Semiconductor laser
US4759025A (en) Window structure semiconductor laser
EP0915542B1 (en) Semiconductor laser having improved current blocking layers and method of forming the same
JP2876642B2 (en) Quantum well laser
KR900000026B1 (en) Laser using semiconductor
JP2593845B2 (en) Semiconductor light emitting device
JPH0665237B2 (en) Method for manufacturing two-dimensional quantization element
JP2748570B2 (en) Semiconductor laser device
JP2940158B2 (en) Semiconductor laser device
JPS63136591A (en) Seniconductor laser
JPH03174793A (en) Semiconductor laser
JPH0337875B2 (en)
JPH0513872A (en) Hetero junction type semiconductor laser
JPH054833B2 (en)
JPH0621564A (en) Manufacture of semiconductor laser device
JPS6261383A (en) Semiconductor laser and manufacture thereof
KR100287206B1 (en) Semiconductor laser device and manufacturing method thereof
JPH0722212B2 (en) Quantum well laser
JPS63136590A (en) Semiconductor superlattice
JPH05291690A (en) Semiconductor laser device
JPS63153883A (en) Quantum well type semiconductor light-emitting element